Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.636
Filter
Add more filters

Publication year range
1.
Nature ; 629(8010): 121-126, 2024 May.
Article in English | MEDLINE | ID: mdl-38632395

ABSTRACT

The neural crest is an embryonic stem cell population unique to vertebrates1 whose expansion and diversification are thought to have promoted vertebrate evolution by enabling emergence of new cell types and structures such as jaws and peripheral ganglia2. Although jawless vertebrates have sensory ganglia, convention has it that trunk sympathetic chain ganglia arose only in jawed vertebrates3-8. Here, by contrast, we report the presence of trunk sympathetic neurons in the sea lamprey, Petromyzon marinus, an extant jawless vertebrate. These neurons arise from sympathoblasts near the dorsal aorta that undergo noradrenergic specification through a transcriptional program homologous to that described in gnathostomes. Lamprey sympathoblasts populate the extracardiac space and extend along the length of the trunk in bilateral streams, expressing the catecholamine biosynthetic pathway enzymes tyrosine hydroxylase and dopamine ß-hydroxylase. CM-DiI lineage tracing analysis further confirmed that these cells derive from the trunk neural crest. RNA sequencing of isolated ammocoete trunk sympathoblasts revealed gene profiles characteristic of sympathetic neuron function. Our findings challenge the prevailing dogma that posits that sympathetic ganglia are a gnathostome innovation, instead suggesting that a late-developing rudimentary sympathetic nervous system may have been characteristic of the earliest vertebrates.


Subject(s)
Cell Lineage , Ganglia, Sympathetic , Neural Crest , Neurons , Petromyzon , Sympathetic Nervous System , Tyrosine 3-Monooxygenase , Animals , Neural Crest/cytology , Neural Crest/metabolism , Ganglia, Sympathetic/cytology , Ganglia, Sympathetic/metabolism , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Neurons/cytology , Neurons/metabolism , Dopamine beta-Hydroxylase/metabolism , Dopamine beta-Hydroxylase/genetics , Vertebrates , Biological Evolution , Norepinephrine/metabolism
2.
Nature ; 625(7993): 175-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093006

ABSTRACT

Oxytocin (OXT), a nine-amino-acid peptide produced in the hypothalamus and released by the posterior pituitary, has well-known actions in parturition, lactation and social behaviour1, and has become an intriguing therapeutic target for conditions such as autism and schizophrenia2. Exogenous OXT has also been shown to have effects on body weight, lipid levels and glucose homeostasis1,3, suggesting that it may also have therapeutic potential for metabolic disease1,4. It is unclear, however, whether endogenous OXT participates in metabolic homeostasis. Here we show that OXT is a critical regulator of adipose tissue lipolysis in both mice and humans. In addition, OXT serves to facilitate the ability of ß-adrenergic agonists to fully promote lipolysis. Most surprisingly, the relevant source of OXT in these metabolic actions is a previously unidentified subpopulation of tyrosine hydroxylase-positive sympathetic neurons. Our data reveal that OXT from the peripheral nervous system is an endogenous regulator of adipose and systemic metabolism.


Subject(s)
Adipose Tissue , Lipolysis , Neurons , Oxytocin , Animals , Humans , Mice , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adrenergic beta-Agonists/pharmacology , Lipolysis/drug effects , Neurons/metabolism , Oxytocin/metabolism , Oxytocin/pharmacology , Tyrosine 3-Monooxygenase/metabolism
3.
Cell ; 157(4): 858-68, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24813609

ABSTRACT

The circadian nature of mood and its dysfunction in affective disorders is well recognized, but the underlying molecular mechanisms are still unclear. Here, we show that the circadian nuclear receptor REV-ERBα, which is associated with bipolar disorder, impacts midbrain dopamine production and mood-related behavior in mice. Genetic deletion of the Rev-erbα gene or pharmacological inhibition of REV-ERBα activity in the ventral midbrain induced mania-like behavior in association with a central hyperdopaminergic state. Also, REV-ERBα repressed tyrosine hydroxylase (TH) gene transcription via competition with nuclear receptor-related 1 protein (NURR1), another nuclear receptor crucial for dopaminergic neuronal function, thereby driving circadian TH expression through a target-dependent antagonistic mechanism. In conclusion, we identified a molecular connection between the circadian timing system and mood regulation, suggesting that REV-ERBα could be targeting in the treatment of circadian rhythm-related affective disorders.


Subject(s)
Affect , Circadian Rhythm , Dopamine/metabolism , Mesencephalon/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Repressor Proteins/metabolism , Animals , Bipolar Disorder/genetics , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Histones/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mood Disorders/genetics , Mood Disorders/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Rats , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Transcription, Genetic , Tyrosine 3-Monooxygenase/genetics
4.
Nature ; 619(7970): 606-615, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438521

ABSTRACT

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Subject(s)
Cell- and Tissue-Based Therapy , Dopaminergic Neurons , Graft Survival , Neuroinflammatory Diseases , Parkinson Disease , T-Lymphocytes, Regulatory , Tyrosine 3-Monooxygenase , Humans , Dopamine/analogs & derivatives , Dopamine/metabolism , Dopaminergic Neurons/immunology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/transplantation , Mesencephalon/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/prevention & control , Neuroinflammatory Diseases/therapy , Parkinson Disease/complications , Parkinson Disease/pathology , Parkinson Disease/surgery , Parkinson Disease/therapy , Tyrosine 3-Monooxygenase/deficiency , Tyrosine 3-Monooxygenase/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/transplantation , Cell- and Tissue-Based Therapy/methods , Animals , Mice , Rats , Oxidopamine/metabolism , Graft Survival/immunology , Cell Death , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Neostriatum/metabolism , Time Factors , Cell Proliferation , Treatment Outcome
5.
Genes Dev ; 34(1-2): 37-52, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31831628

ABSTRACT

In animals, the brain regulates feeding behavior in response to local energy demands of peripheral tissues, which secrete orexigenic and anorexigenic hormones. Although skeletal muscle is a key peripheral tissue, it remains unknown whether muscle-secreted hormones regulate feeding. In Drosophila, we found that decapentaplegic (dpp), the homolog of human bone morphogenetic proteins BMP2 and BMP4, is a muscle-secreted factor (a myokine) that is induced by nutrient sensing and that circulates and signals to the brain. Muscle-restricted dpp RNAi promotes foraging and feeding initiation, whereas dpp overexpression reduces it. This regulation of feeding by muscle-derived Dpp stems from modulation of brain tyrosine hydroxylase (TH) expression and dopamine biosynthesis. Consistently, Dpp receptor signaling in dopaminergic neurons regulates TH expression and feeding initiation via the downstream transcriptional repressor Schnurri. Moreover, pharmacologic modulation of TH activity rescues the changes in feeding initiation due to modulation of dpp expression in muscle. These findings indicate that muscle-to-brain endocrine signaling mediated by the myokine Dpp regulates feeding behavior.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Feeding Behavior/physiology , Animals , Brain/physiology , DNA-Binding Proteins/metabolism , Dopamine Agents/pharmacology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Drosophila/enzymology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Levodopa/pharmacology , Monoiodotyrosine/pharmacology , Signal Transduction , Transcription Factors/metabolism , Tyrosine 3-Monooxygenase/genetics , Up-Regulation
6.
Nat Immunol ; 16(12): 1228-34, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26523867

ABSTRACT

The molecular mechanisms that link the sympathetic stress response and inflammation remain obscure. Here we found that the transcription factor Nr4a1 regulated the production of norepinephrine (NE) in macrophages and thereby limited experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Lack of Nr4a1 in myeloid cells led to enhanced NE production, accelerated infiltration of leukocytes into the central nervous system (CNS) and disease exacerbation in vivo. In contrast, myeloid-specific deletion of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, protected mice against EAE. Furthermore, we found that Nr4a1 repressed autocrine NE production in macrophages by recruiting the corepressor CoREST to the Th promoter. Our data reveal a new role for macrophages in neuroinflammation and identify Nr4a1 as a key regulator of catecholamine production by macrophages.


Subject(s)
Central Nervous System/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Macrophages/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Sympathetic Nervous System/immunology , Animals , Cell Line , Cells, Cultured , Central Nervous System/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression/immunology , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Norepinephrine/immunology , Norepinephrine/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Rabbits , Reverse Transcriptase Polymerase Chain Reaction , Sympathetic Nervous System/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/immunology , Tyrosine 3-Monooxygenase/metabolism
7.
J Neurosci ; 44(11)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38331582

ABSTRACT

Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.


Subject(s)
Central Nervous System Stimulants , Methamphetamine , Animals , Male , Mice , Methamphetamine/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Reinforcement, Psychology , Cerebellum/metabolism , Central Nervous System Stimulants/pharmacology
8.
PLoS Biol ; 20(1): e3001513, 2022 01.
Article in English | MEDLINE | ID: mdl-35073310

ABSTRACT

The sympathetic nervous system (SNS) contributes to immune balance by promoting anti-inflammatory B cells. However, whether B cells possess a self-regulating mechanism by which they modulate regulatory B cell (Breg) function is not well understood. In this study, we investigated the ability of B cells to synthesize their own catecholamines upon stimulation with different B cell activators and found that expression of the enzyme tyrosine hydroxylase (TH), required to generate catecholamines, is up-regulated by Toll-like receptor (TLR)9. This TLR9-dependent expression of TH correlated with up-regulation of adrenergic receptors (ADRs), enhanced interleukin (IL)-10 production, and overexpression of the co-inhibitory ligands programmed death ligand 1 (PD-L1) and Fas ligand (FasL). Moreover, concomitant stimulation of ß1-3-ADRs together with a B cell receptor (BCR)/TLR9 stimulus clearly enhances the anti-inflammatory potential of Bregs to suppress CD4 T cells, a crucial population in the pathogenesis of autoimmune diseases, like rheumatoid arthritis (RA). Furthermore, TH up-regulation was also demonstrated in B cells during the course of collagen-induced arthritis (CIA), a mouse model for the investigation of RA. In conclusion, our data show that B cells possess an autonomous mechanism to modulate their regulatory function in an autocrine and/or paracrine manner. These findings help to better understand the function of B cells in the regulation of autoimmune diseases and the interplay of SNS.


Subject(s)
B-Lymphocytes, Regulatory/metabolism , Catecholamines/pharmacology , Toll-Like Receptor 9/metabolism , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , B7-H1 Antigen/metabolism , Catecholamines/metabolism , Collagen/administration & dosage , Disease Models, Animal , Fas Ligand Protein/metabolism , Interleukin-10/metabolism , Lymphocyte Activation , Male , Mice , Mice, Knockout , Tyrosine 3-Monooxygenase/metabolism
9.
J Immunol ; 211(10): 1494-1505, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37747298

ABSTRACT

The differentiation of neural crest (NC) cells into various cell lineages contributes to the formation of many organs, including the thymus. In this study, we explored the role of NC cells in thymic T cell development. In double-transgenic mice expressing NC-specific Cre and the Cre-driven diphtheria toxin receptor, plasma noradrenaline and adrenaline levels were significantly reduced, as were thymic T cell progenitors, when NC-derived cells were ablated with short-term administration of diphtheria toxin. Additionally, yellow fluorescent protein+ NC-derived mesenchymal cells, perivascular cells, and tyrosine hydroxylase+ sympathetic nerves in the thymus significantly decreased. Furthermore, i.p. administration of 6-hydroxydopamine, a known neurotoxin for noradrenergic neurons, resulted in a significant decrease in thymic tyrosine hydroxylase+ nerves, a phenotype similar to that of depleted NC-derived cells, whereas administration of a noradrenaline precursor for ablating NC-derived cells or sympathetic nerves rarely rescued this phenotype. To clarify the role of NC-derived cells in the adult thymus, we transplanted thymus into the renal capsules of wild-type mice and observed abnormal T cell development in lethally irradiated thymus with ablation of NC-derived cells or sympathetic nerves, suggesting that NC-derived cells inside and outside of the thymus contribute to T cell development. In particular, the ablation of NC-derived mesenchymal cells in the thymus decreases the number of thymocytes and T cell progenitors. Overall, ablation of NC-derived cells, including sympathetic nerves, in the thymus leads to abnormal T cell development in part by lowering plasma noradrenalin levels. This study reveals that NC-derived cells including mesenchymal cells and sympathetic nerves within thymus regulate T cell development.


Subject(s)
Neural Crest , Norepinephrine , Mice , Animals , Tyrosine 3-Monooxygenase , Cell Differentiation , Mice, Transgenic , Thymus Gland
10.
Gene Ther ; 31(1-2): 31-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37542151

ABSTRACT

Parkinson`s disease (PD) is the second most prevalent neurodegenerative disease, and different gene therapy strategies have been used as experimental treatments. As a proof-of-concept for the treatment of PD, we used SAM, a CRISPR gene activation system, to activate the endogenous tyrosine hydroxylase gene (th) of astrocytes to produce dopamine (DA) in the striatum of 6-OHDA-lesioned rats. Potential sgRNAs within the rat th promoter region were tested, and the expression of the Th protein was determined in the C6 glial cell line. Employing pseudo-lentivirus, the SAM complex and the selected sgRNA were transferred into cultures of rat astrocytes, and gene expression and Th protein synthesis were ascertained; furthermore, DA release into the culture medium was determined by HPLC. The DA-producing astrocytes were implanted into the striatum of 6-OHDA hemiparkinsonian rats. We observed motor behavior improvement in the lesioned rats that received DA-astrocytes compared to lesioned rats receiving astrocytes that did not produce DA. Our data indicate that the SAM-induced expression of the astrocyte´s endogenous th gene can generate DA-producing astrocytes that effectively reduce the motor asymmetry induced by the lesion.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Rats , Animals , Parkinson Disease/genetics , Parkinson Disease/therapy , Parkinson Disease/metabolism , RNA, Guide, CRISPR-Cas Systems , Oxidopamine , Rats, Sprague-Dawley , Clustered Regularly Interspaced Short Palindromic Repeats , Dopamine/metabolism , Corpus Striatum/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Substantia Nigra/metabolism
11.
Pflugers Arch ; 476(8): 1235-1247, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38856775

ABSTRACT

To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.


Subject(s)
Electric Stimulation , Larynx , Periaqueductal Gray , Proto-Oncogene Proteins c-fos , Rats, Sprague-Dawley , Animals , Male , Rats , Periaqueductal Gray/metabolism , Periaqueductal Gray/physiology , Electric Stimulation/methods , Proto-Oncogene Proteins c-fos/metabolism , Larynx/physiology , Larynx/metabolism , Forkhead Transcription Factors/metabolism , Tyrosine 3-Monooxygenase/metabolism , Pressure , Medulla Oblongata/metabolism , Medulla Oblongata/physiology , Glutamic Acid/metabolism
12.
Pflugers Arch ; 476(8): 1263-1277, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38963545

ABSTRACT

6-Cyanodopamine is a novel catecholamine released from rabbit isolated heart. However, it is not known whether this catecholamine presents any biological activity. Here, it was evaluated whether 6-cyanodopamine (6-CYD) is released from rat vas deferens and its effect on this tissue contractility. Basal release of 6-CYD, 6-nitrodopamine (6-ND), 6-bromodopamine, 6-nitrodopa, and 6-nitroadrenaline from vas deferens were quantified by LC-MS/MS. Electric-field stimulation (EFS) and concentration-response curves to noradrenaline, adrenaline, and dopamine of the rat isolated epididymal vas deferens (RIEVD) were performed in the absence and presence of 6-CYD and /or 6-ND. Expression of tyrosine hydroxylase was assessed by immunohistochemistry. The rat isolated vas deferens released significant amounts of both 6-CYD and 6-ND. The voltage-gated sodium channel blocker tetrodotoxin had no effect on the release of 6-CYD, but it virtually abolished 6-ND release. 6-CYD alone exhibited a negligible RIEVD contractile activity; however, at 10 nM, 6-CYD significantly potentiated the noradrenaline- and EFS-induced RIEVD contractions, whereas at 10 and 100 nM, it also significantly potentiated the adrenaline- and dopamine-induced contractions. The potentiation of noradrenaline- and adrenaline-induced contractions by 6-CYD was unaffected by tetrodotoxin. Co-incubation of 6-CYD (100 pM) with 6-ND (10 pM) caused a significant leftward shift and increased the maximal contractile responses to noradrenaline, even in the presence of tetrodotoxin. Immunohistochemistry revealed the presence of tyrosine hydroxylase in both epithelial cell cytoplasm of the mucosae and nerve fibers of RIEVD. The identification of epithelium-derived 6-CYD and its remarkable synergism with catecholamines indicate that epithelial cells may regulate vas deferens smooth muscle contractility.


Subject(s)
Dopamine , Muscle Contraction , Vas Deferens , Male , Animals , Vas Deferens/drug effects , Vas Deferens/metabolism , Vas Deferens/physiology , Muscle Contraction/drug effects , Rats , Dopamine/metabolism , Dopamine/pharmacology , Rats, Wistar , Norepinephrine/pharmacology , Norepinephrine/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Electric Stimulation , Epinephrine/pharmacology , Tyrosine 3-Monooxygenase/metabolism
13.
Am J Physiol Endocrinol Metab ; 326(2): E107-E123, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38170164

ABSTRACT

Neural regulation of hepatic metabolism has long been recognized. However, the detailed afferent and efferent innervation of the human liver has not been systematically characterized. This is largely due to the liver's high lipid and pigment contents, causing false-negative (light scattering and absorption) and false-positive (autofluorescence) results in in-depth fluorescence imaging. Here, to avoid the artifacts in three-dimensional (3-D) liver neurohistology, we embed the bleached human liver in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution imaging. Importantly, using the paired substance P (SP, sensory marker) and PGP9.5 (pan-neuronal marker) labeling, we detect the sensory nerves in the portal space, featuring the SP+ varicosities in the PGP9.5+ nerve bundles/fibers, confirming the afferent liver innervation. Also, using the tyrosine hydroxylase (TH, sympathetic marker) labeling, we identify 1) condensed TH+ sympathetic nerves in the portal space, 2) extension of sympathetic nerves from the portal to the intralobular space, in which the TH+ nerve density is 2.6 ± 0.7-fold higher than that of the intralobular space in the human pancreas, and 3) the TH+ nerve fibers and varicosities contacting the ballooning cells, implicating potential sympathetic influence on hepatocytes with macrovesicular fatty change. Finally, using the vesicular acetylcholine transporter (VAChT, parasympathetic marker), PGP9.5, and CK19 (epithelial marker) labeling with panoramic-to-Airyscan super-resolution imaging, we detect and confirm the parasympathetic innervation of the septal bile duct. Overall, our labeling and 3-D/Airyscan imaging approach reveal the hepatic sensory (afferent) and sympathetic and parasympathetic (efferent) innervation, establishing a clinically related setting for high-resolution 3-D liver neurohistology.NEW & NOTEWORTHY We embed the human liver (vs. pancreas, positive control) in the high-refractive-index polymer for tissue clearing and antifade 3-D/Airyscan super-resolution neurohistology. The pancreas-liver comparison reveals: 1) sensory nerves in the hepatoportal space; 2) intralobular sympathetic innervation, including the nerve fibers and varicosities contacting the ballooning hepatocytes; and 3) parasympathetic innervation of the septal bile duct. Our results highlight the sensitivity and resolving power of 3-D/Airyscan super-resolution imaging in human liver neurohistology.


Subject(s)
Liver , Neurons , Humans , Liver/metabolism , Neurons/metabolism , Sympathetic Nervous System/metabolism , Polymers , Tyrosine 3-Monooxygenase/metabolism
14.
J Neurophysiol ; 132(3): 733-743, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39015077

ABSTRACT

Growing evidence indicates that activation of cannabinoid type 2 (CB2) receptors protects dopamine neurons in the pathogenesis of Parkinson's disease (PD). However, the mechanisms underlying neuroprotection mediated by CB2 receptors are still elusive. In this study, we investigated the effects of CB2 receptor activation on 6-hydroxydopamine (6-OHDA)-induced dopamine neuron degeneration and iron accumulation in the substantia nigra (SN) of rats. We found that treatment with JWH133, a selective CB2 receptor agonist, significantly improved the apomorphine (APO)-induced rotational behavior in 6-OHDA-treated rats. The decreased numbers of tyrosine hydroxylase (TH)-positive neurons and reduced TH protein expression in the lesioned SN of rats were effectively restored by JWH133. Moreover, we found that JWH133 inhibited the increase of iron-staining cells in the lesioned SN of rats. To explore the protective mechanisms of activation of CB2 receptors on dopamine neurons, we further observed the effect of JWH133 on 1-methyl-4-phenylpyridinium (MPP+)-treated primary cultured ventral mesencephalon (VM) neurons from rats. We found that JWH133 significantly inhibited the increase of intracellular reactive oxygen species (ROS), the activation of Caspase-3, the decrease of mitochondrial transmembrane potential (ΔΨm), and the decrease of Bcl-2/Bax protein expression caused by MPP+ treatment. JWH133 also inhibited the MPP+-induced upregulation of divalent metal transporter-1 (DMT1) and downregulation of ferroportin 1 (FPN1). Furthermore, JWH133 also suppressed the MPP+-accelerated iron influx in the VM neurons. These results suggest that activation of CB2 receptor suppresses MPP+-induced cellular iron accumulation and prevents neurodegeneration.NEW & NOTEWORTHY Expression of cannabinoid type 2 receptors (CB2Rs) was discovered on dopamine neurons in recent years. The role of CB2R expressed on dopamine neurons in the pathogenesis of Parkinson's disease (PD) has not been fully elucidated. The content of iron accumulation in the brain is closely related to the progress of PD. We verified the inhibitory effect of CB2R on iron deposition in dopamine neurons through experiments, which provided a new idea for the treatment of PD.


Subject(s)
Cannabinoids , Dopaminergic Neurons , Iron , Oxidopamine , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB2 , Animals , Male , Cannabinoids/pharmacology , Rats , Iron/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/agonists , Substantia Nigra/metabolism , Substantia Nigra/drug effects , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Tyrosine 3-Monooxygenase/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology , Cannabinoid Receptor Agonists/pharmacology
15.
Cancer ; 130(19): 3289-3296, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38872410

ABSTRACT

INTRODUCTION: Pheochromocytomas and paragangliomas (PPGLs) typically secrete catecholamines and their metabolites (metanephrines [MN] and normetanephrine [NMN]). Catecholamines are synthesized by several enzymes: phenylalanine hydroxylase (encoded by PAH), tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (DDC), dopamine ß-hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT). MN/NMN secretion varies between anatomical and molecular subgroups. The aim of this study was to assess the correlation between DNA methylation of catecholamine synthesis genes and MN/NMN secretion. METHODS: Gene promoter methylation of PAH, TH, AADC, DBH, and PNMT were extracted and calculated based on publicly available data. Comparisons and correlation analysis were performed between MN ± NMN (MN/NMN), NMN only, and neither/unknown secretion patterns. Methylation levels and MN/NMN patterns were compared by three genetic alteration subgroups: pseudohypoxia (PH), kinase signaling (KS), and others. RESULTS: A total of 178 cases were included. Methylation of PAH CpGs negatively correlated with probability for MN/NMN secretion (p < .05 for all CpGs) and positively with NMN-only secretion. NMN-only secreting tumors had significantly higher promoter methylation of PAH, DBH, and PNMT compared with MN/NMN-secreting tumors. MN/NMN-secreting PPGLs had mainly KS alterations (52.1%), whereas NMN-only PPGLs had PH alterations (41.9%). PPGLs in the PH versus KS group had gene promoter hypermethylation of PAH (p = .002), DBH (p = .02), and PNMT (p = .003). CONCLUSIONS: Promoter methylation of genes encoding catecholamine synthesis enzymes is strongly and inversely correlated with MN/NMN patterns in PPGLs. KS and PH-related tumors have distinct methylation patterns. These results imply that methylation is a key regulatory mechanism of catecholamine synthesis in PPGLs.


Subject(s)
Adrenal Gland Neoplasms , Catecholamines , DNA Methylation , Epigenesis, Genetic , Paraganglioma , Pheochromocytoma , Pheochromocytoma/genetics , Pheochromocytoma/metabolism , Pheochromocytoma/pathology , Humans , Paraganglioma/genetics , Paraganglioma/metabolism , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology , Catecholamines/metabolism , Catecholamines/biosynthesis , Promoter Regions, Genetic , Female , Male , Middle Aged , Normetanephrine/metabolism , Adult , Phenylethanolamine N-Methyltransferase/genetics , Phenylethanolamine N-Methyltransferase/metabolism , Metanephrine/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
16.
Eur J Neurosci ; 60(1): 3659-3676, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38872397

ABSTRACT

The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.


Subject(s)
Action Potentials , Adrenergic Neurons , Locus Coeruleus , Locus Coeruleus/physiology , Locus Coeruleus/cytology , Animals , Mice , Male , Action Potentials/physiology , Adrenergic Neurons/physiology , Mice, Inbred C57BL , Neurons/physiology , Tyrosine 3-Monooxygenase/metabolism
17.
Eur J Neurosci ; 59(10): 2465-2482, 2024 May.
Article in English | MEDLINE | ID: mdl-38487941

ABSTRACT

The enteric nervous system (ENS) comprises a complex network of neurons whereby a subset appears to be dopaminergic although the characteristics, roles, and implications in disease are less understood. Most investigations relating to enteric dopamine (DA) neurons rely on immunoreactivity to tyrosine hydroxylase (TH)-the rate-limiting enzyme in the production of DA. However, TH immunoreactivity is likely to provide an incomplete picture. This study herein provides a comprehensive characterization of DA neurons in the gut using a reporter mouse line, expressing a fluorescent protein (tdTomato) under control of the DA transporter (DAT) promoter. Our findings confirm a unique localization of DA neurons in the gut and unveil the discrete subtypes of DA neurons in this organ, which we characterized using both immunofluorescence and single-cell transcriptomics, as well as validated using in situ hybridization. We observed distinct subtypes of DAT-tdTomato neurons expressing co-transmitters and modulators across both plexuses; some of them likely co-releasing acetylcholine, while others were positive for a slew of canonical DAergic markers (TH, VMAT2 and GIRK2). Interestingly, we uncovered a seemingly novel population of DA neurons unique to the ENS which was ChAT/DAT-tdTomato-immunoreactive and expressed Grp, Calcb, and Sst. Given the clear heterogeneity of DAergic gut neurons, further investigation is warranted to define their functional signatures and decipher their implication in disease.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Dopaminergic Neurons , Enteric Nervous System , Animals , Mice , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopaminergic Neurons/metabolism , Enteric Nervous System/metabolism , Enteric Nervous System/cytology , Luminescent Proteins/metabolism , Luminescent Proteins/genetics , Mice, Transgenic , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Vesicular Monoamine Transport Proteins/genetics , Genes, Reporter
18.
Anal Chem ; 96(18): 7082-7090, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38652135

ABSTRACT

Parkinson's disease (PD) represents the second most widespread neurodegenerative disease, and early monitoring and diagnosis are urgent at present. Tyrosine hydroxylase (TH) is a key enzyme for producing dopamine, the levels of which can serve as an indicator for assessing the severity and progression of PD. This renders the specific detection and visualization of TH a strategically vital way to meet the above demands. However, a fluorescent probe for TH monitoring is still missing. Herein, three rationally designed wash-free ratiometric fluorescent probes were proposed. Among them, TH-1 exhibited ideal photophysical properties and specific dual-channel bioimaging of TH activity in SH-SY5Y nerve cells. Moreover, the probe allowed for in vivo imaging of TH activity in zebrafish brain and living striatal slices of mice. Overall, the ratiometric fluorescent probe TH-1 could serve as a potential tool for real-time monitoring of PD in complex biosystems.


Subject(s)
Fluorescent Dyes , Tyrosine 3-Monooxygenase , Zebrafish , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/analysis , Animals , Mice , Humans , Optical Imaging , Cell Line, Tumor , Parkinson Disease/diagnostic imaging , Parkinson Disease/metabolism
19.
Biochem Biophys Res Commun ; 703: 149698, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38382359

ABSTRACT

The gene encoding 5'-nucleotidase domain-containing protein 2 (NT5DC2) has been associated with neuropsychiatric disorders related to the abnormality of dopamine activity in the brain. However, its physiological functions remain unclear. In this study, we analyzed the features of NT5DC2 that influence its binding with tyrosine hydroxylase (TH) and its effects on dihydroxyphenylalanine (DOPA) synthesis, using NT5DC2 overexpressed in PC12D cells by the pCMV vector. Western blot analysis revealed that the purified NT5DC2-DYKDDDDK-tag (NT5DC2-tag) protein can bind with the phosphorylated form of recombinant human TH type 1 (rhTH1), apart from the endogenous TH in PC12D cells. Proteomic analysis by mass spectrometry revealed that the purified NT5DC2-tag protein has the potential to bind to 41 proteins with multiple phosphorylation sites in PC12D cells (NT5DC2 binding proteins: positive, 391 sites/41 proteins; and negative, 85 sites/27 proteins). Overexpression of NT5DC2 in PC12D cells decreased DOPA levels in the medium. When the lysate of PC12D cells overexpressing NT5DC2 was incubated at 37 °C, the phosphorylated form of endogenous TH in PC12D cells decreased. This decrease was also detected when phosphorylated rhTH1 was incubated with purified NT5DC2-tag. Overall, our results suggest that NT5DC2 regulates DOPA synthesis by promoting the dephosphorylation of TH, similar to a phosphatase. Therefore, our study provides useful information for understanding various disorders associated with abnormalities in dopamine levels in the brain.


Subject(s)
Mixed Function Oxygenases , Tyrosine 3-Monooxygenase , Humans , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Phosphorylation , Mixed Function Oxygenases/metabolism , Dopamine , Carrier Proteins/metabolism , Proteomics , Dihydroxyphenylalanine/metabolism
20.
IUBMB Life ; 76(9): 697-711, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38662920

ABSTRACT

The aim of this study was to develop an alternative treatment method for neurodegenerative diseases with dopaminergic neuron loss such as Parkinson's disease by differentiating cells obtained from human olfactory mucosa-derived neural stem cells (hOM-NSCs) with neurotrophic agents in vitro. hOM-NSCs were isolated and subjected to immunophenotypic and MTT analyses. These hOM-NSCs were then cultured in a 3D environment to form neurospheres. The neurospheres were subjected to immunophenotypic analysis and neuronal differentiation assays. Furthermore, hOM-NSCs were differentiated into dopaminergic neuron-like cells in vitro. After differentiation, the dopaminergic neuron-like cells were subjected to immunophenotypic (TH, MAP2) and genotypic (DAT, PITX3, NURR1, TH) characterization. Flow cytometric analysis showed that NSCs were positive for cell surface markers (CD56, CD133). Immunofluorescence analysis showed that NSCs were positive for markers with neuronal and glial cell characteristics (SOX2, NESTIN, TUBB3, GFAP and NG2). Immunofluorescence analysis after differentiation of hOM-NSCs into dopaminergic neuron-like cells in vitro showed that they were positive for a protein specific for dopaminergic neurons (TH). qRT-PCR analysis showed that the expression of dopaminergic neuron-specific genes (DAT, TH, PITX3, NURR1) was significantly increased. It was concluded that hOM-NSCs may be a source of neural stem cells that can be used for cell replacement therapies in neurodegenerative diseases such as Parkinson's disease, are resistant to cell culture, can differentiate into neuronal and glial lineage, are easy to obtain and are cost effective.


Subject(s)
Cell Differentiation , Dopaminergic Neurons , Neural Stem Cells , Olfactory Mucosa , Humans , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Cells, Cultured , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/genetics , Neurogenesis
SELECTION OF CITATIONS
SEARCH DETAIL