Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Drug Metab Dispos ; 52(8): 911-918, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38849209

ABSTRACT

Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.


Subject(s)
Arsenites , Cytochrome P-450 Enzyme System , Drug Interactions , Rats, Sprague-Dawley , Animals , Arsenites/toxicity , Arsenites/pharmacokinetics , Male , Rats , Cytochrome P-450 Enzyme System/metabolism , Intestinal Absorption/drug effects , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Omeprazole/pharmacology , Omeprazole/pharmacokinetics , Midazolam/pharmacokinetics , Caffeine/pharmacokinetics , Chlorzoxazone/pharmacokinetics , Metoprolol/pharmacokinetics , Metoprolol/pharmacology , Tolbutamide/pharmacokinetics , Sodium Compounds/toxicity , Sodium Compounds/pharmacokinetics
2.
Eur J Clin Pharmacol ; 78(11): 1823-1831, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36166059

ABSTRACT

PURPOSE: In this study, the drug-drug interaction potential of vatiquinone with cytochrome P450 (CYP) substrates was investigated in both in vitro and clinical studies. METHODS: The inhibitory potential of vatiquinone on the activity of CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4/5 was assessed in vitro. In an open-label, drug-drug interaction study in 18 healthy human subjects, a single oral dose of 500 mg tolbutamide and 40 mg omeprazole was administered on day 1, followed by a washout of 7 days. Multiple oral doses of 400 mg vatiquinone (three times a day [TID]) were administered from day 8 to day 13 with coadministration of a single oral dose of 500 mg tolbutamide and 40 mg omeprazole on day 12. RESULTS: In vitro, vatiquinone inhibited CYP2C9 (IC50 = 3.7 µM) and CYP2C19 (IC50 = 5.4 µM). In the clinical study, coadministration of vatiquinone did not affect the pharmacokinetic (PK) profile of tolbutamide and omeprazole. The 90% confidence intervals (CIs) of geometric least-square mean ratios for maximum plasma concentration (Cmax), areas under the plasma concentration-time curve (AUC0-t), and AUC0-inf of tolbutamide and omeprazole were entirely contained within the 80 to 125% no effect limit, except a minor excursion observed for Cmax of omeprazole (geometric mean ratio [GMR], 94.09; 90% CI, 78.70-112.50). Vatiquinone was generally well tolerated, and no clinically significant findings were reported. CONCLUSION: The in vitro and clinical studies demonstrated vatiquinone has a low potential to affect the pharmacokinetics of concomitantly administered medications that are metabolized by CYP enzymes.


Subject(s)
Omeprazole , Tolbutamide , Area Under Curve , Cytochrome P-450 CYP2C19/metabolism , Cytochrome P-450 CYP2C9/metabolism , Cytochrome P-450 Enzyme System/metabolism , Drug Interactions , Healthy Volunteers , Humans , Omeprazole/pharmacology , Tolbutamide/pharmacokinetics
3.
Support Care Cancer ; 27(3): 819-827, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30084103

ABSTRACT

PURPOSE: Rolapitant is a neurokinin-1 receptor antagonist indicated in combination with other antiemetic agents in adults for the prevention of delayed chemotherapy-induced nausea and vomiting. We evaluated the effects of rolapitant oral on the pharmacokinetics of probe substrates for cytochrome P450 (CYP) 2D6 (dextromethorphan), 2C9 (tolbutamide), 2C19 (omeprazole), 2B6 (efavirenz), and 2C8 (repaglinide) in healthy subjects. METHODS: This open-label, multipart, randomized, phase 1 study assessed cohorts of 20-26 healthy subjects administered dextromethorphan, tolbutamide plus omeprazole, efavirenz, or repaglinide with and without single, oral doses of rolapitant. Maximum plasma analyte concentrations (Cmax) and area under the plasma analyte concentration-time curves (AUC) were estimated using noncompartmental analysis, and geometric mean ratios (GMRs) and 90% confidence intervals for the ratios of test (rolapitant plus probe substrate) to reference (probe substrate alone) treatment were calculated. RESULTS: Rolapitant significantly increased the systemic exposure of dextromethorphan in terms of Cmax and AUC0-inf by 2.2- to 3.3-fold as observed in GMRs on days 7 and 14. Rolapitant did not affect systemic exposure of tolbutamide, and minor excursions outside of the 80-125% no effect limits were detected for omeprazole, efavirenz, and repaglinide. CONCLUSIONS: Inhibition of dextromethorphan by a single oral dose of rolapitant 180 mg is clinically significant and can last at least 7 days. No clinically significant interaction was observed between rolapitant and substrates of CYP2C9, CYP2C19, CYP2B6, or CYP2C8. CYP2D6 substrate drugs with a narrow therapeutic index may require monitoring for adverse reactions if given concomitantly with rolapitant.


Subject(s)
Antiemetics/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Spiro Compounds/pharmacology , Administration, Oral , Adolescent , Adult , Alkynes , Benzoxazines/pharmacokinetics , Carbamates/pharmacokinetics , Cyclopropanes , Cytochrome P-450 CYP2B6/drug effects , Cytochrome P-450 CYP2C19/drug effects , Cytochrome P-450 CYP2C8/drug effects , Cytochrome P-450 CYP2C9/drug effects , Cytochrome P-450 CYP2D6/drug effects , Dextromethorphan/pharmacokinetics , Drug Combinations , Drug Interactions , Female , Healthy Volunteers , Humans , Male , Middle Aged , Molecular Probes/pharmacokinetics , Neurokinin-1 Receptor Antagonists/administration & dosage , Omeprazole/pharmacokinetics , Piperidines/pharmacokinetics , Tolbutamide/pharmacokinetics , Young Adult
4.
Xenobiotica ; 49(8): 905-911, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30231664

ABSTRACT

Shuanghuanglian Injection (SHLI), one of the most popular herbal prescription in China, has been commonly used to treat pneumonia, tonsillitis, and other respiratory diseases caused by bacterium and virus. This study is to investigate the effects of SHLI on the activities of Cytochrome P450 (CYP) 1A2, 2C11, 2D1 and 3A1/2 in rats. Sixteen rats were randomly divided into two groups (SHLI-treated and blank control). They were administered SHLI or physiological saline for consecutive seven days. On day eight, 16 animals were administrated cocktail drugs as probe substrates of the four CYP in vivo. In addition, other four probe drugs were added, respectively, into incubation systems of rat liver microsomes (RLM) to assess the effects of SHLI on the four CYP isoforms in vitro. SHLI exhibited an inductive effect on CYP2C11 in vivo by decreasing Cmax, t1/2 and AUC0-∞ of tolbutamide, while the main pharmacokinetic parameters of caffeine, metoprolol and dapsone have no significant changes. In vitro study, SHLI showed no significant effects on the activities of CYP1A2, 2D1 and 3A1/2, but increasing the metabolism of tolbutamide in RLM. SHLI induced the activities of CYP2C11, but had no significant effects on the activities of CYP1A2, CYP2D1 and CYP3A1/2 in rats.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Injections , Animals , Caffeine/blood , Caffeine/pharmacokinetics , Caffeine/pharmacology , Calibration , Dapsone/blood , Dapsone/pharmacokinetics , Limit of Detection , Male , Metabolome , Metoprolol/blood , Metoprolol/pharmacokinetics , Rats, Wistar , Reproducibility of Results , Time Factors , Tolbutamide/blood , Tolbutamide/pharmacokinetics
5.
Biopharm Drug Dispos ; 40(7): 225-233, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31215040

ABSTRACT

The study examined the effect of doxorubicin (DOX) on the hepatic expression of CYP2C and its activity for metabolizing tolbutamide (TB), a specific CYP2C substrate, in rats and whether the pharmacokinetics of tolbutamide were altered by doxorubicin exposure. The expression level of hepatic CYP2C11 was depressed 1 day after doxorubicin administration (day 1), and this effect on CYP2C11 was augmented on day 4. However, the expression level of hepatic CYP2C6 remained unchanged. The activity of tolbutamide 4-hydroxylation in hepatic microsomes was decreased with time following doxorubicin administration. Regarding the enzyme kinetic parameters for tolbutamide 4-hydroxylation on day 4, the maximum velocity (Vmax ) was significantly lower in the DOX group than that in the control group, while the Michaelis constant (Km ) was unaffected. On pharmacokinetic examination, the total clearance (CLtot ) of tolbutamide on day 4 was increased, despite the decreased metabolic capacity. On the other hand, the serum unbound fraction (fu ) of tolbutamide was elevated with a reduced serum albumin concentration in the DOX group. Contrary to CLtot , CLtot /fu , a parameter approximated to the hepatic intrinsic clearance of unbound tolbutamide, was estimated to be significantly reduced in the DOX group. These findings indicate that the metabolic capacity of CYP2C11 in the liver is depressed time-dependently by down-regulation after doxorubicin exposure in rats, and that the decreased enzyme activity of TB 4-hydroxylation in hepatic microsomes reflects the pharmacokinetic change of unbound tolbutamide, not total tolbutamide, in serum.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Hypoglycemic Agents/pharmacokinetics , Tolbutamide/pharmacokinetics , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P450 Family 2/metabolism , Drug Interactions , Hydroxylation/drug effects , Hypoglycemic Agents/blood , Male , Metabolic Clearance Rate/drug effects , Microsomes, Liver/metabolism , Rats, Sprague-Dawley , Serum Albumin/metabolism , Steroid 16-alpha-Hydroxylase/metabolism , Tolbutamide/blood
6.
J Pharmacol Exp Ther ; 364(3): 390-398, 2018 03.
Article in English | MEDLINE | ID: mdl-29326367

ABSTRACT

Tolbutamide is primarily metabolized by CYP2C9, and, thus, is frequently applied as a clinical probe substrate for CYP2C9 activity. However, there is a marked discrepancy in the in vitro-in vivo extrapolation of its metabolic clearance, implying a potential for additional clearance mechanisms. The goal of this study was to evaluate the role of hepatic uptake transport in the pharmacokinetics of tolbutamide and to identify the molecular mechanism thereof. Transport studies using singly transfected cells expressing six major hepatic uptake transporters showed that tolbutamide is a substrate to organic anion transporter 2 (OAT2) alone with transporter affinity [Michaelis-Menten constant (Km)] of 19.5 ± 4.3 µM. Additionally, OAT2-specific transport was inhibited by ketoprofen (an OAT2 inhibitor) and 1 mM rifamycin SV (pan inhibitor), but not by cyclosporine and rifampicin (OAT polypeptides/Na+-taurocholate cotransporting polypeptide inhibitors). Uptake studies in primary human hepatocytes confirmed the predominant role of OAT2 in the active uptake with significant inhibition by rifamycin SV and ketoprofen, but not by the other inhibitors. Concentration-dependent uptake was noted in human hepatocytes with active transport characterized by Km and Vmax values of 39.3 ± 6.6 µM and 426 ± 30 pmol/min per milligram protein, respectively. Bottom-up physiologically based pharmacokinetic modeling was employed to verify the proposed role of OAT2-mediated hepatic uptake. In contrast to the rapid equilibrium (CYP2C9-only) model, the permeability-limited (OAT2-CYP2C9 interplay) model better described the plasma concentration-time profiles of tolbutamide. Additionally, the latter well described tolbutamide pharmacokinetics in carriers of CYP2C9 genetic variants and quantitatively rationalized its known drug-drug interactions. Our results provide first-line evidence for the role of OAT2-mediated hepatic uptake in the pharmacokinetics of tolbutamide, and imply the need for additional clinical studies in this direction.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Liver/metabolism , Organic Anion Transporters, Sodium-Independent/metabolism , Tolbutamide/metabolism , Biological Transport , HEK293 Cells , Hepatocytes/metabolism , Humans , Tissue Distribution , Tolbutamide/pharmacokinetics , Tolbutamide/pharmacology
7.
Acta Pharmacol Sin ; 39(9): 1522-1532, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29644999

ABSTRACT

Liver metabolism is commonly considered the major determinant in drug discovery and development. Many in vitro drug metabolic studies have been developed and applied to understand biotransformation. However, these methods have disadvantages, resulting in inconsistencies between in vivo and in vitro experiments. A major factor is that they are static systems that do not consider the transport process in the liver. Here we developed an in vitro dynamic metabolic system (Bio-PK metabolic system) to mimic the human pharmacokinetics of tolbutamide. Human liver microsomes (HLMs) encapsulated in a F127'-Acr-Bis hydrogel (FAB hydrogel) were placed in the incubation system. A microdialysis sampling technique was used to monitor the metabolic behavior of tolbutamide in hydrogels. The measured results in the system were used to fit the in vitro intrinsic clearance of tolbutamide with a mathematical model. Then, a PBPK model that integrated the corresponding in vitro intrinsic clearance was developed to verify the system. Compared to the traditional incubation method, reasonable PK profiles and the in vivo clearance of tolbutamide could be predicted by integrating the intrinsic clearance of tolbutamide obtained from the Bio-PK metabolic system into the PBPK model. The predicted maximum concentration (Cmax), area under the concentration-time curve (AUC), time to reach the maximum plasma concentration (Tmax) and in vivo clearance were consistent with the clinically observed data. This novel in vitro dynamic metabolic system can compensate for some limitations of traditional incubation methods; it may provide a new method for screening compounds and predicting pharmacokinetics in the early stages, supporting the development of compounds.


Subject(s)
Microsomes, Liver/metabolism , Tolbutamide/pharmacokinetics , Diffusion , Female , Humans , Hydrogels/chemical synthesis , Hydrogels/chemistry , Male , Microdialysis/methods , Models, Theoretical , Poloxamer/chemical synthesis , Poloxamer/chemistry , Tolbutamide/metabolism
8.
Xenobiotica ; 48(1): 53-59, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28051340

ABSTRACT

1. We investigated the change in the pharmacokinetic profile of tolbutamide (TB), a substrate for CYP2C6/11, 4 days after single administration of 5-fluorouracil (5-FU), and the hepatic gene expression and activity of CYP2C6/11 were also examined in 5-FU-pretreated rats. 2. Regarding the pharmacokinetic parameters of the 5-FU group, the area under the curve (AUC) was significantly increased, and correspondingly, the elimination rate constant at the terminal phase (ke) was significantly decreased without significant change in the volume of distribution at the steady state (Vdss). 3. The metabolic production of 4-hydroxylated TB in hepatic microsomes was significantly reduced by the administration of 5-FU. 4. The expression level of mRNAs for hepatic CYP2C6 and CYP2C11 was significantly lower than in the control group when the rats were pretreated with 5-FU. 5. These results demonstrated that the pharmacokinetic profile of TB was altered by the treatment with 5-FU through a metabolic process, which may be responsible for the decreased CYP2C6/11 expression at mRNA levels.


Subject(s)
Antimetabolites, Antineoplastic/pharmacokinetics , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P450 Family 2/metabolism , Fluorouracil/pharmacokinetics , Hypoglycemic Agents/pharmacokinetics , Liver/metabolism , Steroid 16-alpha-Hydroxylase/metabolism , Tolbutamide/pharmacokinetics , Animals , Area Under Curve , Hydroxylation , Microsomes, Liver/metabolism , Rats
9.
Biopharm Drug Dispos ; 39(7): 321-327, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29978919

ABSTRACT

As there are to be known gender differences in the expression profiles of rat hepatic CYP2C, we examined the pharmacokinetic behavior of tolbutamide (TB), a typical probe for CYP2C, and hepatic enzyme activities for metabolizing TB in female rats to compare with male rats. On the pharmacokinetic analysis of TB after intravenous administration to female rats, the elimination rate constant at the terminal phase (ke ), total clearance (CLtot ) and the apparent volume of distribution at steady-state (Vdss ) were significantly lower than in male rats. The binding rates of TB to serum protein were similar in male and female rats, indicating that the change in unbound TB concentration in serum is not associated with the difference in the pharmacokinetic disposition of TB. On metabolic examination using hepatic microsomes, the maximum reaction velocity (Vmax ) of the metabolic conversion from TB to 4-hydroxytolbutamide (4-OH-TB) in female rats was lower than that in male rats, although there was no significant difference in the Michaelis constant (Km ) between genders. Consistent with this, the Vmax -to-Km ratio (Vmax /Km ) was significantly lower in female rats than in male rats. Therefore, the low in vitro CYP2C-dependent activity for hepatic TB removal in female rats provided a clear explanation for the lower in vivo elimination clearance of TB. Our findings strongly suggest that there is a gender difference in the metabolic capacity to eliminate drugs that serve as substrates of hepatic CYP2C enzymes in rats.


Subject(s)
Hypoglycemic Agents/pharmacokinetics , Tolbutamide/pharmacokinetics , Administration, Intravenous , Animals , Blood Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Female , Hypoglycemic Agents/blood , Kinetics , Male , Metabolic Clearance Rate , Microsomes, Liver/metabolism , Protein Binding , Rats , Rats, Sprague-Dawley , Tolbutamide/blood
10.
Eur J Clin Pharmacol ; 72(1): 39-51, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26490357

ABSTRACT

PURPOSE: Cocktail approach using a combination of probes to phenotype several cytochromes P450 or transporters is of high interest in anticipating drug­drug interactions and personalized medicine. Its clinical use remains however limited by the intensive sampling scheme required to obtain phenotyping indexes (PI) which consists in calculating the area under the concentration­time curves. We proposed to use maximum a posteriori Bayesian estimation (MAPBE) that incorporates available information from the whole population to derive PI from a few individual observations. The performance of a limited sampling strategy (LSS) based on MAPBE was evaluated for a five-probe cocktail. METHODS: The studied cocktail included midazolam, tolbutamide, caffeine, dextromethorphan, omeprazole and their relevant metabolites. Prior information for MAPBE was obtained by nonlinear mixed-effect modelling of data from a pilot study. Sampling times were chosen based on optimal design theory using the Bayesian Fisher information matrix. Through a simulation study, we investigated the predicted PI in terms of bias and imprecision for varying number and timing of samples. RESULTS: Some three-point Bayesian designs gave mean prediction errors in [−5 %, 5 %], root mean square errors below 30 % for all probes, except dextromethorphan whose model should be consolidated further with additional data. This approach gave overall less outlier predicted values than single-point metrics and was more flexible to the timing of the latest sampling. CONCLUSIONS: MAPBE is accurate for predicting simultaneously several PI while being flexible in terms of integrating clinical constraints. Therefore, LSS based on MAPBE could help reduce the time of presence in hospital for individuals to be phenotyped.


Subject(s)
Bayes Theorem , Caffeine/pharmacokinetics , Dextromethorphan/pharmacokinetics , Midazolam/pharmacokinetics , Models, Biological , Omeprazole/pharmacokinetics , Tolbutamide/pharmacokinetics , Caffeine/blood , Computer Simulation , Dextromethorphan/blood , Drug Interactions , Humans , Midazolam/blood , Omeprazole/blood , Phenotype , Pilot Projects , Tolbutamide/blood
11.
Pharmacology ; 97(5-6): 218-23, 2016.
Article in English | MEDLINE | ID: mdl-26872133

ABSTRACT

The aim of this study was to assess the influence of evodiamine on the activities of the drug-metabolizing enzymes cytochrome P450 (CYP) 1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 in rats. The activities of CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 were measured using specific probe drugs. After pretreatment for 1 week with evodiamine or physiological saline (control group) by oral administration, probe drugs phenacetin (5.0 mg/kg; CYP1A2 activity), tolbutamide (1.0 mg/kg; CYP2C9 activity), omeprazole (10 mg/kg; CYP2C19 activity), metoprolol (20 mg/kg; CYP2D6 activity) and midazolam (10 mg/kg; CYP3A4 activity) were administered to rats by oral administration. The blood was then collected at different times for ultra-performance liquid chromatography-tandem mass spectrometry analysis. The data showed that evodiamine exhibits an inhibitory effect on CYP1A2, CYP2C9 and CYP2D6 by increasing t(1/2), Cmax and AUC(0-∞), and decreasing CL/F compared with those of the control group. However, no significant changes in CYP2C19 and CYP3A4 activities were observed. In conclusion, the results indicated that evodiamine could inhibit CYP1A2, CYP2C9 and CYP2D6, which may affect the disposition of medicines primarily dependent on these pathways. Our work may be the basis of related herb-drug interactions in the clinic.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Herb-Drug Interactions , Quinazolines/pharmacology , Administration, Oral , Animals , Liver/drug effects , Liver/metabolism , Male , Metoprolol/blood , Metoprolol/pharmacokinetics , Midazolam/blood , Midazolam/pharmacokinetics , Omeprazole/blood , Omeprazole/pharmacokinetics , Phenacetin/blood , Phenacetin/pharmacokinetics , Rats, Sprague-Dawley , Tolbutamide/blood , Tolbutamide/pharmacokinetics
12.
Br J Clin Pharmacol ; 80(6): 1388-98, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26264702

ABSTRACT

AIMS: Evacetrapib is a cholesteryl ester transfer protein (CETP) inhibitor under development for reducing cardiovascular events in patients with high risk vascular disease. CETP inhibitors are likely to be utilized as 'add-on' therapy to statins in patients receiving concomitant medications, so the potential for evacetrapib to cause clinically important drug-drug interactions (DDIs) with cytochromes P450 (CYP) was evaluated. METHODS: The DDI potential of evacetrapib was investigated in vitro, followed by predictions to determine clinical relevance. Potential DDIs with possible clinical implications were then investigated in the clinic. RESULTS: In vitro, evacetrapib inhibited all of the major CYPs, with inhibition constants (K(i)) ranging from 0.57 µM (CYP2C9) to 7.6 µM (CYP2C19). Evacetrapib was a time-dependent inhibitor and inducer of CYP3A. The effects of evacetrapib on CYP3A and CYP2C9 were assessed in a phase 1 study using midazolam and tolbutamide as probe substrates, respectively. After 14 days of daily dosing with evacetrapib (100 or 300 mg), midazolam exposures (AUC) changed by factors (95% CI) of 1.19 (1.06, 1.33) and 1.44 (1.28, 1.62), respectively. Tolbutamide exposures (AUC) changed by factors of 0.85 (0.77, 0.94) and 1.06 (0.95, 1.18), respectively. In a phase 2 study, evacetrapib 100 mg had minimal impact on AUC of co-administered simvastatin vs. simvastatin alone with a ratio of 1.25 (1.03, 1.53) at steady-state, with no differences in reported hepatic or muscular adverse events. CONCLUSIONS: Taken together, the extent of CYP-mediated DDI with the potential clinical dose of evacetrapib is weak and clinically important DDIs are not expected to occur in patients taking concomitant medications.


Subject(s)
Anticholesteremic Agents/pharmacology , Benzodiazepines/pharmacology , Cholesterol Ester Transfer Proteins/antagonists & inhibitors , Cells, Cultured , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Double-Blind Method , Drug Interactions , Humans , Microsomes, Liver/enzymology , Midazolam/pharmacokinetics , Simvastatin/pharmacokinetics , Tolbutamide/pharmacokinetics
13.
Pharmacology ; 95(5-6): 243-50, 2015.
Article in English | MEDLINE | ID: mdl-25967365

ABSTRACT

BACKGROUND: Dimethoate (DM), one of the most widely used systemic organophosphate insecticide, has been reported to exert toxic effects after long-time subchronic exposure. This study aims at investigating the toxic effect of DM on liver after repeated administration of low doses of DM in rats. METHODS: Twenty Sprague-Dawley rats were randomly divided into the control group (n = 10) and the DM group (n = 10). After 2 weeks' exposure to DM at low dosage (5 mg/kg), biochemical parameters of hepatic functions were measured, histology and CYP450 expressed in liver was detected. The activities of CYP1A2, CYP2C11, CYP2D1, and CYP3A2 were evaluated by the Cocktail method. RESULTS: The level of AChE (acetylcholinesterase) was significantly decreased, hepatic functions were damaged and the mRNA level of CYP2D1 was significantly increased in the DM group (p < 0.05). The pharmacokinetics of probe drug revealed AUC(0-t), AUC(0-∞), t1/2 and Cmax of metoprolol was shorten in the DM group (p < 0.05). However, there were no statistical differences in MRT, t1/2, CL and Tmax for phenacetin, tolbutamide and midazolam. CONCLUSIONS: A low dosage of DM could induce the activity of CYP2D1 in liver and increase the metabolism of metoprolol when exposed for 2 weeks.


Subject(s)
Dimethoate/pharmacology , Insecticides/pharmacology , Metoprolol/pharmacokinetics , Midazolam/pharmacokinetics , Phenacetin/pharmacokinetics , Tolbutamide/pharmacokinetics , Animals , Cholinesterase Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/genetics , Gene Expression/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Metoprolol/blood , Midazolam/blood , Phenacetin/blood , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Tolbutamide/blood
14.
Phytother Res ; 29(3): 366-72, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25447838

ABSTRACT

In traditional therapy with Chinese medicine, vitexin has several pharmacological properties, including antinociceptive, antispasmodic, antioxidant, antimyeloperoxidase, and α-glucosidase inhibitory activities. Recently, vitexin was shown to protect the heart against ischemia/reperfusion injury in an in vitro model by inhibiting apoptosis. The purpose of this study was to find out whether vitexin influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C11, and CYP3A1) by using cocktail probe drugs in vivo; the influence on the levels of CYP mRNA was also studied. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (10 mg/kg), tolbutamide (1 mg/kg), and midazolam (5 mg/kg), was given as oral administration to rats treated with short or long period of intravenous vitexin via the caudal vein. Blood samples were collected at a series of time points, and the concentrations of probe drugs in plasma were determined by HPLC-mass spectrometry (MS)/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. In addition, real-time reverse transcription-polymerase chain reaction was performed to determine the effects of vitexin on the mRNA expression of CYP1A2, CYP2C11, and CYP3A1 in rat liver. Treatment with short or long period of vitexin had no effects on rat CYP1A2. However, CYP3A1 enzyme activity was inhibited by vitexin in a concentration-dependent and time-dependent manner. Furthermore, CYP2C11 enzyme activity was induced after short period treatment but inhibited after long period of vitexin treatment. The mRNA expression results were in accordance with the pharmacokinetic results. In conclusion, vitexin can either inhibit or induce activities of CYP2C11 and CYP3A1. Therefore, caution is needed when vitexin is co-administered with some CYP2C11 or CYP3A1 substrates in clinic, which may result in treatment failure and herb-drug interactions.


Subject(s)
Apigenin/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Midazolam/pharmacokinetics , Phenacetin/pharmacokinetics , Tolbutamide/pharmacokinetics , Animals , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP3A/metabolism , Cytochrome P450 Family 2 , Cytochromes/metabolism , Herb-Drug Interactions , Liver/drug effects , Liver/enzymology , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Steroid 16-alpha-Hydroxylase/metabolism
15.
Anal Chem ; 86(15): 8003-9, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25014006

ABSTRACT

Understanding the enzymatic reaction kinetics that occur within a confined space or interface is a significant challenge. Herein, a nanotube array enzymatic reactor (CYP2C9/Au/TNA) was constructed by electrostatically adsorbing enzyme on the inner wall of TiO2 nanotube arrays (TNAs). TNAs with different dimensions could be fabricated by the anodization of titanium foil through varying the anodization potential or time. The electrical conductivity of TNAs was improved by electrodepositing Au nanoparticles on the inner wall of TNAs. The cytochrome P450 2C9 enzyme (CYP2C9) was confined inside TNAs as a model. The enzymatic activity of CYP2C9 and tolbutamide metabolic yield could be effectively regulated by changing the nanotube diameter and length of TNAs. The enzymatic rate constant k(cat) and apparent Michaelis constant K(m)(app) were determined to be 9.89 s(-1) and 4.8 µM at the tube inner diameter of about 64 nm and length of 1.08 µm. The highest metabolic yield of tolbutamide reached 14.6%. Furthermore, the designed nanotube array enzymatic reactor could be also used in situ to monitor the tolbutamide concentration with sensitivity of 28.8 µA mM(-1) and detection limit of 0.52 µM. Therefore, the proposed nanotube array enzymatic reactor was a good vessel for studying enzyme biocatalysis and drug metabolism, and has potential applications including efficient biosensors and bioreactors for chemical synthesis.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Hypoglycemic Agents/pharmacokinetics , Nanotubes , Titanium/chemistry , Tolbutamide/pharmacokinetics , Electrochemical Techniques , Microscopy, Electron, Scanning
16.
Drug Metab Dispos ; 42(10): 1611-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25028567

ABSTRACT

Milk thistle (Silybum marianum) extracts are widely used as a complementary and alternative treatment of various hepatic conditions and a host of other diseases/disorders. The active constituents of milk thistle supplements are believed to be the flavonolignans contained within the extracts. In vitro studies have suggested that some milk thistle components may significantly inhibit specific cytochrome P450 (P450) enzymes. However, determining the potential for clinically significant drug interactions with milk thistle products has been complicated by inconsistencies between in vitro and in vivo study results. The aim of the present study was to determine the effect of a standardized milk thistle supplement on major P450 drug-metabolizing enzymes after a 14-day exposure period. CYP1A2, CYP2C9, CYP2D6, and CYP3A4/5 activities were measured by simultaneously administering the four probe drugs, caffeine, tolbutamide, dextromethorphan, and midazolam, to nine healthy volunteers before and after exposure to a standardized milk thistle extract given thrice daily for 14 days. The three most abundant falvonolignans found in plasma, following exposure to milk thistle extracts, were silybin A, silybin B, and isosilybin B. The concentrations of these three major constituents were individually measured in study subjects as potential perpetrators. The peak concentrations and areas under the time-concentration curves of the four probe drugs were determined with the milk thistle administration. Exposure to milk thistle extract produced no significant influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Plant Extracts/pharmacology , Silybum marianum/chemistry , Caffeine/pharmacokinetics , Dextromethorphan/pharmacokinetics , Dietary Supplements/analysis , Female , Herb-Drug Interactions , Humans , Male , Midazolam/pharmacokinetics , Silybin , Silymarin/analogs & derivatives , Silymarin/blood , Tolbutamide/pharmacokinetics , Young Adult
17.
Biopharm Drug Dispos ; 35(5): 264-74, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24590592

ABSTRACT

Under hyperlipidemic conditions, there are likely to be alterations in the pharmacokinetics of CYP2C11 substrates following decreased expression of CYP2C11, which is homologous to human CYP2C9. The pharmacokinetics of tolbutamide (TB) and its metabolite 4-hydroxy tolbutamide (4-OHTB) were evaluated as a CYP2C11 probe after intravenous and oral administration of 10 mg/kg tolbutamide to poloxamer 407-induced hyperlipidemic rats (HL rats). Changes in the expression and metabolic activity of hepatic CYP2C11 and the plasma protein binding of tolbutamide in HL rats were also evaluated. The total area under the plasma concentration-time curve (AUC) of tolbutamide in HL rats after intravenous administration was comparable to that in controls due to their comparable non-renal clearance (CLNR ). The free fractions of tolbutamide in plasma were comparable between the control and HL rats. The 4-hydroxylated metabolite formation ratio (AUC4-OHTB /AUCTB ) in HL rats was significantly smaller than that in the control rats as a result of the reduced expression of hepatic CYP2C11 (by 15.0%) and decreased hepatic CLint (by 28.8%) for metabolism of tolbutamide to 4-OHTB via CYP2C11. Similar pharmacokinetic changes were observed in HL rats after oral administration of tolbutamide. These findings have potential therapeutic implications, assuming that the HL rat model qualitatively reflects similar changes in patients with hyperlipidemia. Since other sulfonylureas in clinical use are substrates of CYP2C9, their hepatic CLint changes have the potential to cause clinically relevant pharmacokinetic changes in a hyperlipidemic state.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Hyperlipidemias/physiopathology , Hypoglycemic Agents/pharmacokinetics , Steroid 16-alpha-Hydroxylase/metabolism , Tolbutamide/pharmacokinetics , Administration, Oral , Animals , Area Under Curve , Cytochrome P450 Family 2 , Disease Models, Animal , Hydroxylation , Infusions, Intravenous , Liver/metabolism , Male , Poloxamer/toxicity , Rats , Rats, Sprague-Dawley
18.
Pharmazie ; 69(4): 306-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24791597

ABSTRACT

Myricetin is one of the main ingredients of Chinese bayberry, which is used as a traditional medicine. The purpose of this study was to find out whether myricetin influences the rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9 and CYP3A4) by using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg) and midazolam (10 mg/kg), was orally administered to rats treated for 14 days with myricetin. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. Our study showed that treatment with multiple doses of myricetin had no effects on rat CYP1A2. However, CYP2C9 and CYP3A4 enzyme activities were inhibited after multiple doses of myricetin. Therefore, caution is needed when myricetin is co-administered with CYP2C9 or CYP3A4 substrates, which may result in herb-drug interactions.


Subject(s)
Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme System/metabolism , Enzyme Inhibitors , Flavonoids/pharmacology , Animals , Area Under Curve , Cytochrome P-450 CYP3A Inhibitors , Cytochrome P-450 Enzyme Inhibitors , Half-Life , Indicators and Reagents , Male , Midazolam/pharmacokinetics , Phenacetin/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tolbutamide/pharmacokinetics
19.
Pharmazie ; 69(4): 301-5, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24791596

ABSTRACT

The purpose of this study was to find out whether icaritin influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg), was orally administered to rats treated with multiple doses of icaritin. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. Treatment with multiple doses of icaritin had inhibitive effects on rat CYP1A2, CYP2C9 and CYP3A4 enzyme activities. However, icaritin has no inductive or inhibitory effect on the activity of CYP2E1. Therefore, caution is needed when icaritin is co-administered with some CYP1A2, CYP2C9 or CYP3A4 substrates, which may result in treatment failure and herb-drug interactions.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Flavonoids/pharmacology , Liver/metabolism , Animals , Chlorzoxazone/pharmacokinetics , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A/metabolism , Half-Life , Indicators and Reagents , Isoenzymes/metabolism , Liver/drug effects , Male , Midazolam/pharmacokinetics , Phenacetin/pharmacokinetics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Tolbutamide/pharmacokinetics , Xenobiotics/metabolism
20.
Int J Clin Pharmacol Ther ; 51(4): 305-12, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23380426

ABSTRACT

OBJECTIVES: To assess the effect of ticagrelor on the pharmacokinetics of tolbutamide (a CYP2C9 substrate), and the effect of tolbutamide on ticagrelor pharmacokinetics. METHODS: In this randomized, double-blind, two-period, crossover study, 23 healthy volunteers received either placebo or ticagrelor 180 mg twice daily (b.i.d.) for 9 days, with a single open-label oral dose of tolbutamide 500 mg on Day 5. After washout (14 days), volunteers received the alternate treatment. Plasma concentrations of tolbutamide, 4-hydroxytolbutamide, ticagrelor, and AR-C124910XX were determined for pharmacokinetic analyses. RESULTS: Ticagrelor had no effect on tolbutamide or 4-hydroxytolbutamide pharmacokinetic parameters. The geometric least square mean ratios for maximum plasma concentration (Cmax) and area under the plasma concentration-time curve from Time 0 to infinity (AUC0-∞) were lose to unity, and the 90% confidence intervals (CI) were within the range 0.80 - 1.25 for both tolbutamide and 4-hydroxytolbutamide. The terminal elimination half-life (t1/2), and time to maximal plasma concentrations (tmax) for tolbutamide and its metabolite were unaffected by ticagrelor coadministration. Tolbutamide had no effect on the Cmax, area under the concentration curve over the 2-hour dosing interval (AUC0-τ), t1/2 or tmax of either ticagrelor or AR-C124910XX. Coadministration of ticagrelor and tolbutamide was well tolerated. CONCLUSIONS: These results suggest that ticagrelor does not affect tolbutamide metabolism and is therefore unlikely to affect CYP2C9-mediated metabolism of drugs.


Subject(s)
Adenosine/analogs & derivatives , Aryl Hydrocarbon Hydroxylases/metabolism , Purinergic P2Y Receptor Antagonists/pharmacology , Tolbutamide/pharmacokinetics , Adenosine/pharmacokinetics , Adenosine/pharmacology , Administration, Oral , Adult , Area Under Curve , Cross-Over Studies , Cytochrome P-450 CYP2C9 , Double-Blind Method , Drug Interactions , Female , Half-Life , Humans , Male , Purinergic P2Y Receptor Antagonists/pharmacokinetics , Ticagrelor , Tolbutamide/analogs & derivatives , Tolbutamide/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL