Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.247
Filter
Add more filters

Publication year range
1.
Cell ; 158(4): 808-821, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25126786

ABSTRACT

Behavioral state is known to influence interactions between thalamus and cortex, which are important for sensation, action, and cognition. The thalamic reticular nucleus (TRN) is hypothesized to regulate thalamo-cortical interactions, but the underlying functional architecture of this process and its state dependence are unknown. By combining the first TRN ensemble recording with psychophysics and connectivity-based optogenetic tagging, we found reticular circuits to be composed of distinct subnetworks. While activity of limbic-projecting TRN neurons positively correlates with arousal, sensory-projecting neurons participate in spindles and show elevated synchrony by slow waves during sleep. Sensory-projecting neurons are suppressed by attentional states, demonstrating that their gating of thalamo-cortical interactions is matched to behavioral state. Bidirectional manipulation of attentional performance was achieved through subnetwork-specific optogenetic stimulation. Together, our findings provide evidence for differential inhibition of thalamic nuclei across brain states, where the TRN separately controls external sensory and internal limbic processing facilitating normal cognitive function. PAPERFLICK:


Subject(s)
Cognition , Thalamic Nuclei/physiology , Animals , Attention , Behavior, Animal , Limbic System/physiology , Male , Mice , Mice, Inbred C57BL , Visual Perception
2.
Nature ; 621(7980): 788-795, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730989

ABSTRACT

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Subject(s)
Maternal Behavior , Neural Pathways , Neurons , Oxytocin , Vocalization, Animal , Animals , Female , Mice , Cues , Hypothalamus/cytology , Hypothalamus/physiology , Maternal Behavior/physiology , Neurons/metabolism , Oxytocin/metabolism , Photometry , Thalamic Nuclei/physiology , Vocalization, Animal/physiology , Wakefulness
3.
Nature ; 610(7930): 135-142, 2022 10.
Article in English | MEDLINE | ID: mdl-36104560

ABSTRACT

Distinguishing sensory stimuli caused by changes in the environment from those caused by an animal's own actions is a hallmark of sensory processing1. Saccades are rapid eye movements that shift the image on the retina. How visual systems differentiate motion of the image induced by saccades from actual motion in the environment is not fully understood2. Here we discovered that in mouse primary visual cortex (V1) the two types of motion evoke distinct activity patterns. This is because, during saccades, V1 combines the visual input with a strong non-visual input arriving from the thalamic pulvinar nucleus. The non-visual input triggers responses that are specific to the direction of the saccade and the visual input triggers responses that are specific to the direction of the shift of the stimulus on the retina, yet the preferred directions of these two responses are uncorrelated. Thus, the pulvinar input ensures differential V1 responses to external and self-generated motion. Integration of external sensory information with information about body movement may be a general mechanism for sensory cortices to distinguish between self-generated and external stimuli.


Subject(s)
Movement , Saccades , Visual Cortex , Animals , Mice , Movement/physiology , Photic Stimulation , Retina/physiology , Saccades/physiology , Thalamic Nuclei/physiology , Visual Cortex/physiology
4.
Nature ; 608(7923): 586-592, 2022 08.
Article in English | MEDLINE | ID: mdl-35859170

ABSTRACT

The ability to associate temporally segregated information and assign positive or negative valence to environmental cues is paramount for survival. Studies have shown that different projections from the basolateral amygdala (BLA) are potentiated following reward or punishment learning1-7. However, we do not yet understand how valence-specific information is routed to the BLA neurons with the appropriate downstream projections, nor do we understand how to reconcile the sub-second timescales of synaptic plasticity8-11 with the longer timescales separating the predictive cues from their outcomes. Here we demonstrate that neurotensin (NT)-expressing neurons in the paraventricular nucleus of the thalamus (PVT) projecting to the BLA (PVT-BLA:NT) mediate valence assignment by exerting NT concentration-dependent modulation in BLA during associative learning. We found that optogenetic activation of the PVT-BLA:NT projection promotes reward learning, whereas PVT-BLA projection-specific knockout of the NT gene (Nts) augments punishment learning. Using genetically encoded calcium and NT sensors, we further revealed that both calcium dynamics within the PVT-BLA:NT projection and NT concentrations in the BLA are enhanced after reward learning and reduced after punishment learning. Finally, we showed that CRISPR-mediated knockout of the Nts gene in the PVT-BLA pathway blunts BLA neural dynamics and attenuates the preference for active behavioural strategies to reward and punishment predictive cues. In sum, we have identified NT as a neuropeptide that signals valence in the BLA, and showed that NT is a critical neuromodulator that orchestrates positive and negative valence assignment in amygdala neurons by extending valence-specific plasticity to behaviourally relevant timescales.


Subject(s)
Basolateral Nuclear Complex , Learning , Neural Pathways , Neurotensin , Punishment , Reward , Basolateral Nuclear Complex/cytology , Basolateral Nuclear Complex/physiology , Calcium/metabolism , Cues , Neuronal Plasticity , Neurotensin/metabolism , Optogenetics , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology
5.
Nature ; 608(7923): 578-585, 2022 08.
Article in English | MEDLINE | ID: mdl-35922512

ABSTRACT

Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.


Subject(s)
Visual Cortex , Visual Pathways , Animals , Brain Mapping , Mice , Models, Neurological , Retina/cytology , Retina/physiology , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Visual Pathways/cytology , Visual Pathways/physiology
6.
Nature ; 583(7818): 813-818, 2020 07.
Article in English | MEDLINE | ID: mdl-32699410

ABSTRACT

Most sensory information destined for the neocortex is relayed through the thalamus, where considerable transformation occurs1,2. One means of transformation involves interactions between excitatory thalamocortical neurons that carry data to the cortex and inhibitory neurons of the thalamic reticular nucleus (TRN) that regulate the flow of those data3-6. Although the importance of the TRN has long been recognised7-9, understanding of its cell types, their organization and their functional properties has lagged behind that of the thalamocortical systems they control. Here we address this by investigating the somatosensory and visual circuits of the TRN in mice. In the somatosensory TRN we observed two groups of genetically defined neurons that are topographically segregated and physiologically distinct, and that connect reciprocally with independent thalamocortical nuclei through dynamically divergent synapses. Calbindin-expressing cells-located in the central core-connect with the ventral posterior nucleus, the primary somatosensory thalamocortical relay. By contrast, somatostatin-expressing cells-which reside along the surrounding edges of the TRN-synapse with the posterior medial thalamic nucleus, a higher-order structure that carries both top-down and bottom-up information10-12. The two TRN cell groups process their inputs in pathway-specific ways. Synapses from the ventral posterior nucleus to central TRN cells transmit rapid excitatory currents that depress deeply during repetitive activity, driving phasic spike output. Synapses from the posterior medial thalamic nucleus to edge TRN cells evoke slower, less depressing excitatory currents that drive more persistent spiking. Differences in the intrinsic physiology of TRN cell types, including state-dependent bursting, contribute to these output dynamics. The processing specializations of these two somatosensory TRN subcircuits therefore appear to be tuned to the signals they carry-a primary central subcircuit tuned to discrete sensory events, and a higher-order edge subcircuit tuned to temporally distributed signals integrated from multiple sources. The structure and function of visual TRN subcircuits closely resemble those of the somatosensory TRN. These results provide insights into how subnetworks of TRN neurons may differentially process distinct classes of thalamic information.


Subject(s)
Neural Pathways , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology , Action Potentials , Animals , Calbindins/metabolism , Evoked Potentials, Somatosensory , Evoked Potentials, Visual , Female , Kinetics , Male , Mice , Neural Inhibition , Neurons/metabolism , Somatostatin/metabolism , Synapses/metabolism
7.
Nature ; 583(7818): 819-824, 2020 07.
Article in English | MEDLINE | ID: mdl-32699411

ABSTRACT

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Subject(s)
Gene Regulatory Networks , Thalamic Nuclei/cytology , Thalamic Nuclei/metabolism , Animals , Cluster Analysis , Female , Gene Expression Profiling , In Situ Hybridization, Fluorescence , Metalloendopeptidases/metabolism , Mice , Neural Pathways , Neurons/metabolism , Osteopontin/metabolism , Patch-Clamp Techniques , RNA-Seq , Single-Cell Analysis , Sleep/genetics , Sleep/physiology , Thalamic Nuclei/physiology , Transcriptome
8.
J Neurosci ; 44(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37945348

ABSTRACT

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Subject(s)
Auditory Cortex , Wakefulness , Female , Male , Mice , Animals , Mice, Inbred C57BL , Thalamic Nuclei/physiology , Geniculate Bodies/physiology , Auditory Cortex/physiology , Acoustic Stimulation/methods , GABAergic Neurons/physiology
9.
PLoS Biol ; 20(11): e3001896, 2022 11.
Article in English | MEDLINE | ID: mdl-36441759

ABSTRACT

Higher-order sensory thalamic nuclei are densely connected with multiple cortical and subcortical areas, yet the role of these nuclei remains elusive. The posteromedial thalamic nucleus (POm), the higher-order thalamic nucleus in the rodent somatosensory system, is an anatomical hub broadly connected with multiple sensory and motor brain areas yet weakly responds to passive sensory stimulation and whisker movements. To understand the role of POm in sensory perception, we developed a self-initiated, two-alternative forced-choice task in freely moving mice during active sensing. Using optogenetic and chemogenetic manipulation, we show that POm plays a significant role in sensory perception and the projection from the primary somatosensory cortex to POm is critical for the contribution of POm in sensory perception during active sensing.


Subject(s)
Thalamic Nuclei , Animals , Mice
10.
Proc Natl Acad Sci U S A ; 119(21): e2201481119, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35588455

ABSTRACT

Higher-order thalamic nuclei contribute to sensory processing via projections to primary and higher cerebral cortical areas, but it is unknown which of their cortical and subcortical inputs contribute to their distinct output pathways. We used subpopulation specific viral strategies in mice to anatomically and physiologically dissect pathways of the higher-order thalamic nuclei of the somatosensory and visual systems (the posterior medial nucleus and pulvinar). Employing a complementary optogenetics and electrical stimulation strategy, we show that synapses in cortex from higher-order thalamus have functionally divergent properties in primary vs. higher cortical areas. Higher-order thalamic projections onto excitatory targets in S1 and V1 were weakly modulatory, while projections to S2 and higher visual areas were strong drivers of postsynaptic targets. Then, using transsynaptic tracing verified by optogenetics to map inputs to higher-order thalamus, we show that posterior medial nucleus cells projecting to S1 are driven by neurons in layer 5 of S1, S2, and M1 and that pulvinar cells projecting to V1 are driven by neurons in layer 5 of V1 and higher visual areas. Therefore, in both systems, layer 5 of primary and higher cortical areas drives transthalamic feedback modulation of primary sensory cortex through higher-order thalamus. These results highlight conserved organization that may be shared by other thalamocortical circuitry. They also support the hypothesis that direct corticocortical projections in the brain are paralleled by transthalamic pathways, even in the feedback direction, with feedforward transthalamic pathways acting as drivers, while feedback through thalamus is modulatory.


Subject(s)
Somatosensory Cortex , Thalamic Nuclei , Animals , Mice , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Somatosensory Cortex/anatomy & histology , Somatosensory Cortex/physiology , Synapses/physiology , Thalamic Nuclei/anatomy & histology , Thalamic Nuclei/physiology
11.
J Physiol ; 602(7): 1405-1426, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38457332

ABSTRACT

Ocular Surface (OS) somatosensory innervation detects external stimuli producing perceptions, such as pain or dryness, the most relevant symptoms in many OS pathologies. Nevertheless, little is known about the central nervous system circuits involved in these perceptions, and how they integrate multimodal inputs in general. Here, we aim to describe the thalamic and cortical activity in response to OS stimulation of different modalities. Electrophysiological extracellular recordings in anaesthetized rats were used to record neural activity, while saline drops at different temperatures were applied to stimulate the OS. Neurons were recorded in the ophthalmic branch of the trigeminal ganglion (TG, 49 units), the thalamic VPM-POm nuclei representing the face (Th, 69 units) and the primary somatosensory cortex (S1, 101 units). The precise locations for Th and S1 neurons receiving OS information are reported here for the first time. Interestingly, all recorded nuclei encode modality both at the single neuron and population levels, with noxious stimulation producing a qualitatively different activity profile from other modalities. Moreover, neurons responding to new combinations of stimulus modalities not present in the peripheral TG subsequently appear in Th and S1, being organized in space through the formation of clusters. Besides, neurons that present higher multimodality display higher spontaneous activity. These results constitute the first anatomical and functional characterization of the thalamocortical representation of the OS. Furthermore, they provide insight into how information from different modalities gets integrated from the peripheral nervous system into the complex cortical networks of the brain. KEY POINTS: Anatomical location of thalamic and cortical ocular surface representation. Thalamic and cortical neuronal responses to multimodal stimulation of the ocular surface. Increasing functional complexity along trigeminal neuroaxis. Proposal of a new perspective on how peripheral activity shapes central nervous system function.


Subject(s)
Thalamic Nuclei , Thalamus , Rats , Animals , Thalamus/physiology , Thalamic Nuclei/physiology , Neurons/physiology , Pain , Face , Somatosensory Cortex/physiology
12.
Neuroimage ; 297: 120732, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39004408

ABSTRACT

Lasting thalamus volume reduction after preterm birth is a prominent finding. However, whether thalamic nuclei volumes are affected differentially by preterm birth and whether nuclei aberrations are relevant for cognitive functioning remains unknown. Using T1-weighted MR-images of 83 adults born very preterm (≤ 32 weeks' gestation; VP) and/or with very low body weight (≤ 1,500 g; VLBW) as well as of 92 full-term born (≥ 37 weeks' gestation) controls, we compared thalamic nuclei volumes of six subregions (anterior, lateral, ventral, intralaminar, medial, and pulvinar) across groups at the age of 26 years. To characterize the functional relevance of volume aberrations, cognitive performance was assessed by full-scale intelligence quotient using the Wechsler Adult Intelligence Scale and linked to volume reductions using multiple linear regression analyses. Thalamic volumes were significantly lower across all examined nuclei in VP/VLBW adults compared to controls, suggesting an overall rather than focal impairment. Lower nuclei volumes were linked to higher intensity of neonatal treatment, indicating vulnerability to stress exposure after birth. Furthermore, we found that single results for lateral, medial, and pulvinar nuclei volumes were associated with full-scale intelligence quotient in preterm adults, albeit not surviving correction for multiple hypotheses testing. These findings provide evidence that lower thalamic volume in preterm adults is observable across all subregions rather than focused on single nuclei. Data suggest the same mechanisms of aberrant thalamus development across all nuclei after premature birth.


Subject(s)
Magnetic Resonance Imaging , Thalamic Nuclei , Humans , Adult , Female , Male , Thalamic Nuclei/diagnostic imaging , Magnetic Resonance Imaging/methods , Infant, Newborn , Infant, Extremely Premature , Infant, Very Low Birth Weight
13.
Neurobiol Dis ; 200: 106642, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39173845

ABSTRACT

Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.


Subject(s)
Stress, Psychological , Animals , Female , Male , Mice , Stress, Psychological/metabolism , Stress, Psychological/pathology , Thalamic Nuclei/metabolism , Mice, Inbred C57BL , Parvalbumins/metabolism , Neurons/metabolism , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Eur J Neurosci ; 59(4): 554-569, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36623837

ABSTRACT

The thalamic reticular nucleus (TRN) is crucial for the modulation of sleep-related oscillations. The caudal and rostral subpopulations of the TRN exert diverse activities, which arise from their interconnectivity with all thalamic nuclei, as well as other brain regions. Despite the recent characterization of the functional and genetic heterogeneity of the TRN, the implications of this heterogeneity for sleep regulation have not been assessed. Here, using a combination of optogenetics and electrophysiology in C57BL/6 mice, we demonstrate that caudal and rostral TRN modulations are associated with changes in cortical alpha and delta oscillations and have distinct effects on sleep stability. Tonic silencing of the rostral TRN elongates sleep episodes, while tonic silencing of the caudal TRN fragments sleep. Overall, we show evidence of distinct roles exerted by the rostral and caudal TRN in sleep regulation and oscillatory activity.


Subject(s)
Sleep , Thalamic Nuclei , Mice , Animals , Mice, Inbred C57BL , Thalamic Nuclei/physiology , Sleep/physiology , Electrophysiological Phenomena
15.
Eur J Neurosci ; 60(7): 5621-5657, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39192569

ABSTRACT

The ventral posterolateral nucleus (VPL), being categorized as the first-order thalamic nucleus, is considered to be dedicated to uni-modal somatosensory processing. Cross-modal sensory interactions on thalamic reticular nucleus cells projecting to the VPL, on the other hand, suggest that VPL cells are subject to cross-modal sensory influences. To test this possibility, the effects of auditory or visual stimulation on VPL cell activities were examined in anaesthetized rats, using juxta-cellular recording and labelling techniques. Recordings were obtained from 70 VPL cells, including 65 cells responsive to cutaneous electrical stimulation of the hindpaw. Auditory or visual alone stimulation did not elicit cell activity except in three bi-modal cells and one auditory cell. Cross-modal alterations of somatosensory response by auditory and/or visual stimulation were recognized in 61 cells with regard to the response magnitude, latency (time and jitter) and/or burst spiking properties. Both early (onset) and late responses were either suppressed or facilitated, and de novo cell activity was also induced. Cross-modal alterations took place depending on the temporal interval between the preceding counterpart and somatosensory stimulations, the intensity and frequency of sound. Alterations were observed mostly at short intervals (< 200 ms) and up to 800 ms intervals. Sounds of higher intensities and lower frequencies were more effective for modulation. The susceptibility to cross-modal influences was related to cell location and/or morphology. These and previously reported similar findings in the auditory and visual thalamic nuclei suggest that cross-modal sensory interactions pervasively take place in the first-order sensory thalamic nuclei.


Subject(s)
Acoustic Stimulation , Photic Stimulation , Animals , Rats , Male , Photic Stimulation/methods , Electric Stimulation , Rats, Wistar , Neurons/physiology , Auditory Perception/physiology , Ventral Thalamic Nuclei/physiology , Thalamic Nuclei/physiology , Action Potentials/physiology , Visual Perception/physiology
16.
Hum Brain Mapp ; 45(4): e26646, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433705

ABSTRACT

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.


Subject(s)
Thalamic Nuclei , Thalamus , Humans , Reproducibility of Results , Thalamus/diagnostic imaging , Brain , Cerebral Cortex
17.
Synapse ; 78(1): e22283, 2024 01.
Article in English | MEDLINE | ID: mdl-37837643

ABSTRACT

Small conductance calcium-activated potassium (SK) channels are well-known regulators of neuronal excitability. In the thalamic hub, SK2 channels act as pacemakers of thalamic reticular neurons, which play a key role in the thalamocortical circuit. Several disease-linked genes are highly enriched in these neurons, including genes known to be associated with schizophrenia and attentional disorders, which could affect neuronal firing. The present study assessed the effect of pharmacological modulation of SK channels in the firing pattern and intrinsic properties of thalamic reticular neurons by performing whole cell patch clamp recordings in brain slices. Two SK positive allosteric modulators and one negative allosteric modulator were used: CyPPA, NS309, and NS8593, respectively. By acting on the burst afterhyperpolarization (AHP), negative modulation of SK channels resulted in increased action potential (AP) firing, increased burst duration, and decreased intervals between bursts. Conversely, both CyPPA and NS309 increased the afterburst AHP, prolonging the interburst interval, which additionally resulted in reduced AP firing in the case of NS309. Alterations in SK channel activity would be expected to alter functioning of thalamocortical circuits. Targeting SK channels could be promising in treating disorders involving thalamic reticular dysfunction such as psychiatric and neurodevelopmental disorders.


Subject(s)
Neurons , Small-Conductance Calcium-Activated Potassium Channels , Action Potentials , Thalamic Nuclei
18.
BMC Neurol ; 24(1): 174, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789945

ABSTRACT

BACKGROUND: The thalamus has a central role in the pathophysiology of idiopathic cervical dystonia (iCD); however, the nature of alterations occurring within this structure remain largely elusive. Using a structural magnetic resonance imaging (MRI) approach, we examined whether abnormalities differ across thalamic subregions/nuclei in patients with iCD. METHODS: Structural MRI data were collected from 37 patients with iCD and 37 healthy controls (HCs). Automatic parcellation of 25 thalamic nuclei in each hemisphere was performed based on the FreeSurfer program. Differences in thalamic nuclei volumes between groups and their relationships with clinical information were analysed in patients with iCD. RESULTS: Compared to HCs, a significant reduction in thalamic nuclei volume primarily in central medial, centromedian, lateral geniculate, medial geniculate, medial ventral, paracentral, parafascicular, paratenial, and ventromedial nuclei was found in patients with iCD (P < 0.05, false discovery rate corrected). However, no statistically significant correlations were observed between altered thalamic nuclei volumes and clinical characteristics in iCD group. CONCLUSION: This study highlights the neurobiological mechanisms of iCD related to thalamic volume changes.


Subject(s)
Magnetic Resonance Imaging , Thalamus , Torticollis , Humans , Male , Female , Middle Aged , Torticollis/diagnostic imaging , Torticollis/pathology , Magnetic Resonance Imaging/methods , Thalamus/diagnostic imaging , Thalamus/pathology , Adult , Aged , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/pathology
19.
Neurol Sci ; 45(5): 2063-2073, 2024 May.
Article in English | MEDLINE | ID: mdl-38049551

ABSTRACT

OBJECTIVE: This study aimed to examine the volumes of thalamic nuclei and the intrinsic thalamic network in patients with Wilson's disease (WDs), and to explore the correlation between these volumes and the severity of neurological symptoms. METHODS: A total of 61 WDs and 33 healthy controls (HCs) were included in the study. The volumes of 25 bilateral thalamic nuclei were measured using structural imaging analysis with Freesurfer, and the intrinsic thalamic network was evaluated through structural covariance network (SCN) analysis. RESULTS: The results indicated that multiple thalamic nuclei were smaller in WDs compared to HCs, including mediodorsal medial magnocellular (MDm), anterior ventral (AV), central median (CeM), centromedian (CM), lateral geniculate (LGN), limitans-suprageniculate (L-Sg), reuniens-medial ventral (MV), paracentral (Pc), parafascicular (Pf), paratenial (Pt), pulvinar anterior (PuA), pulvinar inferior (PuI), pulvinar medial (PuM), ventral anterior (VA), ventral anterior magnocellular (VAmc), ventral lateral anterior (VLa), ventral lateral posterior (VLp), ventromedial (VM), ventral posterolateral (VPL), and right middle dorsal intralaminar (MDI). The study also found a negative correlation between the UWDRS scores and the volume of the right MDm. The intrinsic thalamic network analysis showed abnormal topological properties in WDs, including increased mean local efficiency, modularity, normalized clustering coefficient, small-world index, and characteristic path length, and a corresponding decrease in mean node betweenness centrality. WDs with cerebral involvement had a lower modularity compared to HCs. CONCLUSIONS: The findings suggest that the majority of thalamic nuclei in WDs exhibit significant volume reduction, and the atrophy of the right MDm is closely related to the severity of neurological symptoms. The intrinsic thalamic network in WDs demonstrated abnormal topological properties, indicating a close relationship with neurological impairment.


Subject(s)
Hepatolenticular Degeneration , Humans , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/diagnostic imaging , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging
20.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836602

ABSTRACT

Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been widely used to localize brain functions. To further advance understanding of brain functions, it is critical to understand the direction of information flow, such as thalamocortical versus corticothalamic projections. For this work, we performed ultrahigh spatiotemporal resolution fMRI at 15.2 T of the mouse somatosensory network during forepaw somatosensory stimulation and optogenetic stimulation of the primary motor cortex (M1). Somatosensory stimulation induced the earliest BOLD response in the ventral posterolateral nucleus (VPL), followed by the primary somatosensory cortex (S1) and then M1 and posterior thalamic nucleus. Optogenetic stimulation of excitatory neurons in M1 induced the earliest BOLD response in M1, followed by S1 and then VPL. Within S1, the middle cortical layers responded to somatosensory stimulation earlier than the upper or lower layers, whereas the upper cortical layers responded earlier than the other two layers to optogenetic stimulation in M1. The order of early BOLD responses was consistent with the canonical understanding of somatosensory network connections and cannot be explained by regional variabilities in the hemodynamic response functions measured using hypercapnic stimulation. Our data demonstrate that early BOLD responses reflect the information flow in the mouse somatosensory network, suggesting that high-field fMRI can be used for systems-level network analyses.


Subject(s)
Magnetic Resonance Imaging , Nerve Net/physiology , Somatosensory Cortex/physiology , Animals , Brain Mapping , Forelimb/physiology , Hemodynamics , Hypercapnia/diagnostic imaging , Hypercapnia/physiopathology , Mice , Microvessels/diagnostic imaging , Microvessels/physiology , Motor Cortex/blood supply , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Nerve Net/blood supply , Nerve Net/diagnostic imaging , Neurons/physiology , Optogenetics , Somatosensory Cortex/blood supply , Somatosensory Cortex/diagnostic imaging , Thalamic Nuclei/blood supply , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/physiology
SELECTION OF CITATIONS
SEARCH DETAIL