Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.068
Filter
Add more filters

Publication year range
1.
Circulation ; 149(13): 1004-1015, 2024 03 26.
Article in English | MEDLINE | ID: mdl-37886839

ABSTRACT

BACKGROUND: The adult mammalian heart is incapable of regeneration, whereas a transient regenerative capacity is maintained in the neonatal heart, primarily through the proliferation of preexisting cardiomyocytes. Neonatal heart regeneration after myocardial injury is accompanied by an expansion of cardiac fibroblasts and compositional changes in the extracellular matrix. Whether and how these changes influence cardiomyocyte proliferation and heart regeneration remains to be investigated. METHODS: We used apical resection and myocardial infarction surgical models in neonatal and adult mice to investigate extracellular matrix components involved in heart regeneration after injury. Single-cell RNA sequencing and liquid chromatography-mass spectrometry analyses were used for versican identification. Cardiac fibroblast-specific Vcan deletion was achieved using the mouse strains Col1a2-2A-CreER and Vcanfl/fl. Molecular signaling pathways related to the effects of versican were assessed through Western blot, immunostaining, and quantitative reverse transcription polymerase chain reaction. Cardiac fibrosis and heart function were evaluated by Masson trichrome staining and echocardiography, respectively. RESULTS: Versican, a cardiac fibroblast-derived extracellular matrix component, was upregulated after neonatal myocardial injury and promoted cardiomyocyte proliferation. Conditional knockout of Vcan in cardiac fibroblasts decreased cardiomyocyte proliferation and impaired neonatal heart regeneration. In adult mice, intramyocardial injection of versican after myocardial infarction enhanced cardiomyocyte proliferation, reduced fibrosis, and improved cardiac function. Furthermore, versican augmented the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Mechanistically, versican activated integrin ß1 and downstream signaling molecules, including ERK1/2 and Akt, thereby promoting cardiomyocyte proliferation and cardiac repair. CONCLUSIONS: Our study identifies versican as a cardiac fibroblast-derived pro-proliferative proteoglycan and clarifies the role of versican in promoting adult cardiac repair. These findings highlight its potential as a therapeutic factor for ischemic heart diseases.


Subject(s)
Heart Injuries , Induced Pluripotent Stem Cells , Myocardial Infarction , Animals , Humans , Mice , Animals, Newborn , Cell Proliferation , Heart , Heart Injuries/metabolism , Induced Pluripotent Stem Cells/metabolism , Mammals , Myocytes, Cardiac/metabolism , Regeneration , Versicans/genetics , Versicans/metabolism
2.
Circ Res ; 133(7): 542-558, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37646165

ABSTRACT

BACKGROUND: Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS: Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS: This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS: Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.


Subject(s)
Atherosclerosis , Calcinosis , Female , Humans , Male , Proteomics , Sex Characteristics , Versicans , alpha-2-HS-Glycoprotein
3.
Am J Physiol Cell Physiol ; 327(4): C1035-C1050, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39159389

ABSTRACT

Versican is increased with inflammation and fibrosis, and is upregulated in Duchenne muscular dystrophy. In fibrotic diaphragm muscles from dystrophic mdx mice, genetic reduction of versican attenuated macrophage infiltration and improved contractile function. Versican is also implicated in myogenesis. Here, we investigated whether versican modulated mdx hindlimb muscle pathology, where inflammation and regeneration are increased but fibrosis is minimal. Immunohistochemistry and qRT-PCR were used to assess how fiber type and glucocorticoids (α-methylprednisolone) modify versican expression. To genetically reduce versican, female mdx and male versican haploinsufficient (hdf) mice were bred resulting in male mdx-hdf and mdx (control) pups. Versican expression, contractile function, and pathology were evaluated in hindlimb muscles. Versican immunoreactivity was greater in slow versus fast hindlimb muscles. Versican mRNA transcripts were reduced by α-methylprednisolone in soleus, but not in fast extensor digitorum longus, muscles. In juvenile (6-wk-old) mdx-hdf mice, versican expression was most robustly decreased in soleus muscles leading to improved force output and a modest reduction in fatiguability. These functional benefits were not accompanied by decreased inflammation. Muscle architecture, regeneration markers, and fiber type also did not differ between mdx-hdf mice and mdx littermates. Improvements in soleus contractile function were not retained in adult (20-wk-old) mdx-hdf mice. In conclusion, soleus muscles from juvenile mdx mice were most responsive to pharmacological or genetic approaches targeting versican; however, the benefits of versican reduction were limited due to low fibrosis. Preclinical matrix research in dystrophy should account for muscle phenotype (including age) and the interdependence between inflammation and fibrosis. NEW & NOTEWORTHY The proteoglycan versican is upregulated in muscular dystrophy. In fibrotic diaphragm muscles from mdx mice, versican reduction attenuated macrophage infiltration and improved performance. Here, in hindlimb muscles from 6- and 20-wk-old mdx mice, where pathology is mild, versican reduction did not decrease inflammation and contractile function improvements were limited to juvenile mice. In dystrophic mdx muscles, the association between versican and inflammation is mediated by fibrosis, demonstrating interdependence between the immune system and extracellular matrix.


Subject(s)
Fibrosis , Haploinsufficiency , Hindlimb , Inflammation , Mice, Inbred mdx , Muscle Contraction , Muscle, Skeletal , Muscular Dystrophy, Duchenne , Versicans , Animals , Versicans/genetics , Versicans/metabolism , Mice , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiopathology , Male , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Female , Mice, Inbred C57BL
4.
J Biol Chem ; 299(4): 103048, 2023 04.
Article in English | MEDLINE | ID: mdl-36813235

ABSTRACT

A disintegrin-like and metalloproteinase with thrombospondin type 1 motifs (ADAMTS1) is a protease involved in fertilization, cancer, cardiovascular development, and thoracic aneurysms. Proteoglycans such as versican and aggrecan have been identified as ADAMTS1 substrates, and Adamts1 ablation in mice typically results in versican accumulation; however, previous qualitative studies have suggested that ADAMTS1 proteoglycanase activity is weaker than that of other family members such as ADAMTS4 and ADAMTS5. Here, we investigated the functional determinants of ADAMTS1 proteoglycanase activity. We found that ADAMTS1 versicanase activity is approximately 1000-fold lower than ADAMTS5 and 50-fold lower than ADAMTS4 with a kinetic constant (kcat/Km) of 3.6 × 103 M-1 s-1 against full-length versican. Studies on domain-deletion variants identified the spacer and cysteine-rich domains as major determinants of ADAMTS1 versicanase activity. Additionally, we confirmed that these C-terminal domains are involved in the proteolysis of aggrecan as well as biglycan, a small leucine-rich proteoglycan. Glutamine scanning mutagenesis of exposed positively charged residues on the spacer domain loops and loop substitution with ADAMTS4 identified clusters of substrate-binding residues (exosites) in ß3-ß4 (R756Q/R759Q/R762Q), ß9-ß10 (residues 828-835), and ß6-ß7 (K795Q) loops. This study provides a mechanistic foundation for understanding the interactions between ADAMTS1 and its proteoglycan substrates and paves the way for development of selective exosite modulators of ADAMTS1 proteoglycanase activity.


Subject(s)
ADAMTS1 Protein , Animals , Mice , ADAMTS1 Protein/chemistry , ADAMTS1 Protein/metabolism , ADAMTS4 Protein/metabolism , ADAMTS5 Protein/metabolism , Aggrecans/metabolism , Versicans/metabolism
5.
Am J Physiol Lung Cell Mol Physiol ; 327(3): L304-L318, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38915286

ABSTRACT

Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor ß binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling. Percentage area and/or mean intensity of expression of LUM in the parenchyma, and COL1A1, FBLN2, LTBP4, DCN, and VCAN in the airway walls, was proportionally lower in COPD compared to controls. Lowered levels of most ECM proteins were associated with decreasing forced expiratory volume in 1 s (FEV1) measurements, indicating a relationship with disease severity. Furthermore, we identified six unique ECM signatures where LUM and COL6A1 in parenchyma and COL1A1, FBLN5, DCN, and VCAN in airway walls appear essential in reflecting the presence and severity of COPD. These signatures emphasize the need to examine groups of proteins to represent an overall difference in the ECM landscape in COPD that are more likely to be related to functional effects than individual proteins. Our study revealed differences in the lung ECM landscape between control and COPD and between SEO and moderate COPD signifying distinct pathological processes in the different subgroups.NEW & NOTEWORTHY Our study identified chronic obstructive pulmonary disease (COPD)-associated differences in the lung extracellular matrix (ECM) composition. We highlight the compartmental differences in the ECM landscape in different subtypes of COPD. The most prominent differences were observed for severe-early onset COPD. Moreover, we identified unique ECM signatures that describe airway walls and parenchyma providing insight into the intertwined nature and complexity of ECM changes in COPD that together drive ECM remodeling and may contribute to disease pathogenesis.


Subject(s)
Decorin , Elastin , Extracellular Matrix Proteins , Extracellular Matrix , Lung , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Humans , Male , Middle Aged , Lung/metabolism , Lung/pathology , Female , Extracellular Matrix Proteins/metabolism , Elastin/metabolism , Decorin/metabolism , Aged , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Versicans/metabolism , Latent TGF-beta Binding Proteins/metabolism , Latent TGF-beta Binding Proteins/genetics , Lumican/metabolism , Collagen Type I/metabolism , Calcium-Binding Proteins/metabolism , Collagen Type I, alpha 1 Chain , Severity of Illness Index , Collagen Type VI/metabolism
6.
Biochem Biophys Res Commun ; 727: 150309, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38936224

ABSTRACT

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.


Subject(s)
Adipose Tissue , Energy Metabolism , Homeostasis , Mice, Knockout , Versicans , Animals , Versicans/metabolism , Versicans/genetics , Mice , Adipose Tissue/metabolism , Obesity/metabolism , Obesity/genetics , Adipose Tissue, White/metabolism , Mice, Inbred C57BL , Male , Adipocytes/metabolism
7.
Pancreatology ; 24(5): 719-731, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38719756

ABSTRACT

BACKGROUND: Versican is a large extracellular matrix (ECM) proteoglycan with four isoforms V0-3. Elevated V0/V1 levels in breast cancer and glioma regulate cell migration and proliferation, but the role of versican in pancreatic ductal adenocarcinoma (PDAC) remains unclear. METHODS: In this study, we evaluated the expression levels of versican isoforms, as well as their cellular source and interacting partners, in vivo, in human and mouse primary and metastatic PDAC tumours and in vitro, in pancreatic tumour cells and fibroblasts using immunostaining, confocal microscopy and qPCR techniques. We also investigated the effect of versican expression on fibroblast proliferation and migration using genetic and pharmacological approaches. RESULTS: We found that versican V0/V1 is highly expressed by cancer-associated fibroblasts (CAFs) in mouse and human primary and metastatic PDAC tumours. Our data also show that exposing fibroblasts to tumour-conditioned media upregulates V0 and V1 expressions, while Verbascoside (a CD44 inhibitor) downregulates V0/V1 expression. Importantly, V0/V1 knockdown significantly inhibits fibroblast proliferation. Mechanistically, we found that inhibiting hyaluronan synthesis does not affect versican co-localisation with CD44 in fibroblasts. CONCLUSION: CAFs express high levels of versican V0/V1 in primary and liver metastatic PDAC tumours and versican V0/V1 supports fibroblast proliferation.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Cell Proliferation , Pancreatic Neoplasms , Protein Isoforms , Versicans , Animals , Humans , Mice , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Cell Line, Tumor , Cell Movement , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Versicans/genetics , Versicans/metabolism
8.
Prostaglandins Other Lipid Mediat ; 174: 106862, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38936541

ABSTRACT

Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.


Subject(s)
ADAMTS4 Protein , Atherosclerosis , Diet, High-Fat , Down-Regulation , Sesame Oil , Animals , Sesame Oil/pharmacology , ADAMTS4 Protein/metabolism , ADAMTS4 Protein/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Diet, High-Fat/adverse effects , Down-Regulation/drug effects , Rats , Male , Versicans/metabolism , Versicans/genetics , Rats, Sprague-Dawley , ADAM Proteins/metabolism , ADAM Proteins/genetics , Aorta/metabolism , Aorta/drug effects , Aorta/pathology
9.
Cell Mol Biol Lett ; 29(1): 126, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333870

ABSTRACT

BACKGROUND: Metastasis, the leading cause of renal cell carcinoma (RCC) mortality, involves cancer cells resisting anoikis and invading. Until now, the role of the matrix metalloproteinase (MMP)-related enzyme, A disintegrin and metalloprotease with thrombospondin motifs 1 (ADAMTS1), in RCC anoikis regulation remains unclear. METHODS: The clinical significance of ADAMTS1 and its associated molecules in patients with RCC was investigated using data from the Gene Expression Omnibus (GEO) and TCGA datasets. Human phosphoreceptor tyrosine kinase (RTK) array, luciferase reporter assays, immunoprecipitation (IP) assays, western blotting, and real-time reverse-transcription quantitative polymerase chain reaction (RT-qPCR) were used to elucidate the underlying mechanisms of ADAMTS1. Functional assays, including anoikis resistance assays, invasion assays, and a Zebrafish xenotransplantation model, were conducted to assess the roles of ADAMTS1 in conferring resistance to anoikis in RCC. RESULTS: This study found elevated ADAMTS1 transcripts in RCC tissues that were correlated with a poor prognosis. ADAMTS1 manipulation significantly affected cell anoikis through the mitochondrial pathway in RCC cells. Human receptor tyrosine kinase (RTK) array screening identified that epidermal growth factor receptor (EGFR) activation was responsible for ADAMTS1-induced anoikis resistance and invasion. Further investigations revealed that enzymatically active ADAMTS1-induced versican V1 (VCAN V1) proteolysis led to EGFR transactivation, which in turn, through positive feedback, regulated ADAMTS1. Additionally, ADAMTS1 can form a complex with p53 to influence EGFR signaling. In vivo, VCAN or EGFR knockdown reversed ADAMTS1-induced prometastatic characteristics of RCC. A clinical analysis revealed a positive correlation between ADAMTS1 and VCAN or the EGFR and patients with RCC with high ADAMTS1 and VCAN expression had the worst prognoses. CONCLUSIONS: Our results collectively uncover a novel cyclic axis involving ADAMTS1-VCAN-EGFR, which significantly contributes to RCC invasion and resistance to anoikis, thus presenting a promising therapeutic target for RCC metastasis.


Subject(s)
ADAMTS1 Protein , Anoikis , Carcinoma, Renal Cell , ErbB Receptors , Kidney Neoplasms , Signal Transduction , Versicans , Animals , Humans , ADAMTS1 Protein/metabolism , ADAMTS1 Protein/genetics , Anoikis/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , ErbB Receptors/metabolism , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Neoplasm Invasiveness , Prognosis , Versicans/metabolism , Versicans/genetics , Zebrafish
10.
BMC Pulm Med ; 24(1): 209, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685004

ABSTRACT

BACKGROUND: The pathogenesis of adult non-cystic fibrosis (CF) bronchiectasis is complex, and the relevant molecular mechanism remains ambiguous. Versican (VCAN) is a key factor in inflammation through interactions with adhesion molecules. This study constructs a stable panoramic map of mRNA, reveals the possible pathogenesis of bronchiectasis, and provides new ideas and methods for bronchiectasis. METHODS: Peripheral blood and tissue gene expression data from patients with bronchiectasis and normal control were selected by bioinformatics analysis. The expression of VCAN in peripheral blood and bronchial tissues of bronchiectasis were obtained by transcriptome sequencing. The protein expression levels of VCAN in serums were verified by the enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of VCAN in co-culture of Pseudomonas aeruginosa and bronchial epithelial cells were verified by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the biological function of VCAN was detected by the transwell assay. RESULTS: The expression of VCAN was upregulated in the bronchiectasis group by sequencing analysis (P < 0.001). The expression of VCAN in the bronchial epithelial cell line BEAS-2B was increased in P. aeruginosa (P.a), which was co-cultured with BEAS-2B cells (P < 0.05). The concentration of VCAN protein in the serum of patients with bronchiectasis was higher than that in the normal control group (P < 0.05). Transwell experiments showed that exogenous VCAN protein induced the migration of neutrophils (P < 0.0001). CONCLUSIONS: Our findings indicate that VCAN may be involved in the development of bronchiectasis by increasing the migration of neutrophils and play an important role in bronchial pathogenesis.


Subject(s)
Bronchiectasis , Versicans , Humans , Male , Female , Middle Aged , Retrospective Studies , Versicans/genetics , Versicans/metabolism , Adult , Pseudomonas aeruginosa/genetics , Epithelial Cells/metabolism , Aged , Up-Regulation , Coculture Techniques , Bronchi/pathology , Cell Line , RNA, Messenger/metabolism , Case-Control Studies , Clinical Relevance
11.
Environ Toxicol ; 39(9): 4417-4430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38842024

ABSTRACT

Gliomas are the most prevalent primary malignant brain tumors worldwide. Growing evidences indicate that circular RNAs (circRNAs) play an important role in the regulation of biological behavior of tumors. We aimed to investigate the role and mechanism of circVCAN in glioma. RNase R treatment was utilized to assess the cyclic properties of circVCAN. CircVCAN, miR-488-3p, and myocyte enhancer factor 2C (MEF2C) levels in glioma tissues and cells were detected by reverse transcription real-time polymerase chain reaction (RT-qPCR), and the localization of them in glioma cells was determined with fluorescence in situ hybridization. Furthermore, a variety of biologically functional assessments were used to validate the role of circVCAN in glioma. The regulatory mechanisms of circVCAN, miR-488-3p, and MEF2C were further confirmed by double luciferase reporter gene assay, RNA immunoprecipitation and RNA pull-down assay, and the binding of MEF2C to JAGGED1 was revealed by chromatin immunoprecipitation. Additionally, a xenograft tumor model was constructed to demonstrate the effect of circVCAN on tumor growth in vivo. Our results indicated that circVCAN was more stable than its linear RNA and was significantly upregulated in gliomas. CircVCAN overexpression stimulated glioma cells to proliferate and metastasize, but circVCAN silencing exerted the opposite effect. Meanwhile, silencing circVCAN inhibited tumor growth in vivo. Moreover, we found that circVCAN interacted with miR-488-3p to regulate MEF2C expression, and miR-488-3p inhibition or MEF2C overexpression reversed the inhibitory effect on malignant bio-behaviors mediated by circVCAN knockdown in glioma cells. MEF2C promoted the transcription of JAGGED1, and circVCAN knockdown reduced the binding between MEF2C and JAGGED1. Collectively, circVCAN is a carcinogenic circRNA in glioma, and the circVCAN/miR-488-3p/MEF2C-JAGGED1 axis could serve as a potential target for the management of glioma.


Subject(s)
Brain Neoplasms , Glioma , Jagged-1 Protein , MEF2 Transcription Factors , MicroRNAs , RNA, Circular , Animals , Humans , Male , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Versicans/genetics , Versicans/metabolism
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000302

ABSTRACT

Dupuytren's disease (DD) is a prevalent fibroproliferative disorder of the hand, shaped by genetic, epigenetic, and environmental influences. The extracellular matrix (ECM) is a complex assembly of diverse macromolecules. Alterations in the ECM's content, structure and organization can impact both normal physiological functions and pathological conditions. This study explored the content and organization of glycosaminoglycans, proteoglycans, and collagen in the ECM of patients at various stages of DD, assessing their potential as prognostic indicators. This research reveals, for the first time, relevant changes in the complexity of chondroitin/dermatan sulfate structures, specifically an increase of disaccharides containing iduronic acid residues covalently linked to either N-acetylgalactosamine 6-O-sulfated or N-acetylgalactosamine 4-O-sulfated, correlating with the disease's severity. Additionally, we noted an increase in versican expression, a high molecular weight proteoglycan, across stages I to IV, while decorin, a small leucine-rich proteoglycan, significantly diminishes as DD progresses, both confirmed by mRNA analysis and protein detection via confocal microscopy. Coherent anti-Stokes Raman scattering (CARS) microscopy further demonstrated that collagen fibril architecture in DD varies importantly with disease stages. Moreover, the urinary excretion of both hyaluronic and sulfated glycosaminoglycans markedly decreased among DD patients.Our findings indicate that specific proteoglycans with galactosaminoglycan chains and collagen arrangements could serve as biomarkers for DD progression. The reduction in glycosaminoglycan excretion suggests a systemic manifestation of the disease.


Subject(s)
Collagen , Decorin , Dupuytren Contracture , Proteoglycans , Humans , Dupuytren Contracture/metabolism , Dupuytren Contracture/pathology , Collagen/metabolism , Proteoglycans/metabolism , Decorin/metabolism , Extracellular Matrix/metabolism , Male , Disease Progression , Female , Dermatan Sulfate/metabolism , Middle Aged , Aged , Versicans/metabolism , Versicans/genetics , Glycosaminoglycans/metabolism , Chondroitin Sulfates/metabolism , Polysaccharides
13.
Vestn Oftalmol ; 140(1): 19-24, 2024.
Article in Russian | MEDLINE | ID: mdl-38450462

ABSTRACT

Degenerative changes in the peripheral regions of the ocular fundus allow a closer look at both the role of collagen genes and their mutations in children with high myopia. PURPOSE: The study investigates the features of genetic mutations in children with high myopia combined with peripheral retinal degenerations. MATERIAL AND METHODS: Study group was formed from the database of genetic studies of the Scientific and Clinical Center OOO Oftalmic, which consists of 4362 patients referred for medical genetic counseling and molecular genetic testing from 2016 to 2021. Selection criteria were: male and female patients, aged 5-18 years old, who had the following clinical signs: high myopia (>6.00 D) and the presence of peripheral retinal degenerations (PRD). The study considered both isolated cases of ophthalmic pathology, as well as its syndromic forms. The final selection included 40 children. All patients had consulted with a geneticist. Whole-exome sequencing (WES), next generation sequencing (NGS), and single gene sequencing were conducted by taking 5 mL of peripheral venous blood and extracting deoxyribonucleic acid (DNA). RESULTS: In patients with isolated cases of ophthalmic pathology (peripheral retinal degenerations and high myopia) with a confirmed genetic diagnosis, mutations in the COL2A1 gene were detected in 77.4% of cases, and in the COL11A1 gene - in 22.6% of cases. In Stickler syndrome with a confirmed genetic diagnosis, mutations in the COL2A1 gene were detected in 33.3% of cases. In Marshall syndrome, the mutation in the COL11A1 gene was detected in 11.1% of cases. In children with Ehlers-Danlos, Knobloch type 1, Cohen, Marfan, Wagner syndromes mutations in the genes COL5A1, COL18A1, VPS13B, FBN1, VCAN were detected in 55.6% of cases. In 33.3% of cases of Knobloch type 1, Cohen, Wagner syndromes the mutation is found in both copies of the gene (i.e., in both chromosomes), which leads to the development of peripheral retinal degenerations with high myopia. CONCLUSION: The results of the conducted molecular genetic testing expand our understanding of the mutation spectrum in the genes of children with both isolated cases of ophthalmic pathology, as well as syndromic pathology.


Subject(s)
Arthritis , Eye Diseases, Hereditary , Retinal Degeneration , Versicans/deficiency , Child , Humans , Female , Male , Child, Preschool , Adolescent , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Mutation , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics
14.
Am J Physiol Cell Physiol ; 325(2): C519-C537, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37399500

ABSTRACT

V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.


Subject(s)
Alternative Splicing , Versicans , Extracellular Matrix , Protein Isoforms/genetics , Versicans/genetics , Humans
15.
Biochem Biophys Res Commun ; 643: 175-185, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36621113

ABSTRACT

BACKGROUND: Thoracic aortic aneurysm (TAA) is a silent but dangerous cardiovascular disease. Understanding molecular mechanisms of TAA on single-cell level might provide new strategies for preventing and treating TAA. METHODS: Single-cell RNA sequencing was performed on control and aneurysmal thoracic aorta to find out specific cell clusters and cell types. Western blot and histological staining were used to verify the findings of single-cell transcriptome analysis. Characteristics of Versican (VCAN) overexpressed myofibroblast was evaluated through bioinformatic methods and experimental validation. RESULTS: A total of 3 control and 8 TAA specimens were used for single-cell transcriptome analysis including 48,128 thoracic aortic cells. Among these cells, we found out a specific cell cluster containing both hallmarks of smooth muscle cell (SMC) and fibroblast. Thus, we defined these cells as myofibroblast. Further single-cell transcriptome analysis identified VCAN as a cellular marker of myofibroblast. Western blot and histological staining revealed that VCAN(+) myofibroblast was significantly increased in TAA specimens compared with control individuals. Differential analysis, functional, pathway enrichment analysis and cell-cell communication analysis demonstrated that VCAN(+) myofibroblast was closely associated with previous reported TAA associated pathological process including SMC proliferation, SMC migration and extracellular matrix (ECM) disruption. Pathway analysis found out significant activation of PI3K-AKT signaling pathway within VCAN(+) myofibroblast, which was further confirmed by experimental validation. CONCLUSIONS: Single-cell RNA sequencing identified VCAN(+) myofibroblast as a typical cellular hallmark of TAA. These cells might participate in the pathogenesis of TAA through activation of PI3K-AKT signaling pathway to link SMC proliferation, SMC migration and ECM disruption.


Subject(s)
Aortic Aneurysm, Thoracic , Versicans , Humans , Versicans/genetics , Versicans/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Myofibroblasts/metabolism , Single-Cell Gene Expression Analysis , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Aorta, Thoracic/metabolism , Signal Transduction
16.
J Transl Med ; 21(1): 475, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37461061

ABSTRACT

BACKGROUND: Bladder cancer is one of the most common malignant tumors of the urinary system and is associated with a poor prognosis once invasion and distant metastases occur. Epithelial-mesenchymal transition (EMT) drives metastasis and invasion in bladder cancer. Transforming growth factor ß1 (TGF-ß1) and stromal fibroblasts, especially cancer-associated fibroblasts (CAFs), are positive regulators of EMT in bladder cancer. However, it remains unclear how TGF-ß1 mediates crosstalk between bladder cancer cells and CAFs and how it induces stromal fibroblast-mediated EMT in bladder cancer. We aimed to investigate the mechanism of TGF-ß1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. METHODS: Primary CAFs with high expression of fibroblast activation protein (FAP) were isolated from bladder cancer tissue samples. Subsequently, different conditioned media were used to stimulate the bladder cancer cell line T24 in a co-culture system. Gene set enrichment analysis, a human cytokine antibody array, and cytological assays were performed to investigate the mechanism of TGF-ß1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. RESULTS: Among the TGF-ß family, TGF-ß1 was the most highly expressed factor in bladder cancer tissue and primary stromal fibroblast supernatant. In the tumor microenvironment, TGF-ß1 was mainly derived from stromal fibroblasts, especially CAFs. In stimulated bladder cells, stromal fibroblast-derived TGF-ß1 promoted bladder cancer cell migration, invasion, and EMT. Furthermore, TGF-ß1 promoted the activation of stromal fibroblasts, inducing CAF-like features, by upregulating FAP in primary normal fibroblasts and a normal fibroblast cell line. Stromal fibroblast-mediated EMT was induced in bladder cancer cells by TGF-ß1/FAP. Versican (VCAN), a downstream molecule of FAP, plays an essential role in TGF-ß1/FAP axis-induced EMT in bladder cancer cells. VCAN may also function through the PI3K/AKT1 signaling pathway. CONCLUSIONS: TGF-ß1 is a critical mediator of crosstalk between stromal fibroblasts and bladder cancer cells. We revealed a new mechanism whereby TGF-ß1 dominated stromal fibroblast-mediated EMT of bladder cancer cells via the FAP/VCAN axis and identified potential biomarkers (FAP, VCAN, N-cadherin, and Vimentin) of bladder cancer. These results enhance our understanding of bladder cancer invasion and metastasis and provide potential strategies for diagnosis, treatment, and prognosis.


Subject(s)
Transforming Growth Factor beta1 , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Fibroblasts/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Versicans/metabolism
17.
Respir Res ; 24(1): 140, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37259101

ABSTRACT

BACKGROUND AND AIMS: This study aimed to investigate the expression of plasma versican and plasma exosomal versican in non-small cell lung cancer (NSCLC) and its correlation with clinicopathological features, and to evaluate its diagnostic performance in NSCLC and its predictive function for NSCLC incidence and metastasis risk. MATERIALS AND METHODS: There were 110 instances of NSCLC, 42 cases of benign lung disease, and 55 healthy controls from September 2018 to October 2020 at Tongji Hospital Affiliated to Tongji University. Blood was collected and plasma was separated before surgery, and plasma exosomes were extracted by ExoQuick kit. Morphological and molecular phenotype identification of exosomes was performed by transmission electron microscopy, Nanosight particle tracking analysis, and western blotting. Plasma versican and plasma exosomal versican were detected in all subjects to assess their expression levels and diagnostic value in NSCLC. Clinicopathological data were collected to explore correlations between abnormal plasma versican and plasma exosomal versican expression and clinicopathological parameters. Receiver operating characteristic (ROC) curve was used to judge its diagnostic performance in NSCLC, and binary logistic regression analysis was used to predict the risk of NSCLC incidence and metastasis. RESULTS: Plasma versican and plasma exosomal versican expression in NSCLC patients was significantly upregulated and was significantly higher in T3 + T4 patients compared with T1 + T2 patients (P < 0.05); the levels of plasma versican and plasma exosomal versican were positively correlated with lymph node metastasis, distant metastases (e.g., brain, bone), and mutation(e.g., EGFR,ALK)in NSCLC patients (all P < 0.05). Furthermore, ROC curve analysis showed that plasma versican and plasma exosomal versican had higher AUC values than NSE, CYFRA21-1, and SCC, and better diagnostic performance in NSCLC patients. However, the AUC and diagnostic performances of plasma versican and plasma exosomal versican in advanced-stage NSCLC patients were not shown to be significantly better than CEA. The results of binary logistic regression analysis showed that high levels of plasma exosomal versican had higher predictive value for lung cancer incidence, while high levels of plasma versican had higher predictive value for lung cancer metastasis. CONCLUSION: Our findings showed that plasma versican and plasma exosomal versican might be potential diagnostic markers for NSCLC. High plasma exosomal versican expression can be used as a predictor of NSCLC risk and high plasma versican expression can be used as a predictor of NSCLC metastasis risk.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/metabolism , Versicans , Biomarkers, Tumor/genetics
18.
Ann Diagn Pathol ; 66: 152176, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37423116

ABSTRACT

Phyllodes tumors (PTs) are biphasic fibroepithelial lesions that occur in the breast. Diagnosing and grading PTs remains a challenge in a small proportion of cases, due to the lack of reliable specific biomarkers. We screened a potential marker versican core protein (VCAN) through microproteomics analysis, validated its role for the grading of PTs by immunohistochemistry, and analyzed the correlation between VCAN expression and clinicopathological characteristics. Cytoplasmic immunoreactivity for VCAN was identified in all benign PT samples, among which 40 (93.0 %) showed VCAN-positive staining in ≥50 % of tumor cells. Eight (21.6 %) borderline PT samples showed VCAN-positive staining in ≥50 % of the cells with weak to moderate staining intensity, whereas 29 samples (78.4 %) showed VCAN-positive staining in <50 % of the cells. In malignant PTs, 16 (84.2 %) and three (15.8 %) samples showed VCAN-positive staining in <5 % and 5-25 % of stromal cells, respectively. Fibroadenomas showed a similar expression pattern to benign PTs. Fisher's exact test showed that the percentages of positive cells (P < .001) and staining intensities (P < .001) of tumor cells were significantly different between the five groups. VCAN positivity was associated with tumor categories (P < .0001) and CD34 expression (P < .0001). The expression of VCAN gradually decreases as the tumor categories increases, following recurrence. To the best of our knowledge, our results are the first in the literature to reveal that VCAN is useful for diagnosing and grading PTs. The expression level of VCAN appeared to be negatively associated with PT categories, suggesting that dysregulation of VCAN may be involved in the tumor progression of PTs.


Subject(s)
Breast Neoplasms , Phyllodes Tumor , Humans , Female , Phyllodes Tumor/pathology , Versicans/metabolism , Stromal Cells/pathology , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism
19.
Int J Mol Sci ; 24(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37108649

ABSTRACT

Versican (VCAN), also known as extracellular matrix proteoglycan 2, has been suggested as a potential biomarker in cancers. Previous research has found that VCAN is highly expressed in bladder cancer. However, its role in predicting outcomes for patients with upper urinary tract urothelial cancer (UTUC) is not well understood. In this study, we collected tissues from 10 patients with UTUC, including 6 with and 4 without lymphovascular invasion (LVI), a pathological feature that plays a significant role in determining metastasis. Results from RNA sequencing revealed that the most differentially expressed genes were involved in extracellular matrix organization. Using the TCGA database for clinical correlation, VCAN was identified as a target for study. A chromosome methylation assay showed that VCAN was hypomethylated in tumors with LVI. In our patient samples, VCAN expression was also found to be high in UTUC tumors with LVI. In vitro analysis showed that knocking down VCAN inhibited cell migration but not proliferation. A heatmap analysis also confirmed a significant correlation between VCAN and migration genes. Additionally, silencing VCAN increased the effectiveness of cisplatin, gemcitabine and epirubicin, thus providing potential opportunities for clinical application.


Subject(s)
Carcinoma, Transitional Cell , Kidney Neoplasms , Urinary Bladder Neoplasms , Urinary Tract , Humans , Carcinoma, Transitional Cell/pathology , Versicans/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Kidney Neoplasms/pathology , Biomarkers, Tumor/genetics , Urinary Tract/pathology
20.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36982775

ABSTRACT

Androgenic alopecia (AGA) is the most common type of hair loss, where local high concentrations of dihydrotestosterone (DHT) in the scalp cause progressive shrinkage of the hair follicles, eventually contributing to hair loss. Due to the limitations of existing methods to treat AGA, the use of multi-origin mesenchymal stromal cell-derived exosomes has been proposed. However, the functions and mechanisms of action of exosomes secreted by adipose mesenchymal stromal cells (ADSCs-Exos) in AGA are still unclear. Using Cell Counting Kit-8 (CCK8) analysis, immunofluorescence staining, scratch assays, and Western blotting, it was found that ADSC-Exos contributed to the proliferation, migration, and differentiation of dermal papilla cells (DPCs) and up-regulated the expression of cyclin, ß-catenin, versican, and BMP2. ADSC-Exos also mitigated the inhibitory effects of DHT on DPCs and down-regulated transforming growth factor-beta1 (TGF-ß1) and its downstream genes. Moreover, high-throughput miRNA sequencing and bioinformatics analysis identified 225 genes that were co-expressed in ADSC-Exos; of these, miR-122-5p was highly enriched and was found by luciferase assays to target SMAD3. ADSC-Exos carrying miR-122-5p antagonized DHT inhibition of hair follicles, up-regulated the expression of ß-catenin and versican in vivo and in vitro, restored hair bulb size and dermal thickness, and promoted the normal growth of hair follicles. So, ADSC-Exos enhanced the regeneration of hair follicles in AGA through the action of miR-122-5p and the inhibition of the TGF-ß/SMAD3 axis. These results suggest a novel treatment option for the treatment of AGA.


Subject(s)
Exosomes , Mesenchymal Stem Cells , MicroRNAs , Humans , Hair Follicle/metabolism , Transforming Growth Factor beta1/metabolism , Dihydrotestosterone/pharmacology , Dihydrotestosterone/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Exosomes/metabolism , Versicans/genetics , Versicans/metabolism , Mesenchymal Stem Cells/metabolism , Signal Transduction , MicroRNAs/genetics , MicroRNAs/metabolism , Alopecia/metabolism , Smad3 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL