Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 461
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Bioorg Chem ; 152: 107723, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39182258

ABSTRACT

Colorectal cancer (CRC) remains one of the most prevalent malignant tumors of the digestive system, yet the availability of safe and effective chemotherapeutic agents for clinical use remains limited. Camptothecin (CPT) and its derivatives, though approved for cancer treatment, have encountered significant challenges in clinical application due to their low bioavailability and high systemic toxicity. Strategic modification at the 7-position of CPT enables the development of novel CPT derivatives with high activity. In the present study, a series of compounds incorporating aminoureas, amino thioureas, and acylamino thioureas as substituents at the 7-position were screened. These compounds were subsequently evaluated for their cytotoxicity against the human gastric cancer (GC) cell line AGS and the CRC cell line HCT116. Two derivatives, XSJ05 (IC50 = 0.006 ± 0.003 µM) and XSJ07 (IC50 = 0.013 ± 0.003 µM), exhibited remarkably effective anti-CRC activity, being better than TPT. In addition, they have a better safety profile. In vitro mechanistic studies revealed that XSJ05 and XSJ07 exerted their inhibitory effects on CRC cell proliferation by suppressing the activity of topoisomerase I (Topo I). This suppression triggers DNA double-strand breaks, leads to DNA damage and subsequently causes CRC cells to arrest in the G2/M phase. Ultimately, the cells undergo apoptosis. Collectively, these findings indicate that XSJ05 and XSJ07 possess superior activity coupled with favorable safety profiles, suggesting their potential as lead compounds for the development of CRC therapeutics.


Subject(s)
Antineoplastic Agents , Apoptosis , Camptothecin , Cell Proliferation , Colorectal Neoplasms , DNA Topoisomerases, Type I , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Topoisomerase I Inhibitors , Humans , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Camptothecin/pharmacology , Camptothecin/chemistry , Camptothecin/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , DNA Topoisomerases, Type I/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Molecular Structure , Apoptosis/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Cell Line, Tumor
2.
Bioorg Chem ; 147: 107403, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691909

ABSTRACT

A novel series of pyrazole derivatives with urea/thiourea scaffolds 16a-l as hybrid sorafenib/erlotinib/celecoxib analogs was designed, synthesized and tested for its VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2, pro-inflammatory cytokines TNF-α and IL-6 inhibitory activities. All the tested compounds showed excellent COX-2 selectivity index in range of 18.04-47.87 compared to celecoxib (S.I. = 26.17) and TNF-α and IL-6 inhibitory activities (IC50 = 5.0-7.50, 6.23-8.93 respectively, compared to celecoxib IC50 = 8.40 and 8.50, respectively). Screening was carried out against 60 human cancer cell lines by National Cancer Institute (NCI), compounds 16a, 16c, 16d and 16 g were the most potent inhibitors with GI% ranges of 100 %, 99.63-87.02 %, 98.98-43.10 % and 98.68-23.62 % respectively, and with GI50 values of 1.76-15.50 µM, 1.60-5.38 µM, 1.68-7.39 µM and 1.81-11.0 µM respectively, in addition, of showing good safety profile against normal cell line (F180). Moreover, compounds 16a, 16c, 16d and 16 g had cell cycle arrest at G2/M phase with induced necrotic percentage compared to sorafenib of 2.06 %, 2.47 %, 1.57 %, 0.88 % and 1.83 % respectively. Amusingly, compounds 16a, 16c, 16d and 16 g inhibited VEGFR-2 with IC50 of 25 nM, 52 nM, 324 nM and 110 nM respectively, compared to sorafenib (IC50 = 85 nM), and had excellent EGFRWT and EGFRT790M kinase inhibitory activities (IC50 = 94 nM, 128 nM, 160 nM, 297 nM), (10 nM, 25 nM, 36 nM and 48 nM) respectively, compared to both erlotinib and osimertinib (IC50 = 114 nM, 56 nM) and (70 nM, 37 nM) respectively and showed (EGFRwt/EGFRT790M S.I.) of (range: 4.44-9.40) compared to erlotinib (2.03) and osmertinib (1.89).


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors , Protein Kinase Inhibitors , Pyrazoles , Thiourea , Urea , Vascular Endothelial Growth Factor Receptor-2 , Humans , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Cell Proliferation/drug effects , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Molecular Structure , Urea/pharmacology , Urea/chemistry , Urea/analogs & derivatives , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase 2 Inhibitors/chemical synthesis , Cell Line, Tumor , Cyclooxygenase 2/metabolism , Drug Discovery , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis
3.
J Enzyme Inhib Med Chem ; 39(1): 2387415, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39140677

ABSTRACT

EcGUS has drawn considerable attention for its role as a target in alleviating serious GIAEs. In this study, a series of 72 (thio)urea derivatives were designed, synthesised, and biologically assayed. The bioassay results revealed that E-9 (IC50 = 2.68 µM) exhibited a promising inhibitory effect on EcGUS, surpassing EcGUS inhibitor D-saccharic acid-1,4-lactone (DSL, IC50 = 45.8 µM). Additionally, the inhibitory kinetic study indicated that E-9 (Ki = 1.64 µM) acted as an uncompetitive inhibitor against EcGUS. The structure-activity relationship revealed that introducing an electron-withdrawing group into the benzene ring at the para-position is beneficial for enhancing inhibitory activity against EcGUS. Furthermore, molecular docking analysis indicated that E-9 has a strong affinity to EcGUS by forming interactions with residues Asp 163, Tyr 472, and Glu 504. Overall, these results suggested that E-9 could be a potent EcGUS inhibitor, providing valuable insights and guidelines for the development of future inhibitors targeting EcGUS.


Subject(s)
Dose-Response Relationship, Drug , Drug Design , Enzyme Inhibitors , Escherichia coli , Glucuronidase , Structure-Activity Relationship , Molecular Structure , Escherichia coli/drug effects , Escherichia coli/enzymology , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Glucuronidase/antagonists & inhibitors , Glucuronidase/metabolism , Molecular Docking Simulation , Thiourea/pharmacology , Thiourea/chemistry , Thiourea/chemical synthesis , Glycoproteins
4.
Molecules ; 29(15)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39125032

ABSTRACT

Reactions with allyl-, acetyl-, and phenylisothiocyanate have been studied on the basis of 3-amino-4,6-dimethylpyridine-2(1H)-one, 3-amino-4-phenylpyridine-2-one, and 3-amino-4-(thiophene-2-yl)pyridine-2(1H)-one (benzoyl-)isothiocyanates, and the corresponding thioureide derivatives 8-11a-c were obtained. Twelve thiourea derivatives were obtained and studied for their anti-diabetic activity against the enzyme α-glucosidase in comparison with the standard drug acarbose. The comparison drug acarbose inhibits the activity of α-glucosidase at a concentration of 15 mM by 46.1% (IC50 for acarbose is 11.96 mM). According to the results of the conducted studies, it was shown that alkyl and phenyl thiourea derivatives 8,9a-c, in contrast to their acetyl-(benzoyl) derivatives and 10,11a-c, show high antidiabetic activity. Thus, 1-(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9a has the highest inhibitory activity against the enzyme α-glucosidase, exceeding the activity of the comparison drug acarbose, which inhibits the activity of α-glucosidase by 56.6% at a concentration of 15 mm (IC50 = 9,77 mM). 1-(6-methyl-2-oxo 4-(thiophen-2-yl)-1,2-dihydropyridin-3-yl)-3-phenylthiourea 9c has inhibitory activity against the enzyme α-glucosidase, comparable to the comparison drug acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mm per 41.2% (IC50 = 12,94 mM). Compounds 8a, 8b, and 9b showed inhibitory activity against the enzyme α-glucosidase, with a lower activity compared to acarbose, inhibiting the activity of α-glucosidase at a concentration of 15 mM by 23.3%, 26.9%, and 35.2%, respectively. The IC50 against α-glucosidase for compounds 8a, 8b, and 9b was found to be 16.64 mM, 19.79 mM, and 21.79 mM, respectively. The other compounds 8c, 10a, 10b, 10c, 11a, 11b, and 11c did not show inhibitory activity against α-glucosidase. Thus, the newly synthesized derivatives of thiourea based on 3-aminopyridine-2(1H)-ones are promising candidates for the further modification and study of their potential anti-diabetic activity. These positive bioanalytical results will stimulate further in-depth studies, including in vivo models.


Subject(s)
Glycoside Hydrolase Inhibitors , Thiourea , alpha-Glucosidases , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Thiourea/analogs & derivatives , Thiourea/chemical synthesis , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemical synthesis , Molecular Structure , Aminopyridines/chemistry , Aminopyridines/pharmacology , Aminopyridines/chemical synthesis
5.
Bioorg Med Chem ; 53: 116506, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34890996

ABSTRACT

Tuberculosis (TB) remains a serious public health problem and one of the main concern is the emergence of multidrug-resistant and extensively resistant TB. Hyper-reactive patients develop inflammatory necrotic lung lesions that aggravate the pathology and facilitate transmission of mycobacteria. Treatment of severe TB is a major clinical challenge that has few effective solutions and patients face a poor prognosis, years of treatment and different adverse drug reactions. In this work, fifteen novel and thirty-one unusual thiourea derivatives were synthesized and evaluated in vitro for their antimycobacterial and anti-inflammatory potential and, in silico for ADMET parameters and for structure-activity relationship (SAR). Thioureas derivatives 10, 15, 16, 28 and 29 that had shown low cytotoxicity and high activities were selected for further investigation, after SAR study. These five thioureas derivatives inhibited Mtb H37Rv growth in bacterial culture and in infected macrophages, highlighting thiourea derivative 28 (MIC50 2.0 ± 1.1 and 2.3 ± 1.1 µM, respectively). Moreover, these compounds were active against the hypervirulent clinical Mtb strain M299, in bacterial culture, especially 16, 28 and 29, and in extracellular clumps, highlighting 29, with MIC50 5.6 ± 1.2 µM. Regarding inflammation, they inhibited NO through the suppression of iNOS expression, and also inhibited the production of TNF-α and IL-1ß. In silico studies were carried out suggesting that these five compounds could be administered by oral route and have low toxicological effects when compared to rifampicin. In conclusion, our data show that, at least, thiourea derivatives 16, 28 and 29 are promising antimycobacterial and anti-inflammatory agents, and candidates for further prospective studies aiming new anti-TB drugs, that can be used on a dual approach for the treatment of severe TB cases associated with exacerbated inflammation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Thiourea/pharmacology , Tuberculosis, Pulmonary/drug therapy , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Severity of Illness Index , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , Tuberculosis, Pulmonary/microbiology
6.
Bioorg Chem ; 107: 104531, 2021 02.
Article in English | MEDLINE | ID: mdl-33339666

ABSTRACT

Benzamide based structural analogues 1-15 were synthesized, and evaluated for α-glucosidase inhibition activity in vitro for the first time. Compounds 1-9 were found to be known, while compounds 10-15 were found to be new. However, to the best of our knowledge we are reporting α-glucosidase inhibitory activity of these bezamide derivatives of thiourea for the first time. Compounds 1, 3, 6-8, 10-14 were found to be potent inhibitors of α-glucosidase within IC50 range of 20.44-333.41 µM, in comparison to the standard inhibitor, acarbose (IC50 = 875.75 ± 2.08 µM). Mode of the enzyme inhibition was determined on the basis of kinetic studies which demonstrated that compounds 8, and 10 were non-competitive and competitive inhibitors of α-glucosidase enzyme, respectively. These compounds were also evaluated for their DPPH radical scavenging activity, and cytotoxicity against 3T3 mouse fibroblast cell lines. All synthesized compounds showed a significant to moderate DPPH radical scavenging activity and appeared to be non-cytotoxic except compound 9 which showed cytotoxicity against 3T3 normal mouse fibroblast cell lines. A single crystal X-ray and Hirshfeld Surface analysis of a representative compound is also presented.


Subject(s)
Benzamides/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Thiourea/analogs & derivatives , 3T3 Cells , Animals , Benzamides/chemical synthesis , Crystallography, X-Ray , Enzyme Assays , Glycoside Hydrolase Inhibitors/chemical synthesis , Kinetics , Mice , Molecular Structure , Structure-Activity Relationship , Thiourea/chemical synthesis
7.
Bioorg Chem ; 116: 105317, 2021 11.
Article in English | MEDLINE | ID: mdl-34488126

ABSTRACT

KGP94 is a potent, selective, and competitive inhibitor of the lysosomal endopeptidase enzyme (Cathepsin L) currently in preclinical trials for the treatment of metastatic cancer, which is a leading cause of cancer-associated death. Herein, we report two new synthetic routes for synthesizing the target compound through four consecutive steps, using a Weinreb amide approach starting from a common 3-bromobenzoyl chloride. A key step in the approach is a coupling reaction of a readily available Grignard reagent with amide 4 to produce 6, a previously unreported coupling pattern. These new strategies offer an efficient and alternative approach to synthesis of target compound with an excellent overall yield.


Subject(s)
Cathepsin L/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Thiosemicarbazones/pharmacology , Thiourea/analogs & derivatives , Cathepsin L/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology
8.
Bioorg Chem ; 109: 104707, 2021 04.
Article in English | MEDLINE | ID: mdl-33639362

ABSTRACT

1-(adamantane-1-carbonyl-3-(1-naphthyl)) thiourea (C22H24N2OS (4), was synthesized by the reaction of freshly prepared adamantane-1-carbonyl chloride from corresponding acid (3) with ammonium thiocyanate in 1:1 M ratio in dry acetone to afford the adamantane-1-carbonyl isothiocyanate (2) in situ followed by treatment with 1-naphthyl amine (3). The structure was established by elemental analyses, FTIR, 1H, 13C NMR and mass spectroscopy. The molecular and crystal structure were determined by single crystal X-ray analysis. It belongs to triclinic system P - 1 space group with a = 6.7832(5) Å, b = 11.1810(8) Å, c = 13.6660(10) Å, α = 105.941(6)°, ß = 103.730(6)°, γ = 104.562(6)°, Z = 2, V = 910.82(11) Å3. The naphthyl group is almost planar. In the crystal structure, intermolecular CH···O hydrogen bonds link the molecules into centrosymmetric dimers, enclosing R22(14) ring motifs, while the intramolecular NH···O hydrogen bonds enclose S(6) ring motifs, in which they may be effective in the stabilization of the structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H … H (59.3%), H … C/C … H (19.8%) and H … S/S … H (10.1%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. DFT, molecular docking and urease inhibition studies revealed stability and electron withdrawing nature of 4 as compared to DNA base pairs and residues of urease. The DNA binding results from docking, UV- visible spectroscopy, and viscosity studies indicated significant binding of 4 with the DNA via intercalation and groove binding. Further investigation of the compound was done on hepatocellular carcinoma; Huh-7 cell line as well as normal human embryonic kidney; Hek-293 cell line. The compound showed significant cytotoxic activity against Huh-7 cells in comparison to normal Hek-293 cells indicating selective cytotoxicity towards cancer cells.


Subject(s)
Adamantane/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Thiourea/analogs & derivatives , Urease/metabolism , Adamantane/chemical synthesis , Adamantane/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Survival , Crystallography, X-Ray , DNA/chemistry , Gene Expression Regulation, Enzymologic/drug effects , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Urease/genetics
9.
Mol Divers ; 25(3): 1701-1715, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32862361

ABSTRACT

The work presented in this paper aims toward the synthesis of aryl thiourea derivatives 4a-l of pyrazole based nonsteroidal anti-inflammatory drug named 4-aminophenazone, as potential inhibitors of intestinal alkaline phosphatase enzyme. The screening of synthesized target compounds 4a-l for unraveling the anti-inflammatory potential against calf intestinal alkaline phosphatase gives rise to lead member 4c possessing IC50 value 0.420 ± 0.012 µM, many folds better than reference standard used (KH2PO4 IC50 = 2.8 ± 0.06 µM and L-phenylalanine IC50 = 100 ± 3.1 µM). SAR for unfolding the active site binding pocket interaction along with the mode of enzyme inhibition based on kinetic studies is carried out which showed non-competitive binding mode. The enzyme inhibition studies were further supplemented by molecular dynamic simulations for predicting the protein behavior against active inhibitors 4c and 4g during docking analysis. The preliminary toxicity of the synthesized compounds was determined by using brine shrimp assay. This work also includes detailed biochemical analysis along with RO5 parameters for all the newly synthesized drug derivatives 4a-l.


Subject(s)
Alkaline Phosphatase/chemistry , Aminopyrine/chemistry , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Thiourea/chemistry , Aminopyrine/analogs & derivatives , Binding Sites , Chemical Phenomena , Chemistry Techniques, Synthetic , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Molecular Structure , Protein Binding , Solvents , Spectrum Analysis , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/pharmacology
10.
Arch Pharm (Weinheim) ; 354(7): e2000468, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33728698

ABSTRACT

The synthesis of a new small library of molecules containing bis-urea/thiourea pendants in lysine conjugated to three different heterocycles is described. The heterocycles used in this study have benzisoxazole/piperazine/piperidine units. After a detailed antimicrobial, antioxidant, and anti-inflammatory evaluation, it was found that the most active compounds are 10, 11, 14, 15, 18, 19 and 10, 11, 19 and 8, 9, 12, 13, 16, 17, respectively. Further, it was observed that the presence of all three entities, that is, urea/thiourea, the substituent (OMe/F), as well as the heterocycle, is highly essential for exerting potent activity. Among the heterocycles, the presence of isoxazole seems to be highly beneficial for exerting good potency. In continuation, docking studies have revealed extraordinary binding efficiency for some of the active compounds. Given their potent biological results and docking score, some of the title compounds could be potential drug candidates for microbial-related diseases and provide a basis for future research into the development of molecules possessing multitask ability.


Subject(s)
Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Thiourea/pharmacology , Urea/pharmacology , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , Isoxazoles/pharmacology , Lysine/chemistry , Molecular Docking Simulation , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , Urea/chemical synthesis , Urea/chemistry
11.
Molecules ; 26(2)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435580

ABSTRACT

We have developed the continuous-flow synthesis of thioureas in a multicomponent reaction starting from isocyanides, amidines, or amines and sulfur. The aqueous polysulfide solution enabled the application of sulfur under homogeneous and mild conditions. The crystallized products were isolated by simple filtration after the removal of the co-solvent, and the sulfur retained in the mother liquid. Presenting a wide range of thioureas synthesized by this procedure confirms the utility of the convenient continuous-flow application of sulfur.


Subject(s)
Sulfides/chemistry , Thiourea/chemical synthesis , Water/chemistry , Molecular Structure , Oxidation-Reduction
12.
Molecules ; 26(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34833983

ABSTRACT

In this work, two thiourea ligands bearing a phosphine group in one arm and in the other a phenyl group (T2) or 3,5-di-CF3 substituted phenyl ring (T1) have been prepared and their coordination to Au and Ag has been studied. A different behavior is observed for gold complexes, a linear geometry with coordination only to the phosphorus atom or an equilibrium between the linear and three-coordinated species is present, whereas for silver complexes the coordination of the ligand as P^S chelate is found. The thiourea ligands and their complexes were explored against different cancer cell lines (HeLa, A549, and Jurkat). The thiourea ligands do not exhibit relevant cytotoxicity in the tested cell lines and the coordination of a metal triggers excellent cytotoxic values in all cases. In general, data showed that gold complexes are more cytotoxic than the silver compounds with T1, in particular the complexes [AuT1(PPh3)]OTf, the bis(thiourea) [Au(T1)2]OTf and the gold-thiolate species [Au(SR)T1]. In contrast, with T2 better results are obtained with silver species [AgT1(PPh3)]OTf and the [Ag(T1)2]OTf. The role played by the ancillary ligand bound to the metal is important since it strongly affects the cytotoxic activity, being the bis(thiourea) complex the most active species. This study demonstrates that metal complexes derived from thiourea can be biologically active and these compounds are promising leads for further development as potential anticancer agents.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Gold , Models, Molecular , Silver , Thiourea , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Gold/chemistry , Gold/pharmacology , HeLa Cells , Humans , Silver/chemistry , Silver/pharmacology , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology
13.
J Recept Signal Transduct Res ; 40(1): 34-41, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31910703

ABSTRACT

Synthesis of a series of new urea and thiourea compounds have been accomplished by the reaction of 2,3-dihydro-1H-inden-1-amine with various phenyl isocyanates and isothiocyanates. These compounds were evaluated for their antioxidant activity by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and nitric oxide (NO) radical scavenging assay methods including IC50 values. Some of the compounds exhibited potential activity in the two tested methods. Among the series of compounds, urea derivative linked with 4-bromo phenyl ring (4b), and thiourea derivatives bonded with phenyl ring (4e), 4-fluoro phenyl ring (4f) and 4-nitro pheyl ring (4h) were found to exhibit promising anti oxidant activity with low IC50 values. Where four of the title comounds exhibited higher bindig energies than the reference compound (Imatinib) in in silico molecular docking studies with Aromatase. All the synthesized compounds were characterized by IR, 1H, 13C NMR and mass spectral data.


Subject(s)
Amines/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Computer Simulation , Thiourea/pharmacology , Urea/pharmacology , Amines/chemical synthesis , Amines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Molecular Docking Simulation , Nitric Oxide/chemistry , Picrates/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry , Urea/chemical synthesis , Urea/chemistry
14.
Bioorg Med Chem Lett ; 30(18): 127411, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32717617

ABSTRACT

A. baumannii is one of the most important multidrug-resistant microorganisms in hospital units. It is resistant to many classes of antibiotics and the development of new therapeutic strategies is necessary. The aim of this study was to evaluate the antibacterial activity of a set of piperazine-derived thioureas against 13 clinical strains of colistin-resistant A. baumannii. Six derivatives were identified to inhibit bacterial growth of 46% of the A. baumannii strains at low micromolar concentrations (Minimum Inhibitory Concentration from 1.56 to 6.25 µM). A common structural feature in most active compounds was the presence of a 3,5-bis-trifluoromethyl phenyl ring at the thiourea function. In addition, the ability of the compounds to inhibit production of nitric oxide (NO) was examined in RAW 264.7 murine macrophages, highlighting the potential of piperazine-derived thioureas as promising scaffolds for the design of new combined anti-bacterial/anti-inflammatory agents.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Inflammatory Agents/chemical synthesis , Colistin/pharmacology , Piperazines/chemistry , Thiourea/chemical synthesis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Drug Evaluation, Preclinical , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Humans , Mice , Microbial Sensitivity Tests , Nitric Oxide/metabolism , RAW 264.7 Cells , Structure-Activity Relationship , Thiourea/pharmacology
15.
Bioorg Chem ; 104: 104216, 2020 11.
Article in English | MEDLINE | ID: mdl-32911191

ABSTRACT

The article is devoted to the targeted synthesis and study of cyclic thiourea and their various new derivatives as new organic compounds containing polyfunctional group in the molecule. First time the reaction of the corresponding synthesized pyrimidinethione with 1,2-epoxy-3-chlorpropane at the presence of AlCl3 catalyst in 75-80% yield alkyl-1-(3-chloro-2-hydroxypropyl)-4-alkyl-6-phenyl-2-thioxo-1,2,5,6- tetrahydropyrimidine-5-carboxylates. In the next stage, new cyclic thiourea derivatives of aminoalcohols were synthesised from the reaction of chlorinated derivatives of pyrimidinethiones with single amines and their structures were investigated by spectroscopic methods. In this study, a series of novel compounds were tested towards some metabolic enzymes including α-glycosidase (α-Gly) and α-amylase (α-Amy) enzymes. Novel compounds showed Kis in ranging of 10.43 ± 0.94-111.37 ± 13.25 µM on α-glycosidase and IC50 values in ranging of 14.38-106.51 µM on α-amylase. The novel cyclic thiourea derivatives of aminoalcohols had effective inhibition profiles against all tested metabolic enzymes. Binding affinity and inhibition mechanism of the most active compounds were detected with in silico studies and have shown that 2-Hydroxypropyl and butan-1-aminium moieties play a key role for inhibition of the enzymes.


Subject(s)
Aluminum Chloride/chemistry , Amino Alcohols/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Thiourea/pharmacology , alpha-Amylases/antagonists & inhibitors , Amino Alcohols/chemistry , Catalysis , Dose-Response Relationship, Drug , Glycoside Hydrolase Inhibitors/chemical synthesis , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , alpha-Amylases/metabolism
16.
Bioorg Chem ; 99: 103783, 2020 06.
Article in English | MEDLINE | ID: mdl-32224334

ABSTRACT

A series of six compounds (1a-f) possessing pyridine-pyrazole-benzenethiourea or pyridine-pyrazole-benzenesulfonamide scaffold were synthesized. The target compounds were screened to evaluate their inhibitory effect on human nucleotide pyrophosphatase/phosphodiesterase 1 and -3 (ENPP1 and ENPP3) isoenzymes. Compounds 1c-e were the most potent inhibitors of ENPP1 with sub-micromolar IC50 values (0.69, 0.18, and 0.40 µM, respectively. Moreover, compound 1b was the most potent inhibitor of ENPP3 (IC50 = 0.21 µM). They were much more potent than the reference standard inhibitor, suramin (IC50 values against ENPP1 and -3 were 7.77 and 0.89 µM, respectively). Furthermore, all the six compounds were investigated for cytotoxic effect against cancerous cell lines (HeLa, MCF-7, and 1321N1) and normal cell line (BHK-21). Compound 1e was active against all the three cancer cell lines, however, showed preferential cytotoxicity against MCF-7 (IC50 = 16.05 µM), which is comparable to the potency of cisplatin. All the tested compounds exhibited low or negligible cytotoxic effect against the normal cells. They have the merit of superior selectivity towards cancer cells than normal cells compared to cisplatin. The relative selectivity and potency of the inhibitors was justified by molecular docking studies. All the docked structures showed considerable binding interactions with amino acids residues of active sites of ENPP isoenzymes.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Thiourea/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Phosphoric Diester Hydrolases/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry
17.
J Enzyme Inhib Med Chem ; 35(1): 344-353, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31851852

ABSTRACT

Mutation of the proto-oncogene K-Ras is one of the most common molecular mechanisms in non-small cell lung cancer. Many drugs for treating lung cancer have been developed, however, due to clinical observed K-Ras mutations, corresponding chemotherapy and targeted therapy for such mutation are not efficient enough. In this study, on the basis of the crystal structure of K-Ras, 21 analogues (TKR01-TKR21) containing urea or thiourea were rationally designed, which can effectively inhibit the lung cancer cell A549 growth. The designing of these compounds was based on the structure of K-Ras protein, and the related groups were replaced by bioisosteres to improve the affinity and selectivity. Biological testing revealed that compound TKR15 could significantly inhibit the proliferation of A549 cell with IC50 of 0.21 µM. Docking analysis showed that the TKR15 can effectively bind to the hydrophobic cavity and form a hydrogen bond with the Glu37. In addition, through flow apoptosis assay and immunofluorescence staining assay, it confirmed that this compound can inhibit A549 cell proliferation with the mechanism of blocking K-RasG12V protein and effector proteins interactions through the apoptotic pathway. In conclusion, our studies in finding novel potent compound (TKR15) with confirmed mechanism showed great potential for further optimisation and other medicinal chemistry relevant studies.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Design , Enzyme Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Thiourea/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Molecular Structure , Proto-Oncogene Mas , Proto-Oncogene Proteins p21(ras)/metabolism , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry
18.
Chem Biodivers ; 17(7): e2000212, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32372529

ABSTRACT

A synthesis method of novel N-cycloalkylcarbonyl-N'-arylthioureas was developed. It consists of sequential addition of equimolecular amounts of ammonium isothiocyanate and substituted anilines to cycloalkylcarbonyl chlorides. The identity and purity of products were confirmed by LC/MS spectra, their structure by elemental analysis, IR and 1 H-NMR spectra. Preliminary antimicrobial screening for standard microorganisms and molecular docking allowed to select several structures for antifungal and genetic toxicity studies. Conducted in vitro screening of 9 compounds for antifungal potential against 11 phytopathogenic fungi and three Phytophthora strains revealed that two N-(arylcarbamothioyl) cyclopropanecarboxamides at a concentration of 50 µg/ml exhibited activities comparable to the standard antifungal agent 'Cyproconazole'. Analysis of mutagenicity of novel thioureas using the Salmonella reverse mutagenicity assay ('Ames Test') showed a low gene-toxicity profile.


Subject(s)
Antifungal Agents/pharmacology , Drug Design , Fungi/drug effects , Thiourea/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Salmonella/genetics , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry
19.
Arch Pharm (Weinheim) ; 353(2): e1900218, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31782553

ABSTRACT

Four 2-(1H-indol-3-yl)ethylthiourea derivatives were prepared by condensation of 2-(1H-indol-3-yl)ethanamine with the corresponding aryl/alkylisothiocyanates in a medium-polarity solvent. Their structures were confirmed by spectral techniques, and the molecular structure of 3 was determined by X-ray crystal analysis. For all derivatives, the binding affinities at the 5-HT2A and 5-HT2C receptors, as well as their functional activities at the 5-HT1A and D2 receptors, were determined. The arylthioureas 1 and 4 were the most active at the 5-HT1A receptor, showing, at the same time, significant selectivity over the studied 5-HT2 and D2 receptor subtypes. The compounds were tested for their pharmacological activities within the central nervous system in relevant mouse models. The involvement of the serotonergic system in the activity of 1 and 4 was indicated. The antinociceptive action of 4 was linked to its anti-inflammatory activity.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Indoles/pharmacology , Thiourea/pharmacology , Amphetamine , Analgesics/chemical synthesis , Analgesics/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Binding Sites/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Hyperkinesis/chemically induced , Hyperkinesis/drug therapy , Indoles/chemical synthesis , Indoles/chemistry , Male , Mice , Models, Molecular , Molecular Structure , Receptors, Dopamine D2/metabolism , Receptors, Serotonin, 5-HT1/metabolism , Receptors, Serotonin, 5-HT2/metabolism , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry
20.
Molecules ; 25(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963671

ABSTRACT

For almost 20 years, thioureas have been experiencing a renaissance of interest with the emerged development of asymmetric organocatalysts. Due to their relatively high acidity and strong hydrogen bond donor capability, they differ significantly from ureas and offer, appropriately modified, great potential as organocatalysts, chelators, drug candidates, etc. The review focuses on the family of chiral thioureas, presenting an overview of the current state of knowledge on their synthesis and selected applications in stereoselective synthesis and drug development.


Subject(s)
Chemistry Techniques, Synthetic , Chemistry, Pharmaceutical , Thiourea/chemistry , Amines , Amino Acids/chemistry , Catalysis , Drug Development , Hydrogen Bonding , Molecular Structure , Peptides/chemistry , Thiourea/chemical synthesis , Thiourea/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL