Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 434
Filter
Add more filters

Publication year range
1.
Nature ; 603(7902): 721-727, 2022 03.
Article in English | MEDLINE | ID: mdl-35264796

ABSTRACT

Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1-4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides 'substitutants' to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity.


Subject(s)
Tryptophan-tRNA Ligase , Tryptophan , Codon/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma , Neoplasms/immunology , Phenylalanine , T-Lymphocytes , Tryptophan/metabolism , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
2.
J Immunol ; 213(3): 257-267, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38856632

ABSTRACT

Psoriasis is a common inflammatory skin disorder with no cure. Mesenchymal stem cells (MSCs) have immunomodulatory properties for psoriasis, but the therapeutic efficacies varied, and the molecular mechanisms were unknown. In this study, we improved the efficacy by enhancing the immunomodulatory effects of umbilical cord-derived MSCs (UC-MSCs). UC-MSCs stimulated by TNF-α and IFN-γ exhibited a better therapeutic effect in a mouse model of psoriasis. Single-cell RNA sequencing revealed that the stimulated UC-MSCs overrepresented a subpopulation expressing high tryptophanyl-tRNA synthetase 1 (WARS1). WARS1-overexpressed UC-MSCs treat psoriasis-like skin inflammation more efficiently than control UC-MSCs by restraining the proinflammatory macrophages. Mechanistically, WARS1 maintained a RhoA-Akt axis and governed the immunomodulatory properties of UC-MSCs. Together, we identify WARS1 as a master regulator of UC-MSCs with enhanced immunomodulatory capacities, which paves the way for the directed modification of UC-MSCs for escalated therapeutic efficacy.


Subject(s)
Immunomodulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mesenchymal Stem Cells/immunology , Animals , Mice , Humans , Mesenchymal Stem Cell Transplantation/methods , Tryptophan-tRNA Ligase/genetics , Psoriasis/immunology , Psoriasis/therapy , Disease Models, Animal , Single-Cell Analysis , Sequence Analysis, RNA , Umbilical Cord/cytology , Umbilical Cord/immunology , Mice, Inbred C57BL , Cells, Cultured
3.
Nucleic Acids Res ; 51(9): 4637-4649, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37070195

ABSTRACT

Tryptophanyl-tRNA synthetase (TrpRS) links tryptophan to tRNATrp, thereby playing an indispensable role in protein translation. Unlike most class I aminoacyl-tRNA synthetases (AARSs), TrpRS functions as a homodimer. Herein, we captured an 'open-closed' asymmetric structure of Escherichia coli TrpRS (EcTrpRS) with one active site occupied by a copurified intermediate product and the other remaining empty, providing structural evidence for the long-discussed half-of-the-sites reactivity of bacterial TrpRS. In contrast to its human counterpart, bacterial TrpRS may rely on this asymmetric conformation to functionally bind with substrate tRNA. As this asymmetric conformation is probably a dominant form of TrpRS purified from bacterial cells, we performed fragment screening against asymmetric EcTrpRS to support antibacterial discovery. Nineteen fragment hits were identified, and 8 of them were successfully cocrystallized with EcTrpRS. While a fragment named niraparib bound to the L-Trp binding site of the 'open' subunit, the other 7 fragments all bound to an unprecedented pocket at the interface between two TrpRS subunits. Binding of these fragments relies on residues specific to bacterial TrpRS, avoiding undesired interactions with human TrpRS. These findings improve our understanding of the catalytic mechanism of this important enzyme and will also facilitate the discovery of bacterial TrpRS inhibitors with therapeutic potential.


Subject(s)
Anti-Infective Agents , Escherichia coli Proteins , Escherichia coli , Tryptophan-tRNA Ligase , Binding Sites , Catalytic Domain , Tryptophan/metabolism , Tryptophan-tRNA Ligase/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/genetics
4.
Biochem Soc Trans ; 52(3): 1149-1158, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38813870

ABSTRACT

The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase , Tryptophan-tRNA Ligase , Tryptophan , Humans , Tryptophan/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tryptophan-tRNA Ligase/metabolism , Biological Transport , Tryptophan Oxygenase/metabolism , Interferon-gamma/metabolism
5.
J Biol Chem ; 298(2): 101580, 2022 02.
Article in English | MEDLINE | ID: mdl-35031320

ABSTRACT

The potential antimicrobial compound Chuangxinmycin (CXM) targets the tryptophanyl-tRNA synthetase (TrpRS) of both Gram-negative and Gram-positive bacteria. However, the specific steric recognition mode and interaction mechanism between CXM and TrpRS is unclear. Here, we studied this interaction using recombinant GsTrpRS from Geobacillus stearothermophilus by X-ray crystallography and molecular dynamics (MD) simulations. The crystal structure of the recombinant GsTrpRS in complex with CXM was experimentally determined to a resolution at 2.06 Å. After analysis using a complex-structure probe, MD simulations, and site-directed mutation verification through isothermal titration calorimetry, the interaction between CXM and GsTrpRS was determined to involve the key residues M129, D132, I133, and V141 of GsTrpRS. We further evaluated binding affinities between GsTrpRS WT/mutants and CXM; GsTrpRS was found to bind CXM through hydrogen bonds with D132 and hydrophobic interactions between the lipophilic tricyclic ring of CXM and M129, I133, and V141 in the substrate-binding pockets. This study elucidates the precise interaction mechanism between CXM and its target GsTrpRS at the molecular level and provides a theoretical foundation and guidance for the screening and rational design of more effective CXM analogs against both Gram-negative and Gram-positive bacteria.


Subject(s)
Geobacillus stearothermophilus , Indoles , Tryptophan-tRNA Ligase , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Geobacillus stearothermophilus/drug effects , Geobacillus stearothermophilus/enzymology , Indoles/pharmacology , Tryptophan-tRNA Ligase/metabolism
6.
Microb Pathog ; 183: 106300, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567323

ABSTRACT

Tryptophanyl-tRNA synthetase (WRS) is a critical enzyme involved in protein synthesis, responsible for charging tRNA with the essential amino acid tryptophan. Recent studies have highlighted its novel role in stimulating innate immunity against bacterial and viral infections. However, the significance of WRS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains elusive. In this study, we aimed to investigate the complex interplay between WRS, inflammatory markers, Toll-like receptor-4 (TLR-4), and clinical outcomes in coronavirus disease 19 (COVID-19) patients. A case-control investigation comprised 127 COVID-19 patients, carefully classified as severe or moderate upon admission, and 112 healthy individuals as a comparative group. Blood samples were meticulously collected before treatment initiation, and WRS, interleukin-6 (IL-6), and C-reactive protein (CRP) concentrations were quantified using a well-established commercial ELISA kit. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples, and RNA was extracted for cDNA synthesis. Semi-quantitative real-time polymerase chain reaction (PCR) was employed to assess the relative expression of TLR-4. COVID-19 patients exhibited elevated levels of WRS, IL-6, CRP, and TLR-4 expression compared to healthy individuals, with the severe group displaying significantly higher levels than the moderate group. Notably, severe patients demonstrated substantial fluctuations in CRP, IL-6, and WRS levels over time, a pattern not observed in their moderate counterparts. Although no significant distinctions were observed in the dynamic alterations of WRS, IL-6, CRP, and TLR-4 expression between deceased and surviving patients, a trend emerged indicating higher IL-6_1 levels in deceased patients and elevated lactate dehydrogenase (LDH) levels in severe patients who succumbed to the disease. This pioneering research highlights the dynamic alterations of WRS in COVID-19 patients, providing valuable insights into the correlation between WRS, inflammatory markers, and disease severity within this population. Understanding the role of WRS in SARS-CoV-2 infection may open new avenues for therapeutic interventions targeting innate immunity to combat COVID-19.


Subject(s)
COVID-19 , Tryptophan-tRNA Ligase , Humans , C-Reactive Protein , Case-Control Studies , Interleukin-6 , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/metabolism , Toll-Like Receptor 4 , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
7.
Nucleic Acids Res ; 49(9): 5202-5215, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34009360

ABSTRACT

Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.


Subject(s)
Codon, Terminator , Protein Biosynthesis , RNA, Transfer, Trp/metabolism , RNA, Transfer, Tyr/metabolism , Cell Line , Genes, Reporter , Humans , Mutation , Plasmids/genetics , Promoter Regions, Genetic , Proteins/genetics , RNA, Small Nuclear/genetics , RNA, Transfer, Trp/genetics , RNA, Transfer, Tyr/genetics , Tryptophan-tRNA Ligase/genetics , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics , Tyrosine-tRNA Ligase/genetics , Viral Proteins/genetics
8.
Int J Mol Sci ; 24(20)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37895133

ABSTRACT

Our previous study demonstrated that L-tryptophan (Trp)-depleted cells display a marked enhancement in Trp uptake facilitated by extracellular tryptophanyl-tRNA synthetase (TrpRS). Here, we show that Trp uptake into TrpRS-overexpressing cells is also markedly elevated upon Trp starvation. These findings indicate that a Trp-deficient condition is critical for Trp uptake, not only into cells to which TrpRS protein has been added but also into TrpRS-overexpressing cells. We also show that overexpression of TrpRS mutants, which cannot synthesize tryptophanyl-AMP, does not promote Trp uptake, and that inhibition of tryptophanyl-AMP synthesis suppresses this uptake. Overall, these data suggest that tryptophanyl-AMP production by TrpRS is critical for high-affinity Trp uptake.


Subject(s)
Tryptophan-tRNA Ligase , Tryptophan , Humans , Tryptophan/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
9.
Hum Mutat ; 43(10): 1472-1489, 2022 10.
Article in English | MEDLINE | ID: mdl-35815345

ABSTRACT

Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for faithful assignment of amino acids to their cognate tRNA. Variants in ARS genes are frequently associated with clinically heterogeneous phenotypes in humans and follow both autosomal dominant or recessive inheritance patterns in many instances. Variants in tryptophanyl-tRNA synthetase 1 (WARS1) cause autosomal dominantly inherited distal hereditary motor neuropathy and Charcot-Marie-Tooth disease. Presently, only one family with biallelic WARS1 variants has been described. We present three affected individuals from two families with biallelic variants (p.Met1? and p.(Asp419Asn)) in WARS1, showing varying severities of developmental delay and intellectual disability. Hearing impairment and microcephaly, as well as abnormalities of the brain, skeletal system, movement/gait, and behavior were variable features. Phenotyping of knocked down wars-1 in a Caenorhabditis elegans model showed depletion is associated with defects in germ cell development. A wars1 knockout vertebrate model recapitulates the human clinical phenotypes, confirms variant pathogenicity, and uncovers evidence implicating the p.Met1? variant as potentially impacting an exon critical for normal hearing. Together, our findings provide consolidating evidence for biallelic disruption of WARS1 as causal for an autosomal recessive neurodevelopmental syndrome and present a vertebrate model that recapitulates key phenotypes observed in patients.


Subject(s)
Amino Acyl-tRNA Synthetases , Charcot-Marie-Tooth Disease , Tryptophan-tRNA Ligase , Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Exons , Humans , Mutation , Pedigree , RNA, Transfer/genetics , Syndrome , Tryptophan-tRNA Ligase/genetics
10.
Hum Mutat ; 43(10): 1454-1471, 2022 10.
Article in English | MEDLINE | ID: mdl-35790048

ABSTRACT

Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.


Subject(s)
Amino Acyl-tRNA Synthetases , Charcot-Marie-Tooth Disease , Microcephaly , Tryptophan-tRNA Ligase , Animals , Humans , Amino Acyl-tRNA Synthetases/genetics , Charcot-Marie-Tooth Disease/genetics , Ligases , Microcephaly/genetics , Microcephaly/pathology , RNA, Transfer , Tryptophan-tRNA Ligase/genetics , Zebrafish/genetics
11.
J Nat Prod ; 85(11): 2626-2640, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36346625

ABSTRACT

Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.


Subject(s)
Escherichia coli , Naphthoquinones , Stress, Physiological , Humans , Erythromycin/pharmacology , Escherichia coli/drug effects , Escherichia coli/metabolism , Naphthoquinones/metabolism , Tryptophan/metabolism , Tryptophan-tRNA Ligase/metabolism , Protein Biosynthesis/drug effects
12.
Cytokine ; 142: 155486, 2021 06.
Article in English | MEDLINE | ID: mdl-33721618

ABSTRACT

Truncated tryptophanyl-tRNA synthetase (mini-TrpRS), like any other aminoacyl-tRNA synthetases, canonically functions as a protein synthesis enzyme. Here we provide evidence for an additional signaling role of mini-TrpRS in the formation of monocyte-derived multinuclear giant cells (MGCs). Interferon-gamma (IFNγ) readily induced monocyte aggregation leading to MGC formation with paralleled marked upregulation of mini-TrpRS. Small interfering (si)RNA, targeting mini-TrpRS in the presence of IFNγ prevented monocyte aggregation. Moreover, blockade of mini-TrpRS, either by siRNA, or the cognate amino acid and decoy substrate D-Tryptophan to prevent mini-TrpRS signaling, resulted in a marked reduction in expression of the purinergic receptor P2X 7 (P2RX7) in monocytes activated by IFNγ. Our findings identify mini-TrpRS as a critical signaling molecule in a mechanism by which IFNγ initiates monocyte-derived giant cell formation.


Subject(s)
Giant Cells/cytology , Giant Cells/enzymology , Interferon-gamma/pharmacology , Monocytes/cytology , Tryptophan-tRNA Ligase/metabolism , Cell Aggregation/drug effects , Down-Regulation/drug effects , Giant Cells/drug effects , Humans , Models, Biological , Receptors, Purinergic/metabolism , Signal Transduction/drug effects , THP-1 Cells , Up-Regulation/drug effects
13.
Anal Biochem ; 623: 114183, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33798474

ABSTRACT

With the increase in throughput and sensitivity, biophysical technology has become a major component of the early drug discovery phase. Surface plasmon resonance technology (SPR) is one of the most widely used biophysical technologies. It has the advantages of circumventing labeling, molecular weight limitations, and neglect of low affinity interactions, etc., and provides a robust platform for hit to lead discovery and optimization. Here, we successfully established a reliable and repeatable tryptophanyl tRNA synthetase (TrpRS) SPR high-throughput screening and validation system by optimizing the TrpRS tag, TrpRS immobilization methodology, and the buffer conditions. When TrpRS was immobilized on Streptavidin (SA) sensor chip, the substrate competitive inhibitor indolmycin exhibited the best binding affinity in HBS-P (10 mM HEPES, 150 mM NaCl, 0.05% surfactant P-20, pH 7.4), 1 mM ATP and MgCl2, with a KD (dissociation equilibrium constant) value of 0.6 ± 0.1 µM. The Z-factor values determined in the screening assays were all larger than 0.9. We hope that our proposed research ideas and methods may provide a scientific basis for establishing SPR analysis of other drug targets, accelerate the discovery and optimization of target lead compounds, and assist the clinical application of next-generation drugs.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , High-Throughput Screening Assays/methods , Surface Plasmon Resonance/methods , Tryptophan-tRNA Ligase/antagonists & inhibitors , Tryptophan-tRNA Ligase/chemistry , Indoles/chemistry , Indoles/metabolism , Streptavidin/chemistry , Tryptophan/chemistry , Tryptophan/metabolism , Tryptophan-tRNA Ligase/metabolism
14.
Mol Ther ; 28(11): 2458-2472, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32592690

ABSTRACT

The major challenges of most adult stem cell-based therapies are their weak therapeutic effects caused by the loss of multilineage differentiation capacity and homing potential. Recently, many researchers have attempted to identify novel stimulating factors that can fundamentally increase the differentiation capacity and homing potential of various types of adult stem cells. Tryptophanyl-tRNA synthetase (WRS) is a highly conserved and ubiquitously expressed enzyme that catalyzes the first step of protein synthesis. In addition to this canonical function, we found for the first time that WRS is actively released from the site of injury in response to various damage signals both in vitro and in vivo and then acts as a potent nonenzymatic cytokine that promotes the self-renewal, migratory, and differentiation capacities of endometrial stem cells to facilitate the repair of damaged tissues. Furthermore, we also found that WRS, through its functional receptor cadherin-6 (CDH-6), activates major prosurvival signaling pathways, such as Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. Our current study provides novel and unique insights into approaches that can significantly enhance the therapeutic effects of human endometrial stem cells in various clinical applications.


Subject(s)
Cytokines/metabolism , Endometrium/cytology , Stem Cells/metabolism , Tryptophan-tRNA Ligase/metabolism , Biomarkers , Cell Differentiation/genetics , Cell Self Renewal/genetics , Female , Humans , MAP Kinase Signaling System
15.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33926067

ABSTRACT

Tryptophanyl-tRNA synthetase (WRS) is an essential enzyme that catalyzes the ligation of tryptophan (Trp) to its cognate tRNAtrp during translation via aminoacylation. Interestingly, WRS also plays physiopathological roles in diseases including sepsis, cancer, and autoimmune and brain diseases and has potential as a pharmacological target and therapeutic. However, WRS is still generally regarded simply as an enzyme that produces Trp in polypeptides; therefore, studies of the pharmacological effects, therapeutic targets, and mechanisms of action of WRS are still at an emerging stage. This review summarizes the involvement of WRS in human diseases. We hope that this will encourage further investigation into WRS as a potential target for drug development in various pathological states including infection, tumorigenesis, and autoimmune and brain diseases.


Subject(s)
Tryptophan-tRNA Ligase/metabolism , Tryptophan-tRNA Ligase/physiology , Alzheimer Disease , Humans , Interferon-gamma/pharmacology , Neoplasms , Sepsis , Tryptophan/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/immunology
16.
J Biol Chem ; 294(35): 12866-12879, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31324718

ABSTRACT

Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.


Subject(s)
Inflammation/metabolism , Interferon-gamma/metabolism , Matrix Metalloproteinases/metabolism , Tryptophan-tRNA Ligase/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Fibroblasts/metabolism , Humans , Macrophages/metabolism
17.
Proteins ; 88(5): 710-717, 2020 05.
Article in English | MEDLINE | ID: mdl-31743491

ABSTRACT

Conversion of the free energy of NTP hydrolysis efficiently into mechanical work and/or information by transducing enzymes sustains living systems far from equilibrium, and so has been of interest for many decades. Detailed molecular mechanisms, however, remain puzzling and incomplete. We previously reported that catalysis of tryptophan activation by tryptophanyl-tRNA synthetase, TrpRS, requires relative domain motion to re-position the catalytic Mg2+ ion, noting the analogy between that conditional hydrolysis of ATP and the escapement mechanism of a mechanical clock. The escapement allows the time-keeping mechanism to advance discretely, one gear at a time, if and only if the pendulum swings, thereby converting energy from the weight driving the pendulum into rotation of the hands. Coupling of catalysis to domain motion, however, mimics only half of the escapement mechanism, suggesting that domain motion may also be reciprocally coupled to catalysis, completing the escapement metaphor. Computational studies of the free energy surface restraining the domain motion later confirmed that reciprocal coupling: the catalytic domain motion is thermodynamically unfavorable unless the PPi product is released from the active site. These two conditional phenomena-demonstrated together only for the TrpRS mechanism-function as reciprocally-coupled gates. As we and others have noted, such an escapement mechanism is essential to the efficient transduction of NTP hydrolysis free energy into other useful forms of mechanical or chemical work and/or information. Some implementation of both gating mechanisms-catalysis by domain motion and domain motion by catalysis-will thus likely be found in many other systems.


Subject(s)
Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , Geobacillus stearothermophilus/enzymology , Magnesium/chemistry , Tryptophan-tRNA Ligase/chemistry , Tryptophan/chemistry , Adenosine Triphosphate/metabolism , Allosteric Regulation , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Biomechanical Phenomena , Catalytic Domain , Cations, Divalent , Geobacillus stearothermophilus/chemistry , Geobacillus stearothermophilus/genetics , Kinetics , Magnesium/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Signal Transduction , Substrate Specificity , Thermodynamics , Tryptophan/metabolism , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism
18.
J Virol ; 93(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30355684

ABSTRACT

Tryptophanyl-tRNA synthetase (WRS) is one of the aminoacyl-tRNA synthetases (ARSs) that possesses noncanonical functions. Full-length WRS is released during bacterial infection and primes the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to elicit innate immune responses. However, the role of WRS in viral infection remains unknown. Here, we show that full-length WRS is secreted by immune cells in the early phase of viral infection and functions as an antiviral cytokine. Treatment of cells with recombinant WRS protein promotes the production of inflammatory cytokines and type I interferons (IFNs) and curtails virus replication in THP-1 and Raw264.7 cells but not in TLR4-/- or MD2-/- bone marrow-derived macrophages (BMDMs). Intravenous and intranasal administration of recombinant WRS protein induces an innate immune response and blocks viral replication in vivo These findings suggest that secreted full-length WRS has a noncanonical role in inducing innate immune responses to viral infection as well as to bacterial infection.IMPORTANCE ARSs are essential enzymes in translation that link specific amino acids to their cognate tRNAs. In higher eukaryotes, some ARSs possess additional, noncanonical functions in the regulation of cell metabolism. Here, we report a novel noncanonical function of WRS in antiviral defense. WRS is rapidly secreted in response to viral infection and primes the innate immune response by inducing the secretion of proinflammatory cytokines and type I IFNs, resulting in the inhibition of virus replication both in vitro and in vivo Thus, we consider WRS to be a member of the antiviral innate immune response. The results of this study enhance our understanding of host defense systems and provide additional information on the noncanonical functions of ARSs.


Subject(s)
Rhabdoviridae Infections/immunology , Tryptophan-tRNA Ligase/genetics , Tryptophan-tRNA Ligase/metabolism , Vesiculovirus/pathogenicity , Administration, Intranasal , Administration, Intravenous , Animals , Cell Line , Cytokines/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunity, Innate , Interferon Type I/metabolism , Mice , RAW 264.7 Cells , Rhabdoviridae Infections/genetics , THP-1 Cells , Tryptophan-tRNA Ligase/administration & dosage , Vesiculovirus/immunology
19.
Cytokine ; 127: 154940, 2020 03.
Article in English | MEDLINE | ID: mdl-31786502

ABSTRACT

Phenotypic modulation of vascular smooth muscle cells (AoSMCs) between quiescent 'contractile' and active 'synthetic' states is crucial in response to normal stimuli and pathological stressors. Previous studies have revealed the ability of interferon gamma (IFN-γ) to activate and promote a synthetic phenotype in AoSMCs that parallels marked up-regulation of truncated tryptophanyl-tRNA synthetase (mini-TrpRS). Here we provide evidence to support an essential dependency of IFN-γ-induced activation and synthetic phenotype in AoSMC on mini-TrpRS. This is based upon change in AoSMC morphology from epithelioid (active synthetic) to spindle-shaped (quiescent contractile) cells and expression of proteins and genes important in mediating or regulating contractile function of AoSMCs, following blockade of mini-TrpRS induced by IFN-γ, via targeted siRNA or the decoy cognate amino acid D-Tryptophan.


Subject(s)
Interferon-gamma/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Receptors, Adrenergic, beta-2/genetics , Tryptophan-tRNA Ligase/genetics , Calcium-Binding Proteins , Calmodulin , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Gene Expression/drug effects , Humans , Interferon-gamma/metabolism , Myocytes, Smooth Muscle/metabolism , Myosin-Light-Chain Kinase , Nuclear Proteins , Phenotype , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Trans-Activators , Tryptophan/metabolism , Tryptophan/pharmacology , Tryptophan-tRNA Ligase/metabolism
20.
Mol Divers ; 24(4): 1043-1063, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31834547

ABSTRACT

In the current study, we used an integrated approach combining bioinformatics, rational drug design, one-pot synthesis, and biological experiments in vitro for the potential discovery of novel tryptophanyl-tRNA synthetase (TrpRS) inhibitors. Atom economic and diastereoselective syntheses were used to generate several Spirooxindole-indenoquinoxaline derivatives in situ from isatin and amino acids viz. proline, phenylglycine, and sarcosine through targeting the 1,3-dipolar cycloaddition of azomethine ylides. These compounds were assayed by biochemical TrpRS inhibition, using in vitro experiments to test against various gram-positive and gram-negative strains, and using diffuse large B cell lymphoma (DLBCL) cell lines. Compound 6e was found to be the most active in vitro with IC50 values of 225 and 74 nM for tests against hmTrpRS and ecTrpRS, respectively. We also found a MIC90 value of 4 µg/mL for tests against S. aureus and IC50 values which ranged from 2.9 to 4.8 µM for tests against proliferation of DLBCL cell lines. Moreover, compound 6e was remarkably good at inducing bacterial autolysis in MRSA strains. Our results suggested that such an integrated approach could be an attractive and viable strategy for the discovery of novel TrpRS inhibitors as potential lead compounds for antibiotics and as novel anticancer agents. Discovery of novel spirooxindole-indenoquinoxaline TrpRS inhibitors as potential lead compounds with antibacterial and antitumor activities.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Tryptophan-tRNA Ligase/antagonists & inhibitors , Amino Acids/metabolism , Autolysis/drug therapy , Azo Compounds/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Staphylococcus aureus/drug effects , Thiosemicarbazones/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL