Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 946
Filter
Add more filters

Publication year range
1.
Cell ; 173(1): 181-195.e18, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551268

ABSTRACT

mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.


Subject(s)
Nucleic Acid Amplification Techniques/methods , RNA, Messenger/metabolism , Algorithms , Binding Sites , Cell-Free System , DNA Primers/metabolism , Electrophoretic Mobility Shift Assay , Entropy , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Models, Molecular , Nucleic Acid Conformation , Protein Biosynthesis , RNA Folding , RNA, Messenger/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Ribosomes/chemistry , Ribosomes/metabolism , Untranslated Regions
2.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38783704

ABSTRACT

The untranslated region (UTR) of messenger ribonucleic acid (mRNA), including the 5'UTR and 3'UTR, plays a critical role in regulating gene expression and translation. Variants within the UTR can lead to changes associated with human traits and diseases; however, computational prediction of UTR variant effect is challenging. Current noncoding variant prediction mainly focuses on the promoters and enhancers, neglecting the unique sequence of the UTR and thereby limiting their predictive accuracy. In this study, using consolidated datasets of UTR variants from disease databases and large-scale experimental data, we systematically analyzed more than 50 region-specific features of UTR, including functional elements, secondary structure, sequence composition and site conservation. Our analysis reveals that certain features, such as C/G-related sequence composition in 5'UTR and A/T-related sequence composition in 3'UTR, effectively differentiate between nonfunctional and functional variant sets, unveiling potential sequence determinants of functional UTR variants. Leveraging these insights, we developed two classification models to predict functional UTR variants using machine learning, achieving an area under the curve (AUC) value of 0.94 for 5'UTR and 0.85 for 3'UTR, outperforming all existing methods. Our models will be valuable for enhancing clinical interpretation of genetic variants, facilitating the prediction and management of disease risk.


Subject(s)
3' Untranslated Regions , 5' Untranslated Regions , Humans , Computational Biology/methods , Machine Learning , Genetic Variation , Untranslated Regions
3.
Plant Cell ; 34(10): 4105-4116, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35946779

ABSTRACT

Programmed cell death (PCD) is integral to plant life and required for stress responses, immunity, and development. Our understanding of the regulation of PCD is incomplete, especially concerning regulators involved in multiple divergent processes. The botrytis-susceptible (bos1) mutant of Arabidopsis is highly susceptible to fungal infection by Botrytis cinerea (Botrytis). BOS1 (also known as MYB108) regulates cell death propagation during plant responses to wounding. The bos1-1 allele contains a T-DNA insertion in the 5'-untranslated region upstream of the start codon. This insertion results in elevated expression of BOS1/MYB108. We used clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease 9 (Cas9) system (CRISPR/Cas9) to create new bos1 alleles with disrupted exons, and found that these lines lacked the typical bos1-1 wounding and Botrytis phenotypes. They did exhibit reduced fertility, as was previously observed in other bos1 alleles. Resequencing of the bos1-1 genome confirmed the presence of a mannopine synthase (MAS) promoter at the T-DNA left border. Expression of the BOS1 gene under control of the MAS promoter in wild-type plants conferred the characteristic phenotypes of bos1-1: Botrytis sensitivity and response to wounding. Multiple overexpression lines demonstrated that BOS1 was involved in regulation of cell death propagation in a dosage-dependent manner. Our data indicate that bos1-1 is a gain-of-function mutant and that BOS1 function in regulation of fertility and Botrytis response can both be understood as misregulated cell death.


Subject(s)
Arabidopsis , Botrytis , Arabidopsis/metabolism , Botrytis/physiology , Branchio-Oto-Renal Syndrome , Cell Death/genetics , Codon, Initiator , Ectopic Gene Expression , Gene Expression Regulation, Plant/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Untranslated Regions
4.
Nucleic Acids Res ; 51(D1): D337-D344, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399486

ABSTRACT

The 5' and 3' untranslated regions of eukaryotic mRNAs (UTRs) play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization, and message stability. Since 1996, we have developed and maintained UTRdb, a specialized database of UTR sequences. Here we present UTRdb 2.0, a major update of UTRdb featuring an extensive collection of eukaryotic 5' and 3' UTR sequences, including over 26 million entries from over 6 million genes and 573 species, enriched with a curated set of functional annotations. Annotations include CAGE tags and polyA signals to label the completeness of 5' and 3'UTRs, respectively. In addition, uORFs and IRES are annotated in 5'UTRs as well as experimentally validated miRNA targets in 3'UTRs. Further annotations include evolutionarily conserved blocks, Rfam motifs, ADAR-mediated RNA editing events, and m6A modifications. A web interface allowing a flexible selection and retrieval of specific subsets of UTRs, selected according to a combination of criteria, has been implemented which also provides comprehensive download facilities. UTRdb 2.0 is accessible at http://utrdb.cloud.ba.infn.it/utrdb/.


Subject(s)
Databases, Nucleic Acid , Eukaryota , RNA, Messenger , Untranslated Regions , 3' Untranslated Regions/genetics , 5' Untranslated Regions , Eukaryota/genetics , Eukaryotic Cells/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Proc Natl Acad Sci U S A ; 119(41): e2204636119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36197996

ABSTRACT

Telomerase is a eukaryotic ribonucleoprotein (RNP) enzyme that adds DNA repeats onto chromosome ends to maintain genomic stability and confer cellular immortality in cancer and stem cells. The telomerase RNA (TER) component is essential for telomerase catalytic activity and provides the template for telomeric DNA synthesis. The biogenesis of TERs is extremely divergent across eukaryotic kingdoms, employing distinct types of transcription machinery and processing pathways. In ciliates and plants, TERs are transcribed by RNA polymerase III (Pol III), while animal and ascomycete fungal TERs are transcribed by RNA Pol II and share biogenesis pathways with small nucleolar RNA (snoRNA) and small nuclear RNA (snRNA), respectively. Here, we report an unprecedented messenger RNA (mRNA)-derived biogenesis pathway for the 1,291 nucleotide TER from the basidiomycete fungus Ustilago maydis. The U. maydis TER (UmTER) contains a 5'-monophosphate, distinct from the 5' 2,2,7-trimethylguanosine (TMG) cap common to animal and ascomycete fungal TERs. The mature UmTER is processed from the 3'-untranslated region (3'-UTR) of a larger RNA precursor that possesses characteristics of mRNA including a 5' 7-methyl-guanosine (m7G) cap, alternative splicing of introns, and a poly(A) tail. Moreover, this mRNA transcript encodes a protein called Early meiotic induction protein 1 (Emi1) that is conserved across dikaryotic fungi. A recombinant UmTER precursor expressed from an mRNA promoter is processed correctly to yield mature UmTER, confirming an mRNA-processing pathway for producing TER. Our findings expand the plethora of TER biogenesis mechanisms and demonstrate a pathway for producing a functional long noncoding RNA from a protein-coding mRNA precursor.


Subject(s)
RNA, Long Noncoding , Telomerase , Animals , Guanosine , Nucleotides/metabolism , RNA/metabolism , RNA Polymerase II/metabolism , RNA Polymerase III/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Small Nucleolar , Ribonucleoproteins/genetics , Telomerase/genetics , Telomerase/metabolism , Untranslated Regions
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074910

ABSTRACT

E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.


Subject(s)
Cell Cycle/genetics , Drosophila Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Gene Expression Regulation , Protein Biosynthesis , Transcription Factors/metabolism , Animals , Biomarkers , Cell Proliferation , Fluorescent Antibody Technique , Mitosis , Open Reading Frames , RNA Processing, Post-Transcriptional , Stress, Physiological/genetics , Untranslated Regions , Wings, Animal/metabolism
7.
Genes Chromosomes Cancer ; 63(1): e23216, 2024 01.
Article in English | MEDLINE | ID: mdl-38169142

ABSTRACT

Recent results show that polymorphisms of programmed death ligand 1 (PD-L1, also known as CD274 or B7-H1) might be used as a possible marker for effectiveness of chemotherapy and cancer risk. However, the effect of PD-L1 gene variations on PD-L1 expression remain unclear. Given the post-transcriptional machinery in tumor PD-L1 expression, we investigated single nucleotide polymorphisms (SNPs) in the 3'-untranslated region (3'-UTR) of the PD-L1 gene, rs4143815 and rs4742098, using formalin-fixed paraffin-embedded sections of 154 patients with non-small cell lung cancers (NSCLCs). In rs4143815, the GG genotype showed significant association with PD-L1 expression (P = 0.032). In rs4742098, the AA genotype was significantly associated with histology and PD-L1 expression (P = 0.022 and P = 0.008, respectively). In multivariate logistic regression analysis, the AA genotype in rs4742098 was correlated with PD-L1 expression (odds ratio 0.408, P = 0.048). Interestingly, approximately 10% of the NSCLC cases showed somatic mutation when we compared genotypes of these SNPs between NSCLC tissues and non-tumor tissues from the same patients. In addition, cases with somatic mutation showed higher levels of PD-L1 expression than cases with germline mutation in rs4143815 GG. In conclusion, we demonstrated that the rs4143815 and rs4742098 SNPs in the 3'-UTR of PD-L1 were associated with tumor PD-L1 expression in NSCLCs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , B7-H1 Antigen/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Genotype , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Untranslated Regions
8.
Physiol Genomics ; 56(1): 9-31, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37842744

ABSTRACT

Oocyte maturation is accompanied by changes in abundances of thousands of mRNAs, many degraded and many preferentially stabilized. mRNA stability can be regulated by diverse features including GC content, codon bias, and motifs within the 3'-untranslated region (UTR) interacting with RNA binding proteins (RBPs) and miRNAs. Many studies have identified factors participating in mRNA splicing, bulk mRNA storage, and translational recruitment in mammalian oocytes, but the roles of potentially hundreds of expressed factors, how they regulate cohorts of thousands of mRNAs, and to what extent their functions are conserved across species has not been determined. We performed an extensive in silico cross-species analysis of features associated with mRNAs of different stability classes during oocyte maturation (stable, moderately degraded, and highly degraded) for five mammalian species. Using publicly available RNA sequencing data for germinal vesicle (GV) and MII oocyte transcriptomes, we determined that 3'-UTR length and synonymous codon usage are positively associated with stability, while greater GC content is negatively associated with stability. By applying machine learning and feature selection strategies, we identified RBPs and miRNAs that are predictive of mRNA stability, including some across multiple species and others more species-restricted. The results provide new insight into the mechanisms regulating maternal mRNA stabilization or degradation.NEW & NOTEWORTHY Conservation across species of mRNA features regulating maternal mRNA stability during mammalian oocyte maturation was analyzed. 3'-Untranslated region length and synonymous codon usage are positively associated with stability, while GC content is negatively associated. Just three RNA binding protein motifs were predicted to regulate mRNA stability across all five species examined, but associated pathways and functions are shared, indicating oocytes of different species arrive at comparable physiological destinations via different routes.


Subject(s)
MicroRNAs , RNA, Messenger, Stored , Animals , Mammals/genetics , Mammals/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Oocytes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Untranslated Regions , Female
9.
J Biol Chem ; 299(2): 102897, 2023 02.
Article in English | MEDLINE | ID: mdl-36639028

ABSTRACT

Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.


Subject(s)
Brain-Derived Neurotrophic Factor , RNA, Messenger , Untranslated Regions , Animals , Cattle , Rats , 3' Untranslated Regions , 5' Untranslated Regions , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Exons , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Untranslated Regions/physiology
10.
J Exp Bot ; 75(14): 4314-4331, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38394144

ABSTRACT

To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.


Subject(s)
Gene Expression Regulation, Plant , Untranslated Regions , Plants/genetics , Plants/metabolism , Environment
11.
Nature ; 555(7694): 107-111, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29466324

ABSTRACT

Long noncoding RNAs (lncRNAs) are emerging as key parts of multiple cellular pathways, but their modes of action and how these are dictated by sequence remain unclear. lncRNAs tend to be enriched in the nuclear fraction, whereas most mRNAs are overtly cytoplasmic, although several studies have found that hundreds of mRNAs in various cell types are retained in the nucleus. It is thus conceivable that some mechanisms that promote nuclear enrichment are shared between lncRNAs and mRNAs. Here, to identify elements in lncRNAs and mRNAs that can force nuclear localization, we screened libraries of short fragments tiled across nuclear RNAs, which were cloned into the untranslated regions of an efficiently exported mRNA. The screen identified a short sequence derived from Alu elements and bound by HNRNPK that increased nuclear accumulation. Binding of HNRNPK to C-rich motifs outside Alu elements is also associated with nuclear enrichment in both lncRNAs and mRNAs, and this mechanism is conserved across species. Our results thus identify a pathway for regulation of RNA accumulation and subcellular localization that has been co-opted to regulate the fate of transcripts with integrated Alu elements.


Subject(s)
Alu Elements/genetics , Cell Nucleus/genetics , RNA Transport , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Active Transport, Cell Nucleus , Animals , Base Sequence , Binding Sites , Conserved Sequence , Evolution, Molecular , HeLa Cells , Heterogeneous-Nuclear Ribonucleoprotein K/metabolism , Humans , MCF-7 Cells , Mice , Species Specificity , Untranslated Regions/genetics
12.
Nucleic Acids Res ; 50(17): e102, 2022 09 23.
Article in English | MEDLINE | ID: mdl-35766443

ABSTRACT

Arrayed libraries of defined mutants have been used to elucidate gene function in the post-genomic era. Yeast haploid gene deletion libraries have pioneered this effort, but are costly to construct, do not reveal phenotypes that may occur with partial gene function and lack essential genes required for growth. We therefore devised an efficient method to construct a library of barcoded insertion mutants with a wider range of phenotypes that can be generalized to other organisms or collections of DNA samples. We developed a novel but simple three-dimensional pooling and multiplexed sequencing approach that leveraged sequence information to reduce the number of required sequencing reactions by orders of magnitude, and were able to identify the barcode sequences and DNA insertion sites of 4391 Schizosaccharomyces pombe insertion mutations with only 40 sequencing preparations. The insertion mutations are in the genes and untranslated regions of nonessential, essential and noncoding RNA genes, and produced a wider range of phenotypes compared to the cognate deletion mutants, including novel phenotypes. This mutant library represents both a proof of principle for an efficient method to produce novel mutant libraries and a valuable resource for the S. pombe research community.


Subject(s)
Schizosaccharomyces , DNA , DNA Transposable Elements/genetics , Gene Library , Genes, Essential , High-Throughput Nucleotide Sequencing/methods , Mutagenesis, Insertional , RNA, Untranslated , Saccharomyces cerevisiae/genetics , Schizosaccharomyces/genetics , Untranslated Regions
13.
Mol Microbiol ; 117(1): 193-214, 2022 01.
Article in English | MEDLINE | ID: mdl-34783400

ABSTRACT

Staphylococcus aureus RsaG is a 3'-untranslated region (3'UTR) derived sRNA from the conserved uhpT gene encoding a glucose-6-phosphate (G6P) transporter expressed in response to extracellular G6P. The transcript uhpT-RsaG undergoes degradation from 5'- to 3'-end by the action of the exoribonucleases J1/J2, which are blocked by a stable hairpin structure at the 5'-end of RsaG, leading to its accumulation. RsaG together with uhpT is induced when bacteria are internalized into host cells or in the presence of mucus-secreting cells. Using MS2-affinity purification coupled with RNA sequencing, several RNAs were identified as targets including mRNAs encoding the transcriptional factors Rex, CcpA, SarA, and the sRNA RsaI. Our data suggested that RsaG contributes to the control of redox homeostasis and adjusts metabolism to changing environmental conditions. RsaG uses different molecular mechanisms to stabilize, degrade, or repress the translation of its mRNA targets. Although RsaG is conserved only in closely related species, the uhpT 3'UTR of the ape pathogen S. simiae harbors an sRNA, whose sequence is highly different, and which does not respond to G6P levels. Our results hypothesized that the 3'UTRs from UhpT transporter encoding mRNAs could have rapidly evolved to enable adaptation to host niches.


Subject(s)
Antiporters/metabolism , Monosaccharide Transport Proteins/metabolism , RNA, Small Untranslated/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Transcription Factors/metabolism , Untranslated Regions/genetics , Adaptation, Physiological , Antiporters/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Gene Expression Regulation, Bacterial , Glucose-6-Phosphate/metabolism , Homeostasis , Monosaccharide Transport Proteins/genetics , Oxidation-Reduction , RNA Stability , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/physiology , Transcription Factors/genetics
14.
Trends Genet ; 36(11): 880-891, 2020 11.
Article in English | MEDLINE | ID: mdl-32741549

ABSTRACT

The genetic basis of disease has largely focused on coding regions. However, it has become clear that a large proportion of the noncoding genome is functional and harbors genetic variants that contribute to disease etiology. Here, we review recent examples of inherited noncoding alterations that are responsible for Mendelian disorders or act to influence complex traits. We explore both rare and common genetic variants and discuss the wide range of mechanisms by which they affect gene regulation to promote disease. We also debate the challenges and progress associated with identifying and interpreting the functional and clinical significance of genetic variation in the context of the noncoding regulatory landscape.


Subject(s)
Gene Expression Regulation , Genetic Predisposition to Disease , Genetic Variation , Multifactorial Inheritance , Quantitative Trait Loci , RNA, Untranslated/genetics , Untranslated Regions , Animals , Genome-Wide Association Study , Humans
15.
Genome Res ; 30(4): 553-565, 2020 04.
Article in English | MEDLINE | ID: mdl-32269134

ABSTRACT

Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.


Subject(s)
Beak/anatomy & histology , Biological Evolution , Birds/anatomy & histology , Birds/genetics , Genetic Association Studies , Morphogenesis/genetics , Untranslated Regions , Animals , Conserved Sequence , Evolution, Molecular , Genetic Heterogeneity , Open Reading Frames , Quantitative Trait Loci , Selection, Genetic
16.
J Virol ; 96(20): e0114822, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36197106

ABSTRACT

Long interspersed element type 1 (LINE-1) is the only known type of retroelement that can replicate autonomously, and its retrotransposition activity can trigger interferon (IFN) production. IFN production suppresses the infectivity of exogenous viruses, such as human immunodeficiency virus (HIV). As a counteraction, HIV has been reported to use multiple proteins and mechanisms to suppress LINE-1 replication. However, the mechanisms of HIV-mediated LINE-1 regulation are not fully understood. In this study, we discovered that Nef protein, which is expressed by HIV and is important for HIV pathogenesis, inhibits LINE-1 retrotransposition. Two distinct mechanisms have been uncovered for Nef-induced LINE-1 suppression. Without direct interaction with LINE-1 DNA, Nef potently inhibits the promoter activity of the LINE-1 5'-untranslated region (5'-UTR) and reduces the expression levels of LINE-1 RNA and proteins. Alternatively, although Nef does not bind to the LINE-1 open reading frame 1 protein (ORF1p) or LINE-1 RNA, it significantly compromises the ORF1p-LINE-1 RNA interaction, which is essential for LINE-1 retrotransposition. Both mechanisms can be suppressed by the G2A mutation, which abolishes myristoylation of Nef, suggesting that membrane attachment is essential for Nef to suppress LINE-1. Consequently, through LINE-1 inhibition, Nef downregulates IFN production in host cells. Therefore, our data revealed that Nef is a potent LINE-1 suppressor and an effective innate immune regulator, which not only provides new information on the intricate interaction between HIV, LINE-1, and IFN signaling systems but also strengthens the importance of Nef in HIV infection and highlights the potential of designing novel Nef-targeting anti-HIV drugs. IMPORTANCE Human immunodeficiency viruses are pathogens of AIDS that were first discovered almost 40 years ago and continue to threaten human lives to date. While currently used anti-HIV drugs are sufficient to suppress viral loads in HIV-infected patients, both drug-resistant HIV strains and adverse side effects triggered by the long-term use of these drugs highlight the need to develop novel anti-HIV drugs targeting different viral proteins and/or different steps in viral replication. To achieve this, more information is required regarding HIV pathogenesis and especially its impact on cellular activities in host cells. In this study, we discovered that the Nef protein expressed by HIV potently inhibits LINE-1 retrotransposition. During our attempt to determine the mechanism of Nef-mediated LINE-1 suppression, two additional functions of Nef were uncovered. Nef effectively repressed the promoter activity of LINE-1 5'-UTR and destabilized the interaction between ORF1p and LINE-1 RNA. Consequently, Nef not only compromises LINE-1 replication but also reduces LINE-1-triggered IFN production. The reduction in IFN production, in theory, promotes HIV infectivity. Together with its previously known functions, these findings indicate that Nef is a potential target for the development of novel anti-HIV drugs. Notably, the G2 residue, which has been reported to be essential for most Nef functions, was found to be critical in the regulation of innate immune activation by Nef, suggesting that compromising myristoylation or membrane attachment of Nef may be a good strategy for the inhibition of HIV infection.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism , Retroelements/genetics , Gene Products, nef/genetics , Anti-HIV Agents/metabolism , Interferons/metabolism , RNA/metabolism , Untranslated Regions
17.
J Virol ; 96(10): e0020522, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35467364

ABSTRACT

The influenza A virus (IAV) genome is divided into eight negative-sense, single-stranded RNA segments. Each segment exhibits a unique level and temporal pattern of expression; however, the exact mechanisms underlying the patterns of individual gene segment expression are poorly understood. We previously demonstrated that a single substitution in the viral nucleoprotein (NP:F346S) selectively modulates neuraminidase (NA) gene segment expression while leaving other segments largely unaffected. Given what is currently known about NP function, there is no obvious explanation for how changes in NP can selectively modulate the replication of individual gene segments. In this study, we found that the specificity of this effect for the NA segment is virus strain specific and depends on the untranslated region (UTR) sequences of the NA segment. While the NP:F346S substitution did not significantly alter the RNA binding or oligomerization activities of NP in vitro, it specifically decreased the ability of NP to promote NA segment viral RNA (vRNA) synthesis. In addition to NP residue F346, we identified two other adjacent aromatic residues in NP (Y385 and F479) capable of similarly regulating NA gene segment expression, suggesting a larger role for this domain in gene-segment specific regulation. Our findings reveal a novel role for NP in selective regulation of viral gene segment replication and provide a framework for understanding how the expression patterns of individual viral gene segments can be modulated during adaptation to new host environments. IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen that remains a significant source of morbidity and mortality. Escape from host immunity or emergence into new host species often requires mutations that modulate the functional activities of the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), which are responsible for virus attachment to and release from host cells, respectively. Maintaining the functional balance between the activities of HA and NA is required for fitness across multiple host systems. Thus, selective modulation of viral gene expression patterns may be a key determinant of viral immune escape and cross-species transmission potential. We identified a novel mechanism by which the viral nucleoprotein (NP) gene can selectively modulate NA segment replication and gene expression through interactions with the segment UTRs. Our work highlights an unexpected role for NP in selective regulation of expression from the individual IAV gene segments.


Subject(s)
Influenza A virus , Nucleocapsid Proteins , Untranslated Regions , Gene Expression Regulation, Viral , Influenza A virus/genetics , Influenza A virus/metabolism , Neuraminidase/genetics , Neuraminidase/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Nucleoproteins/genetics , Nucleoproteins/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
18.
Bioinformatics ; 38(20): 4806-4808, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36000853

ABSTRACT

MOTIVATION: Gene-centric bioinformatics studies frequently involve the calculation or the extraction of various features of genes such as splice sites, promoters, independent introns and untranslated regions (UTRs) through manipulation of gene models. Gene models are often annotated in gene transfer format (GTF) files. The features are essential for subsequent analysis such as intron retention detection, DNA-binding site identification and computing splicing strength of splice sites. Some features such as independent introns and splice sites are not provided in existing resources including the commonly used BioMart database. A package that implements and integrates functions to analyze various features of genes will greatly ease routine analysis for related bioinformatics studies. However, to the best of our knowledge, such a package is not available yet. RESULTS: We introduce GTFtools, a stand-alone command-line software that provides a set of functions to calculate various gene features, including splice sites, independent introns, transcription start sites (TSS)-flanking regions, UTRs, isoform coordination and length, different types of gene lengths, etc. It takes the ENSEMBL or GENCODE GTF files as input and can be applied to both human and non-human gene models like the lab mouse. We compare the utilities of GTFtools with those of two related tools: Bedtools and BioMart. GTFtools is implemented in Python and not dependent on any third-party software, making it very easy to install and use. AVAILABILITY AND IMPLEMENTATION: GTFtools is freely available at www.genemine.org/gtftools.php as well as pyPI and Bioconda.


Subject(s)
Computational Biology , Software , DNA , Introns , Untranslated Regions
19.
Dev Growth Differ ; 65(1): 48-55, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36517457

ABSTRACT

Myosin heavy chains (MyHCs), which are encoded by myosin heavy chain (Myh) genes, are the most abundant proteins in myofiber. Among the 11 sarcomeric Myh isoform genes in the mammalian genome, seven are mainly expressed in skeletal muscle. Myh genes/MyHC proteins share a common role as force producing units with highly conserved sequences, but have distinct spatio-temporal expression patterns. As such, the expression patterns of Myh genes/MyHC proteins are considered as molecular signatures of specific fiber types or the regenerative status of mammalian skeletal muscles. Immunohistochemistry is widely used for identifying MyHC expression patterns; however, this method is costly and is not ideal for whole-mount samples, such as embryos. In situ hybridization (ISH) is another versatile method for the analysis of gene expression, but is not commonly applied for Myh genes, partly because of the highly homologous sequences of Myh genes. Here we demonstrate that an ISH analysis with the untranslated region (UTR) sequence of Myh genes is cost-effective and specific method for analyzing the Myh gene expression in whole-mount samples. Digoxigenin (DIG)-labeled antisense probes for UTR sequences, but not for protein coding sequences, specifically detected the expression patterns of respective Myh isoform genes in both embryo and adult skeletal muscle tissues. UTR probes also revealed the isoform gene-specific polarized localization of Myh mRNAs in embryonic myofibers, which implied a novel mRNA distribution mechanism. Our data suggested that the DIG-labeled UTR probe is a cost-effective and versatile method to specifically detect skeletal muscle Myh genes in a whole-mount analysis.


Subject(s)
Myosin Heavy Chains , RNA , Animals , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , RNA Probes/metabolism , Digoxigenin/metabolism , Untranslated Regions , Muscle, Skeletal/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , In Situ Hybridization , Mammals/metabolism
20.
Syst Biol ; 71(6): 1331-1347, 2022 10 12.
Article in English | MEDLINE | ID: mdl-35253878

ABSTRACT

To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies based on annotated regions from the western painted turtle (Chrysemys picta bellii) genome (coding regions, introns, untranslated regions, intergenic, and others). We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for temporal patterns in phylogenomic conflict across turtle evolution. We found strong and consistent support for all bifurcations in the inferred turtle species phylogenies. However, a number of genes, sites, and genomic features supported alternate relationships between turtle taxa. Our results suggest that gene tree-species tree discordance in these data sets is likely driven by population-level processes such as incomplete lineage sorting. We found very little effect of substitutional saturation on species tree topologies, and no clear phylogenetic patterns in codon usage bias and compositional heterogeneity. There was no correlation between gene and site concordance, node age, and DNA substitution rate across most annotated genomic regions. Our study demonstrates that heterogeneity is to be expected even in well-resolved clades such as turtles, and that future phylogenomic studies should aim to sample as much of the genome as possible in order to obtain accurate phylogenies for assessing conservation priorities in turtles. [Discordance; genomes; phylogeny; turtles.].


Subject(s)
Turtles , Animals , DNA , Genomics/methods , Phylogeny , Turtles/genetics , Untranslated Regions
SELECTION OF CITATIONS
SEARCH DETAIL