Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 834
Filter
Add more filters

Publication year range
1.
J Biol Chem ; 300(1): 105519, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38042488

ABSTRACT

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


Subject(s)
Leukocyte Elastase , Transcortin , Glycosylation , Hydrocortisone/metabolism , Leukocyte Elastase/metabolism , Polysaccharides , Proteolysis , Transcortin/genetics , Transcortin/chemistry , Transcortin/metabolism , Humans
2.
Proc Biol Sci ; 288(1964): 20211908, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34847769

ABSTRACT

Predation is a key organizing force in ecosystems. The threat of predation may act to programme the endocrine hypothalamic-pituitary-adrenal axis during development to prepare offspring for the environment they are likely to encounter. Such effects are typically investigated through the measurement of corticosteroids (Cort). Corticosteroid-binding globulin (CBG) plays a key role in regulating the bioavailability of Cort, with only free unbound Cort being biologically active. We investigated the effects of prenatal predator odour exposure (POE) in mice on offspring CBG and its impact on Cort dynamics before, during and after restraint stress in adulthood. POE males, but not females, had significantly higher serum CBG at baseline and during restraint and lower circulating levels of Free Cort. Restraint stress was associated with reduced liver transcript abundance of SerpinA6 (CBG-encoding gene) only in control males. POE did not affect SerpinA6 promoter DNA methylation. Our results indicate that prenatal exposure to a natural stressor led to increased CBG levels, decreased per cent of Free Cort relative to total and inhibited restraint stress-induced downregulation of CBG transcription. These changes suggest an adaptive response to a high predator risk environment in males but not females that could buffer male offspring from chronic Cort exposure.


Subject(s)
Hypothalamo-Hypophyseal System , Transcortin , Animals , Female , Male , Mice , Pregnancy , Corticosterone , Ecosystem , Hypothalamo-Hypophyseal System/metabolism , Odorants , Pituitary-Adrenal System/metabolism , Transcortin/metabolism
3.
Gen Comp Endocrinol ; 310: 113810, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33964285

ABSTRACT

Glucocorticoid hormones are often measured to assess how organisms physiologically respond to challenges in their environment. In plasma, glucocorticoids circulate in two forms: bound to corticosteroid-binding globulins (CBG) or unbound (free). Measuring CBG allows us to estimate the amount of free glucocorticoids present in a plasma sample. However, free glucocorticoid estimates are affected by the assay temperature used when measuring CBG, with colder temperatures maximizing specific binding but likely underestimating glucocorticoid's affinity for CBG. Here, we test how a biologically relevant incubation temperature (41 °C) changes the disassociation constant (Kd; used to estimate free glucocorticoid levels) when compared to the traditional 4 °C incubation temperature, across four commonly studied avian species. We then apply the new Kd's calculated at 41 °C to existing data sets to examine how the change in Kd affects free corticosterone estimates and data interpretation. Kd's were generally higher (lower affinity for CORT) at warmer incubation temperatures which resulted in higher levels of estimated free CORT in all four species but differed among subspecies. This increase in free CORT levels did not qualitatively change previously reported statistical relationships, but did affect variance and alpha (P) values. We suggest that future assays be run at biologically relevant temperatures for more accurate estimates of free CORT levels in vivo and to increase the chances of detecting biological patterns of free-CORT that may not be revealed with the classic methodology that tends to underestimate free CORT levels.


Subject(s)
Corticosterone , Transcortin , Animals , Birds/metabolism , Temperature , Transcortin/metabolism
4.
J Transl Med ; 18(1): 8, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31907043

ABSTRACT

BACKGROUND: Serum protein glycosylation is an area of investigation in inflammatory arthritic disorders such as rheumatoid arthritis (RA). Indeed, some studies highlighted abnormalities of protein glycosylation in RA. Considering the numerous types of enzymes, monosaccharides and glycosidic linkages, glycosylation is one of the most complex post translational modifications. By this work, we started with a preliminary screening of glycoproteins in serum from RA patients and controls. METHODS: In order to isolate glycoproteins from serum, lectin wheat germ agglutinin was used and quantitative differences between patients and controls were investigated by LC-MS/MS. Consequently, we focused our attention on two glycoproteins found in this explorative phase: corticosteroid-binding globulin (CBG) and lipopolysaccharide-binding protein (LBP). The subsequent validation with immunoassays was widened to a larger number of early RA (ERA) patients (n = 90) and well-matched healthy controls (n = 90). RESULTS: We observed a significant reduction of CBG and LBP glycosylation in ERA patients compared with healthy controls. Further, after 12 months of treatment, glycosylated CBG and LBP levels increased both to values comparable to those of controls. In addition, these changes were correlated with clinical parameters. CONCLUSIONS: This study enables to observe that glycosylation changes of CBG and LBP are related to RA disease activity and its response to treatment.


Subject(s)
Arthritis, Rheumatoid , Transcortin , Acute-Phase Proteins , Arthritis, Rheumatoid/drug therapy , Carrier Proteins , Chromatography, Liquid , Glycosylation , Humans , Membrane Glycoproteins , Tandem Mass Spectrometry , Transcortin/metabolism
5.
Clin Endocrinol (Oxf) ; 91(1): 33-40, 2019 07.
Article in English | MEDLINE | ID: mdl-30868607

ABSTRACT

CONTEXT: Optimization of hydrocortisone replacement therapy is important to prevent under- and over dosing. Hydrocortisone pharmacokinetics is complex as circulating cortisol is protein bound mainly to corticosteroid-binding globulin (CBG) that has a circadian rhythm. OBJECTIVE: A detailed analysis of the CBG circadian rhythm and its impact on cortisol exposure after hydrocortisone administration. DESIGN AND METHODS: CBG was measured over 24 hours in 14 healthy individuals and, employing a modelling and simulation approach using a semi-mechanistic hydrocortisone pharmacokinetic model, we evaluated the impact on cortisol exposure (area under concentration-time curve and maximum concentration of total cortisol) of hydrocortisone administration at different clock times and of the changing CBG concentrations. RESULTS: The circadian rhythm of CBG was well described with two cosine terms added to the baseline of CBG: baseline CBG was 21.8 µg/mL and interindividual variability 11.9%; the amplitude for the 24 and 12 hours cosine functions were relatively small (24 hours: 5.53%, 12 hours: 2.87%) and highest and lowest CBG were measured at 18:00 and 02:00, respectively. In simulations, the lowest cortisol exposure was observed after administration of hydrocortisone at 23:00-02:00, whereas the highest was observed at 15:00-18:00. The differences between the highest and lowest exposure were minor (≤12.2%), also regarding the free cortisol concentration and free fraction (≤11.7%). CONCLUSIONS: Corticosteroid-binding globulin has a circadian rhythm but the difference in cortisol exposure is ≤12.2% between times of highest and lowest CBG concentrations; therefore, hydrocortisone dose adjustment based on time of dosing to adjust for the CBG concentrations is unlikely to be of clinical benefit.


Subject(s)
Circadian Rhythm/drug effects , Hydrocortisone/pharmacology , Hydrocortisone/pharmacokinetics , Transcortin/metabolism , Adolescent , Adult , Circadian Rhythm/physiology , Female , Healthy Volunteers , Humans , Hydrocortisone/blood , Male , Middle Aged , Young Adult
6.
Physiol Genomics ; 50(10): 876-883, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30029587

ABSTRACT

Increasing evidence suggests that there are innate differences between sexes with respect to stroke pathophysiology; however, the molecular mechanisms underlying these differences remain unclear. In this investigation, we employed a shotgun approach to broadly profile sex-associated differences in the plasma proteomes of a small group of male ( n = 6) and female ( n = 4) ischemic stroke patients. Peripheral blood was sampled during the acute phase of care, and liquid chromatography electrospray ionization mass spectrometry was used to quantify plasma proteins. We observed widespread differences in plasma composition, as 77 out of 294 detected proteins were significantly differentially expressed between sexes. Corticosteroid-binding globulin (CBG), a negative acute-phase reactant that inversely regulates levels of bioactive free cortisol, was the most dramatically differentially regulated, exhibiting 16-fold higher abundance in plasma from women relative to men. Furthermore, functional annotation analysis revealed that the remaining differentially expressed proteins were significantly enriched for those involved in response to corticosteroid signaling. Plasma CBG levels were further examined in an additional group of male ( n = 19) and female ( n = 28) ischemic stroke patients, as well as a group of male ( n = 13) and female ( n = 18) neurologically normal controls. CBG levels were significantly reduced in male stroke patients relative to male controls; however, no differences were observed between female stroke patients and female controls, suggesting that women may exhibit an attenuated cortisol response to stroke. Collectively, our findings reinforce the idea that there are sex-associated differences in stroke pathophysiology and suggest that cortisol signaling should be investigated further as a potential molecular mediator.


Subject(s)
Adrenal Cortex Hormones/metabolism , Brain Ischemia/metabolism , Proteome/metabolism , Proteomics/methods , Stroke/metabolism , Adrenal Cortex Hormones/blood , Aged , Aged, 80 and over , Brain Ischemia/complications , Cohort Studies , Female , Humans , Hydrocortisone/blood , Hydrocortisone/metabolism , Male , Sex Factors , Signal Transduction , Stroke/etiology , Transcortin/metabolism
7.
Biol Reprod ; 98(5): 722-738, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29408990

ABSTRACT

Spermatogenesis in mammals occurs in a very highly organized manner within the seminiferous epithelium regulated by different cell types in the testis. Testosterone produced by Leydig cells regulates blood-testis barrier formation, meiosis, spermiogenesis, and spermiation. However, it is unknown whether Leydig cell function changes with the different stages of the seminiferous epithelium. This study utilized the WIN 18,446 and retinoic acid (RA) treatment regime combined with the RiboTag mouse methodology to synchronize male germ cell development and allow for the in vivo mapping of the Leydig cell translatome across the different stages of one cycle of the seminiferous epithelium. Using microarrays analysis, we identified 11 Leydig cell-enriched genes that were expressed in stage-specific manner such as the glucocorticoid synthesis and transport genes, Cyp21a1 and Serpina6. In addition, there were nine Leydig cell transcripts that change their association with polysomes in correlation with the different stages of the spermatogenic cycle including Egr1. Interestingly, the signal intensity of EGR1 and CYP21 varied among Leydig cells in the adult asynchronous testis. However, testosterone levels across the different stages of germ cell development did not cycle. These data show, for the first time, that Leydig cell gene expression changes in a stage-specific manner during the cycle of the seminiferous epithelium and indicate that a heterogeneous Leydig cell population exists in the adult mouse testis.


Subject(s)
Leydig Cells/metabolism , Polyribosomes/metabolism , Spermatogenesis/physiology , Testis/metabolism , Animals , Blood-Testis Barrier , Gene Expression , Leydig Cells/cytology , Male , Mice , Seminiferous Epithelium/cytology , Seminiferous Epithelium/metabolism , Steroid 21-Hydroxylase/genetics , Steroid 21-Hydroxylase/metabolism , Testis/cytology , Transcortin/genetics , Transcortin/metabolism
10.
Gen Comp Endocrinol ; 266: 78-86, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29763585

ABSTRACT

Southern flying squirrels have higher circulating cortisol levels than most vertebrates. However, regulation of tissue exposure to cortisol by the hormone's carrier protein, corticosteroid-binding globulin (CBG), appears to be altered due to lower-than-expected CBG expression levels, and a reduced affinity for cortisol. To assess the capacity of flying squirrels to regulate acute stress-mediated cortisol levels, we used the dexamethasone (DEX) suppression test followed by the adrenocorticotropic hormone (ACTH) stimulation test in both the breeding and non-breeding seasons, and quantified resultant changes in plasma cortisol and relative CBG levels. Regulation of cortisol via negative feedback, and the acute stress response appeared to function as they do in other vertebrates during the breeding season, but response to DEX in the non-breeding season showed that the sensitivity of the negative feedback mechanism changed across seasons. The relatively high concentrations of DEX required to induce negative feedback suggests that southern flying squirrels have a reduced sensitivity to cortisol compared with other vertebrates, and that high circulating cortisol levels may be required to compensate for low target tissue responsiveness in this species. Cortisol, but not CBG levels, were higher during the non-breeding than breeding season, and females had higher cortisol and CBG levels than males. Our data suggest that flying squirrel cortisol levels are regulated by negative feedback at a higher set point than in related species. Seasonal changes in cortisol levels, target tissue sensitivity to DEX, and in the capacity to respond to stressors appear to be part of the underlying physiology of southern flying squirrels, and may be required to maximize fitness in the face of tradeoffs between survival and reproduction.


Subject(s)
Glucocorticoids/blood , Sciuridae/blood , Sciuridae/physiology , Seasons , Stress, Physiological , Adrenocorticotropic Hormone/pharmacology , Animals , Carrier Proteins , Dexamethasone/pharmacology , Female , Hydrocortisone/blood , Male , Reproduction , Stress, Physiological/drug effects , Transcortin/metabolism
11.
Arch Toxicol ; 92(6): 2013-2025, 2018 06.
Article in English | MEDLINE | ID: mdl-29721586

ABSTRACT

Perfluorooctanoic acid (PFOA) is an abundant perfluoroalkyl substance widely applied in industrial and consumer products. It is a ubiquitous environmental pollutant and suspected endocrine disruptor. Corticosteroid-binding globulin (CBG) is a monomeric glycoprotein that can bind specifically to anti-inflammatory steroids, such as glucocorticoids and progesterone, in circulation. Our previous proteomic profile analysis revealed that CBG levels increased in testes after PFOA treatment. In the present study, we verified its increase in mouse testes following oral exposure to PFOA (0, 1.25 and 5 mg/kg/day for 28 days) by immunohistochemical analysis and Western blotting. In addition, RNA fluorescence in situ hybridization (FISH) confirmed that testicular CBG was specifically expressed in Leydig cells. Serum CBG levels in all three PFOA groups also increased, accompanied by increased corticosterone in the 5 and 20 mg/kg/day groups and decreased adrenocorticotropic hormone in the 20 mg/kg/day group. Thus, the influence of PFOA on blood CBG may change free steroid hormone concentrations, thereby serving as an endocrine disruptor. A stimulation effect of PFOA on CBG was also observed in vitro using the Leydig tumor mLTC-1 cell line. Overexpression of CBG in mLTC-1 cells increased progesterone release in culture media. In addition, CBG-induced proteins involved in steroidogenesis in mLTC-1 cells, including steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1), 17α-hydroxylase/17,20 lyase (CYP17A1), and 3ß-hydroxysteroid dehydrogenase (3ß-HSD), which may be the mechanism behind increased progesterone. Furthermore, the production and release of CBG in mLTC-1 cells were also induced by luteinizing hormone, though this mechanism requires further exploration.


Subject(s)
Caprylates/toxicity , Endocrine Disruptors/toxicity , Fluorocarbons/toxicity , Leydig Cells/drug effects , Progesterone/biosynthesis , Transcortin/metabolism , Animals , Cell Culture Techniques , Cell Line, Tumor , Leydig Cells/metabolism , Male , Mice , Mice, Inbred BALB C , Testis/drug effects , Testis/metabolism , Transcortin/genetics
12.
J Biol Chem ; 291(21): 11300-12, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27026706

ABSTRACT

Corticosteroid-binding globulin (CBG) was isolated from chicken serum and identified by mass spectrometry and genomic analysis. This revealed that the organization and synteny of avian and mammalian SerpinA6 genes are conserved. Recombinant zebra finch CBG steroid-binding properties reflect those of the natural protein in plasma and confirm its identity. Zebra finch and rat CBG crystal structures in complex with cortisol resemble each other, but their primary structures share only ∼40% identity, and their steroid-binding site topographies differ in several unexpected ways. Remarkably, a tryptophan that anchors ligands in mammalian CBG steroid-binding sites is replaced by an asparagine. Phylogenetic comparisons show that reptilian CBG orthologs share this unexpected property. Glycosylation of this asparagine in zebra finch CBG does not influence its steroid-binding affinity, but we present evidence that it may participate in protein folding and steroid-binding site formation. Substitutions of amino acids within zebra finch CBG that are conserved only in birds reveal how they contribute to their distinct steroid-binding properties, including their high (nanomolar) affinities for glucocorticoids, progesterone, and androgens. As in mammals, a protease secreted by Pseudomonas aeruginosa cleaves CBG in zebra finch plasma within its reactive center loop and disrupts steroid binding, suggesting an evolutionarily conserved property of CBGs. Measurements of CBG mRNA in zebra finch tissues indicate that liver is the main site of plasma CBG production, and anti-zebra finch CBG antibodies cross-react with CBGs in other birds, extending opportunities to study how CBG regulates the actions of glucocorticoids and sex steroids in these species.


Subject(s)
Avian Proteins/blood , Avian Proteins/genetics , Birds/blood , Birds/genetics , Evolution, Molecular , Transcortin/genetics , Transcortin/metabolism , Adaptation, Physiological , Amino Acid Sequence , Animals , Avian Proteins/chemistry , Chickens/blood , Chickens/genetics , Crystallography, X-Ray , Finches/blood , Finches/genetics , Glycosylation , Models, Molecular , Phylogeny , Rats , Sequence Homology, Amino Acid , Sparrows/blood , Sparrows/genetics , Transcortin/chemistry
13.
Stress ; 20(2): 183-188, 2017 03.
Article in English | MEDLINE | ID: mdl-28166688

ABSTRACT

Corticosteroid-binding globulin (CBG) cleavage promotes local cortisol delivery in inflammation. Enzymatic cleavage of high-affinity CBG to low-affinity CBG (haCBG to laCBG) occurs at inflammatory sites and is now measurable in vivo; however, the time kinetics of haCBG depletion following an inflammatory stimulus is unknown. Hence our aim was to determine the immediate effect of the key pro-inflammatory cytokine TNF-α on CBG levels and cleavage. We performed a crossover study of 12 healthy males receiving a TNF-α versus saline infusion, measuring total CBG, haCBG, laCBG and free and total cortisol hourly for 6 h. There was no change in total CBG or haCBG levels in the first 6 h of inflammation between the groups, suggesting that CBG cleavage is not activated nor is hepatic CBG production affected by TNF-α in this time frame. There was an early increase in the ratio of free:total cortisol, in association with pyrexia. This accords with data indicating that CBG acts a thermocouple in vivo, increasing free cortisol levels independent of elastase-driven cleavage.


Subject(s)
Fever/metabolism , Hydrocortisone/blood , Inflammation/blood , Transcortin/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Adult , Cross-Over Studies , Humans , Male , Young Adult
14.
PLoS Genet ; 10(7): e1004474, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25010111

ABSTRACT

Variation in plasma levels of cortisol, an essential hormone in the stress response, is associated in population-based studies with cardio-metabolic, inflammatory and neuro-cognitive traits and diseases. Heritability of plasma cortisol is estimated at 30-60% but no common genetic contribution has been identified. The CORtisol NETwork (CORNET) consortium undertook genome wide association meta-analysis for plasma cortisol in 12,597 Caucasian participants, replicated in 2,795 participants. The results indicate that <1% of variance in plasma cortisol is accounted for by genetic variation in a single region of chromosome 14. This locus spans SERPINA6, encoding corticosteroid binding globulin (CBG, the major cortisol-binding protein in plasma), and SERPINA1, encoding α1-antitrypsin (which inhibits cleavage of the reactive centre loop that releases cortisol from CBG). Three partially independent signals were identified within the region, represented by common SNPs; detailed biochemical investigation in a nested sub-cohort showed all these SNPs were associated with variation in total cortisol binding activity in plasma, but some variants influenced total CBG concentrations while the top hit (rs12589136) influenced the immunoreactivity of the reactive centre loop of CBG. Exome chip and 1000 Genomes imputation analysis of this locus in the CROATIA-Korcula cohort identified missense mutations in SERPINA6 and SERPINA1 that did not account for the effects of common variants. These findings reveal a novel common genetic source of variation in binding of cortisol by CBG, and reinforce the key role of CBG in determining plasma cortisol levels. In turn this genetic variation may contribute to cortisol-associated degenerative diseases.


Subject(s)
Genome-Wide Association Study , Hydrocortisone/blood , Transcortin/genetics , alpha 1-Antitrypsin/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Exome/genetics , Female , Humans , Male , Middle Aged , Mutation , Polymorphism, Single Nucleotide/genetics , Protein Binding , Transcortin/metabolism , alpha 1-Antitrypsin/metabolism
15.
Article in English | MEDLINE | ID: mdl-28007663

ABSTRACT

In birds, corticosterone (CORT), testosterone (T), and corticosteroid binding globulin (CBG) are involved in modulating the trade-off between reproduction and survival. In response to acute stress, increased total plasma CORT is a ubiquitous phenomenon while T levels can decrease, or remain unchanged. Since CORT and T bind competitively with CBG in birds, the underlying regulatory mechanisms and consequences of their dynamic interactions remain largely unknown. Here, we studied the dynamic changes of total CORT, T, and CBG, and estimated free and bound CORT and T in response to capture stress in male Eurasian tree sparrows (Passer montanus) across the nest building, egg-laying, and nestling stages. We predicted that free, bound and total hormone concentrations would increase for CORT and decrease for T in response to acute stress, and the relative magnitude of these changes would vary with life history stage. We found that baseline and stressed-induced CORT values did not vary across breeding sub-stages. However, total and bound CORT increased with stress while free remained unchanged. Baseline levels of total, free and bound T were highest during the nest building and it was the only stage in which all measures of T were affected by stress. Regardless of breeding stage or restraint stress, we did not detect a significant correlation between CORT and T. CBG was found to be mostly unoccupied by steroid hormones under stress and stress-free conditions and this likely provided an adequate buffer for changes in free levels of CORT and T during unpredictable environmental perturbations.


Subject(s)
Avian Proteins/blood , Corticosterone/blood , Sparrows/blood , Sparrows/physiology , Testosterone/blood , Transcortin/metabolism , Animals , Breeding , China , Male , Stress, Physiological
16.
Clin Endocrinol (Oxf) ; 85(3): 369-77, 2016 09.
Article in English | MEDLINE | ID: mdl-27061835

ABSTRACT

OBJECTIVE: Corticosteroid-binding globulin (CBG), the cortisol transport protein, is cleaved from high-affinity (haCBG) to low-affinity (laCBG) CBG at sites of inflammation releasing bioavailable, anti-inflammatory cortisol. Rheumatoid arthritis (RA) is a glucocorticoid-responsive disorder, with paradoxically normal cortisol levels despite elevated inflammatory mediators. Our objective was to determine whether CBG cleavage relates to RA disease activity. We hypothesized that impaired CBG cleavage may limit delivery of free cortisol to inflamed joints in RA. DESIGN: Prospective, cross-sectional observational study. SETTING AND PARTICIPANTS: Fifty-three patients with RA recruited from a Rheumatology outpatient clinic at a tertiary referral centre in Adelaide, Australia, and 73 healthy controls. MEASUREMENTS: Total CBG, haCBG and laCBG, total, free and salivary cortisol, inflammatory markers including interleukin-6 soluble receptor (IL-6sR) and macrophage migration inhibitory factor and clinical measures of disease activity. RESULTS: Among patients with RA, a wide range of disease activity scores was observed (DAS28: range 1·2-6·4). laCBG was lower in patients with RA (mean ± SEM); 153 ± 9, compared with healthy controls; 191 ± 8 nmol/l, P = 0·003. Levels of total and haCBG were higher in patients with more severe RA disease activity. Free and total cortisol, free cortisol:IL-6sR ratio and total cortisol:IL-6sR ratio correlated negatively with disease activity. CONCLUSIONS: These results suggest that patients with RA have reduced CBG cleavage compared to healthy controls and that cleavage is reduced further with higher RA disease activity. Hence, impaired CBG-mediated delivery of endogenous cortisol may perpetuate chronic inflammation in RA.


Subject(s)
Arthritis, Rheumatoid/metabolism , Transcortin/metabolism , Adult , Aged , Aged, 80 and over , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/pathology , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Hydrocortisone/analysis , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/pathology , Inflammation/etiology , Inflammation/metabolism , Male , Middle Aged , Pituitary-Adrenal System/pathology , Prospective Studies , Receptors, Interleukin-6/analysis , Severity of Illness Index , Transcortin/analysis
17.
Horm Behav ; 85: 96-101, 2016 09.
Article in English | MEDLINE | ID: mdl-27561227

ABSTRACT

Animals must make tradeoffs between reproduction and longevity. This is particularly pronounced in male arctic ground squirrels (Urocitellus parryii), that compete aggressively for territories and mates during a three-week breeding season. Breeding males have high rates of severe wounding, high mortality rates, and high free cortisol levels, along with downstream consequences of chronic stress (weight loss, reduced immune function) that appear to contribute to their early death. The elevated cortisol levels are thought to be a result of the intense intrasexual competition. An alternative hypothesis, however, is that the hormonal change is a seasonal adaptation facilitating the tradeoff of immediate competitive advantage at the expense of long-term survival. We tested a two-part hypothesis: first, that elevated free cortisol during the breeding period is a seasonal change that will still occur in the absence of actual competition, and second, that testosterone maintains this increase. We measured plasma cortisol, corticosteroid-binding globulin, and fecal glucocorticoid metabolites in three groups: wild male ground squirrels, captive males prevented from fighting, and captive castrated males. There were no differences amongst these three groups in free and total plasma cortisol, fecal glucocorticoids, or downstream measures of chronic stress. This suggests that high free cortisol and its effects on breeding males are not a consequence of contest competition during the breeding season, but rather a generalized seasonal change. We found no evidence that testosterone plays a role in maintaining elevated free cortisol in arctic ground squirrel males.


Subject(s)
Competitive Behavior/physiology , Reproduction/physiology , Sciuridae , Seasons , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Testosterone/blood , Adaptation, Physiological/physiology , Aggression/physiology , Animals , Female , Hydrocortisone/metabolism , Male , Sciuridae/metabolism , Sciuridae/psychology , Social Behavior , Transcortin/metabolism
18.
Horm Behav ; 84: 111-20, 2016 08.
Article in English | MEDLINE | ID: mdl-27374762

ABSTRACT

Maternally-derived glucocorticoids can modify the normal development of young animals. To date, little is known about maternal effects that are mediated by acute embryonic exposure to glucocorticoids. In birds, elevated maternal transmission of corticosterone (CORT) to egg albumen is mainly dependent on acute stress. In this study, we increased CORT levels in the egg albumen of a wild passerine, the great tit (Parus major), breeding in favourable deciduous and less suitable coniferous habitat. Subsequently we measured the somatic growth, baseline and acute glucocorticoid responses, immunity and behaviour of prenatally manipulated offspring with respect to control siblings. We found that prenatally CORT-exposed nestlings had lower baseline CORT levels, a more rapid decline in CORT during recovery from a standardized stressor, and a reduced heterophil/lymphocyte ratio compared with controls. Although stress-induced total CORT levels remained unchanged, free CORT levels were significantly lower and the levels of corticosteroid binding globulins (CBG) significantly higher in experimental offspring. Prenatally CORT-exposed offspring begged longer after hatching than controls. Stress-induced behavioural activity of fledglings did not differ between treatments, while its association with baseline CORT levels was significant in the control group only. The body mass and tarsus length of fledglings was positively affected by manipulation in unfavourable coniferous habitat only. We conclude that maternal effects related to elevated levels of albumen CORT modify diverse aspects of offspring phenotype and potentially increase offspring performance in resource poor environments. Moreover, our results indicate that maternal glucocorticoids may suppress the effect of hormones on behavioural responses.


Subject(s)
Behavior, Animal/drug effects , Corticosterone/pharmacology , Glucocorticoids/pharmacology , Passeriformes/physiology , Animals , Corticosterone/blood , Ecosystem , Female , Phenotype , Pregnancy , Stress, Physiological/drug effects , Stress, Psychological/metabolism , Transcortin/metabolism
19.
Horm Metab Res ; 48(6): 359-71, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27214312

ABSTRACT

Corticosteroid-binding globulin (CBG, transcortin) is the primary cortisol binding protein. It is a non-inhibitory serine protease inhibitor, capable of conformational change from a high cortisol-binding affinity form to a low affinity form upon cleavage of its reactive centre loop by various proteases, such as neutrophil elastase. The burgeoning inflammatory role of CBG applies to acute, severe inflammation where depletion is associated with mortality, and to chronic inflammation where defects in cortisol delivery may perpetuate inflammation. Naturally occurring human mutations influence a wide range of CBG properties and point toward a role in hitherto unexplained chronic musculoskeletal pain and fatigue disorders as well as potentially affecting fertility outcomes including offspring gender. In vitro and knock-out animal models of CBG propose a role for CBG in cortisol transport to the brain, providing a foundation for understanding the human observations in those with CBG mutations and sex differences in stress-related mood and behaviour. Finally, CBG measurement has a practical role in the estimation of free cortisol, useful in clinical circumstances where CBG levels or cortisol binding affinity is reduced. Taken together, novel data suggest a role for cortisol in targeted cortisol delivery, with implications in acute and chronic inflammation, as well as roles in metabolism and neurocognitive function, implying that CBG is a multifaceted component in the mechanisms of hypothalamic-pituitary-adrenal axis related homeostasis.


Subject(s)
Transcortin/metabolism , Animals , Disease/genetics , Disease Models, Animal , Drug Delivery Systems , Humans , Models, Biological , Mutation/genetics , Transcortin/chemistry , Transcortin/genetics
20.
Horm Metab Res ; 48(8): 523-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27300474

ABSTRACT

Corticosteroid-binding globulin (CBG) is involved in the regulation of cortisol delivery. Neutrophil elastase-mediated cleavage of high to low affinity CBG (haCBG to laCBG) induces cortisol release at inflammatory sites. Past studies have shown reduced CBG in obesity, an inflammatory state, particularly in central adiposity/metabolic syndrome. We performed an observational, cross-sectional study of the effects of obesity, age and sex on ha/laCBG in 100 healthy volunteers. Total and haCBG levels were 11% higher in women but did not vary with age or menopausal status. Total CBG levels were lower with increased body weight and waist circumference; laCBG levels were lower with increased body weight, waist circumference, body mass index and body fat; higher haCBG levels were seen with increased body fat. The relation between CBG and adiposity appeared to be driven predominantly by the metabolic syndrome group. The results suggest reduced CBG cleavage in central obesity, possibly contributing to the characteristic inflammatory phenotype of the central obesity and metabolic syndrome. The mechanism of gender differences in CBG levels is unclear.


Subject(s)
Metabolic Syndrome/metabolism , Obesity, Abdominal/metabolism , Transcortin/metabolism , Adiposity , Cohort Studies , Female , Healthy Volunteers , Humans , Hydrocortisone/blood , Male , Metabolic Syndrome/blood , Middle Aged , Obesity, Abdominal/blood
SELECTION OF CITATIONS
SEARCH DETAIL