Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.487
Filter
Add more filters

Publication year range
1.
Cell ; 173(6): 1343-1355.e24, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29856953

ABSTRACT

Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 µm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.


Subject(s)
Axons/physiology , Retina/physiology , Retinal Ganglion Cells/physiology , Thalamus/physiology , Animals , Cluster Analysis , Dendrites/physiology , Fuzzy Logic , Geniculate Bodies/physiology , Male , Mice , Mice, Inbred C57BL , Motion , Neurons/physiology , Presynaptic Terminals/physiology , Vision, Ocular , Visual Pathways
2.
Cell ; 173(2): 485-498.e11, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29576455

ABSTRACT

Understanding how complex brain wiring is produced during development is a daunting challenge. In Drosophila, information from 800 retinal ommatidia is processed in distinct brain neuropiles, each subdivided into 800 matching retinotopic columns. The lobula plate comprises four T4 and four T5 neuronal subtypes. T4 neurons respond to bright edge motion, whereas T5 neurons respond to dark edge motion. Each is tuned to motion in one of the four cardinal directions, effectively establishing eight concurrent retinotopic maps to support wide-field motion. We discovered a mode of neurogenesis where two sequential Notch-dependent divisions of either a horizontal or a vertical progenitor produce matching sets of two T4 and two T5 neurons retinotopically coincident with pairwise opposite direction selectivity. We show that retinotopy is an emergent characteristic of this neurogenic program and derives directly from neuronal birth order. Our work illustrates how simple developmental rules can implement complex neural organization.


Subject(s)
Drosophila/physiology , Motion Perception/physiology , Retina/physiology , Animals , Drosophila Proteins/metabolism , Locomotion/physiology , Models, Neurological , Neurons/physiology , Optic Lobe, Nonmammalian/chemistry , Optic Lobe, Nonmammalian/metabolism , Receptors, Notch/metabolism , Retina/cytology , Visual Pathways
3.
Cell ; 175(1): 71-84.e18, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30173913

ABSTRACT

Light exerts a range of powerful biological effects beyond image vision, including mood and learning regulation. While the source of photic information affecting mood and cognitive functions is well established, viz. intrinsically photosensitive retinal ganglion cells (ipRGCs), the central mediators are unknown. Here, we reveal that the direct effects of light on learning and mood utilize distinct ipRGC output streams. ipRGCs that project to the suprachiasmatic nucleus (SCN) mediate the effects of light on learning, independently of the SCN's pacemaker function. Mood regulation by light, on the other hand, requires an SCN-independent pathway linking ipRGCs to a previously unrecognized thalamic region, termed perihabenular nucleus (PHb). The PHb is integrated in a distinctive circuitry with mood-regulating centers and is both necessary and sufficient for driving the effects of light on affective behavior. Together, these results provide new insights into the neural basis required for light to influence mood and learning.


Subject(s)
Affect/radiation effects , Learning/radiation effects , Light , Affect/physiology , Animals , Brain/physiology , Circadian Rhythm , Learning/physiology , Mice , Mice, Inbred C57BL , Phototherapy/methods , Retina/metabolism , Retina/physiology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Signal Transduction/physiology , Suprachiasmatic Nucleus/metabolism , Vision, Ocular/physiology , Visual Pathways/metabolism , Visual Perception/physiology
4.
Annu Rev Neurosci ; 47(1): 303-322, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38635868

ABSTRACT

Seeing in three dimensions is a major property of the visual system in mammals. The circuit underlying this property begins in the retina, from which retinal ganglion cells (RGCs) extend to the same or opposite side of the brain. RGC axons decussate to form the optic chiasm, then grow to targets in the thalamus and midbrain, where they synapse with neurons that project to the visual cortex. Here we review the cellular and molecular mechanisms of RGC axonal growth cone guidance across or away from the midline via receptors to cues in the midline environment. We present new views on the specification of ipsi- and contralateral RGC subpopulations and factors implementing their organization in the optic tract and termination in subregions of their targets. Lastly, we describe the functional and behavioral aspects of binocular vision, focusing on the mouse, and discuss recent discoveries in the evolution of the binocular circuit.


Subject(s)
Retinal Ganglion Cells , Vision, Binocular , Visual Pathways , Animals , Visual Pathways/physiology , Vision, Binocular/physiology , Retinal Ganglion Cells/physiology , Humans , Retina/physiology , Visual Cortex/physiology
5.
Annu Rev Neurosci ; 47(1): 21-40, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38360565

ABSTRACT

It is a common view that the intricate array of specialized domains in the ventral visual pathway is innately prespecified. What this review postulates is that it is not. We explore the origins of domain specificity, hypothesizing that the adult brain emerges from an interplay between a domain-general map-based architecture, shaped by intrinsic mechanisms, and experience. We argue that the most fundamental innate organization of cortex in general, and not just the visual pathway, is a map-based topography that governs how the environment maps onto the brain, how brain areas interconnect, and ultimately, how the brain processes information.


Subject(s)
Brain , Humans , Brain/physiology , Animals , Visual Pathways/physiology , Brain Mapping/methods
6.
Annu Rev Neurosci ; 47(1): 255-276, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38663429

ABSTRACT

The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 12 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.


Subject(s)
Retinal Ganglion Cells , Superior Colliculi , Visual Pathways , Zebrafish , Animals , Visual Pathways/physiology , Zebrafish/physiology , Retinal Ganglion Cells/physiology , Superior Colliculi/physiology , Visual Perception/physiology
7.
Cell ; 168(1-2): 280-294.e12, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28065412

ABSTRACT

Vision influences behavior, but ongoing behavior also modulates vision in animals ranging from insects to primates. The function and biophysical mechanisms of most such modulations remain unresolved. Here, we combine behavioral genetics, electrophysiology, and high-speed videography to advance a function for behavioral modulations of visual processing in Drosophila. We argue that a set of motion-sensitive visual neurons regulate gaze-stabilizing head movements. We describe how, during flight turns, Drosophila perform a set of head movements that require silencing their gaze-stability reflexes along the primary rotation axis of the turn. Consistent with this behavioral requirement, we find pervasive motor-related inputs to the visual neurons, which quantitatively silence their predicted visual responses to rotations around the relevant axis while preserving sensitivity around other axes. This work proposes a function for a behavioral modulation of visual processing and illustrates how the brain can remove one sensory signal from a circuit carrying multiple related signals.


Subject(s)
Drosophila melanogaster/physiology , Visual Pathways , Animals , Drosophila melanogaster/cytology , Flight, Animal , Head Movements , Neurons/cytology , Optic Flow , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/metabolism
8.
Annu Rev Neurosci ; 46: 17-37, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37428604

ABSTRACT

How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps-yet the whole process is of moderate complexity. The genetic methods available in the fruit fly Drosophila and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons' membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.


Subject(s)
Motion Perception , Animals , Motion Perception/physiology , Visual Pathways/physiology , Drosophila/physiology , Vision, Ocular , Neurons/physiology , Photic Stimulation
9.
Annu Rev Neurosci ; 46: 259-280, 2023 07 10.
Article in English | MEDLINE | ID: mdl-36972612

ABSTRACT

Radial cell columns are a hallmark feature of cortical architecture in many mammalian species. It has long been held, based on the lack of orientation columns, that such functional units are absent in rodent primary visual cortex (V1). These observations led to the view that rodent visual cortex has a fundamentally different network architecture than that of carnivores and primates. While columns may be lacking in rodent V1, we describe in this review that modular clusters of inputs to layer 1 and projection neurons in the layers below are prominent features of the mouse visual cortex. We propose that modules organize thalamocortical inputs, intracortical processing streams, and transthalamic communications that underlie distinct sensory and sensorimotor functions.


Subject(s)
Visual Cortex , Mice , Animals , Feedback , Visual Cortex/physiology , Interneurons , Sensation , Visual Pathways/physiology , Mammals
10.
Cell ; 165(1): 20-21, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27015304

ABSTRACT

How is the picture of the visual scene that the eye encodes represented by neural circuits in the brain? In this issue of Cell, Morgan et al. address this question by forming an ultrastructural "connectome" of the mouse's visual thalamus that depicts individual retinal afferents and every contact these form with target relay cells.


Subject(s)
Connectome , Thalamus , Animals , Brain , Retina , Visual Pathways
11.
Cell ; 166(1): 245-57, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27264607

ABSTRACT

A mechanistic understanding of neural computation requires determining how information is processed as it passes through neurons and across synapses. However, it has been challenging to measure membrane potential changes in axons and dendrites in vivo. We use in vivo, two-photon imaging of novel genetically encoded voltage indicators, as well as calcium imaging, to measure sensory stimulus-evoked signals in the Drosophila visual system with subcellular resolution. Across synapses, we find major transformations in the kinetics, amplitude, and sign of voltage responses to light. We also describe distinct relationships between voltage and calcium signals in different neuronal compartments, a substrate for local computation. Finally, we demonstrate that ON and OFF selectivity, a key feature of visual processing across species, emerges through the transformation of membrane potential into intracellular calcium concentration. By imaging voltage and calcium signals to map information flow with subcellular resolution, we illuminate where and how critical computations arise.


Subject(s)
Drosophila/physiology , Neurons/metabolism , Visual Pathways , Animals , Calcium/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Kinetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurites/metabolism
12.
Nat Rev Neurosci ; 25(4): 237-252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38374462

ABSTRACT

Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.


Subject(s)
Visual Cortex , Humans , Visual Cortex/physiology , Brain , Photic Stimulation , Visual Pathways/physiology
13.
Cell ; 156(6): 1123-1124, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630713

ABSTRACT

Behavioral state, specifically locomotion, has been shown to enhance sensory responses in primary visual cortex. In this issue of Cell, Fu et al. reveal the circuit elements that mediate this plasticity and suggest that these circuits may serve a general modulatory function across primary sensory areas.


Subject(s)
Neocortex/metabolism , Neurons/metabolism , Running , Visual Pathways , Animals , Female , Male
14.
Cell ; 158(4): 793-807, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25126785

ABSTRACT

Complex retinal circuits process visual information and deliver it to the brain. Few molecular determinants of synaptic specificity in this system are known. Using genetic and optogenetic methods, we identified two types of bipolar interneurons that convey visual input from photoreceptors to a circuit that computes the direction in which objects are moving. We then sought recognition molecules that promote selective connections of these cells with previously characterized components of the circuit. We found that the type II cadherins, cdh8 and cdh9, are each expressed selectively by one of the two bipolar cell types. Using loss- and gain-of-function methods, we showed that they are critical determinants of connectivity in this circuit and that perturbation of their expression leads to distinct defects in visually evoked responses. Our results reveal cellular components of a retinal circuit and demonstrate roles of type II cadherins in synaptic choice and circuit function.


Subject(s)
Cadherins/metabolism , Retina/physiology , Retinal Bipolar Cells/metabolism , Visual Pathways , Animals , Axons/metabolism , Cadherins/genetics , Gene Knock-In Techniques , Mice , Retina/cytology , Synapses
15.
Cell ; 156(6): 1139-1152, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24630718

ABSTRACT

The brain's response to sensory input is strikingly modulated by behavioral state. Notably, the visual response of mouse primary visual cortex (V1) is enhanced by locomotion, a tractable and accessible example of a time-locked change in cortical state. The neural circuits that transmit behavioral state to sensory cortex to produce this modulation are unknown. In vivo calcium imaging of behaving animals revealed that locomotion activates vasoactive intestinal peptide (VIP)-positive neurons in mouse V1 independent of visual stimulation and largely through nicotinic inputs from basal forebrain. Optogenetic activation of VIP neurons increased V1 visual responses in stationary awake mice, artificially mimicking the effect of locomotion, and photolytic damage of VIP neurons abolished the enhancement of V1 responses by locomotion. These findings establish a cortical circuit for the enhancement of visual response by locomotion and provide a potential common circuit for the modulation of sensory processing by behavioral state.


Subject(s)
Neocortex/metabolism , Neurons/metabolism , Running , Visual Pathways , Animals , Female , GABAergic Neurons/metabolism , Male , Mice , Neocortex/cytology , Receptors, Nicotinic/metabolism , Vasoactive Intestinal Peptide/metabolism , gamma-Aminobutyric Acid/metabolism
16.
Nature ; 617(7962): 769-776, 2023 May.
Article in English | MEDLINE | ID: mdl-37138089

ABSTRACT

Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.


Subject(s)
Dendrites , Feedback, Physiological , Visual Cortex , Visual Pathways , Animals , Mice , Calcium/metabolism , Dendrites/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Visual Pathways/cytology , Visual Pathways/physiology , Feedback, Physiological/physiology , Primary Visual Cortex/cytology , Primary Visual Cortex/physiology , Pyramidal Cells/cytology , Pyramidal Cells/physiology , Optogenetics , Calcium Signaling
17.
Nat Rev Neurosci ; 24(8): 487-501, 2023 08.
Article in English | MEDLINE | ID: mdl-37380885

ABSTRACT

Many behaviours that are critical for animals to survive and thrive rely on spatial navigation. Spatial navigation, in turn, relies on internal representations about one's spatial location, one's orientation or heading direction and the distance to objects in the environment. Although the importance of vision in guiding such internal representations has long been recognized, emerging evidence suggests that spatial signals can also modulate neural responses in the central visual pathway. Here, we review the bidirectional influences between visual and navigational signals in the rodent brain. Specifically, we discuss reciprocal interactions between vision and the internal representations of spatial position, explore the effects of vision on representations of an animal's heading direction and vice versa, and examine how the visual and navigational systems work together to assess the relative distances of objects and other features. Throughout, we consider how technological advances and novel ethological paradigms that probe rodent visuo-spatial behaviours allow us to advance our understanding of how brain areas of the central visual pathway and the spatial systems interact and enable complex behaviours.


Subject(s)
Rodentia , Spatial Navigation , Animals , Brain/physiology , Vision, Ocular , Spatial Navigation/physiology , Visual Pathways
18.
Cell ; 154(6): 1188-9, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24034242

ABSTRACT

Motion detection in fly vision has been investigated experimentally and theoretically for half of a century, yet mechanistic insights into the neuronal computation have only started to emerge. In a recent issue of Nature, two studies provide major insights into how motion direction is extracted from the image flow projected onto the retina.


Subject(s)
Connectome , Drosophila/physiology , Models, Biological , Motion Perception/physiology , Visual Pathways/physiology , Animals , Female
19.
Nature ; 608(7921): 146-152, 2022 08.
Article in English | MEDLINE | ID: mdl-35831500

ABSTRACT

Social affiliation emerges from individual-level behavioural rules that are driven by conspecific signals1-5. Long-distance attraction and short-distance repulsion, for example, are rules that jointly set a preferred interanimal distance in swarms6-8. However, little is known about their perceptual mechanisms and executive neural circuits3. Here we trace the neuronal response to self-like biological motion9,10, a visual trigger for affiliation in developing zebrafish2,11. Unbiased activity mapping and targeted volumetric two-photon calcium imaging revealed 21 activity hotspots distributed throughout the brain as well as clustered biological-motion-tuned neurons in a multimodal, socially activated nucleus of the dorsal thalamus. Individual dorsal thalamus neurons encode local acceleration of visual stimuli mimicking typical fish kinetics but are insensitive to global or continuous motion. Electron microscopic reconstruction of dorsal thalamus neurons revealed synaptic input from the optic tectum and projections into hypothalamic areas with conserved social function12-14. Ablation of the optic tectum or dorsal thalamus selectively disrupted social attraction without affecting short-distance repulsion. This tectothalamic pathway thus serves visual recognition of conspecifics, and dissociates neuronal control of attraction from repulsion during social affiliation, revealing a circuit underpinning collective behaviour.


Subject(s)
Crowding , Neurons , Social Behavior , Superior Colliculi , Thalamus , Visual Pathways , Zebrafish , Animals , Brain Mapping , Calcium/analysis , Hypothalamus/cytology , Hypothalamus/physiology , Locomotion , Microscopy, Electron , Neurons/cytology , Neurons/physiology , Neurons/ultrastructure , Pattern Recognition, Visual , Photic Stimulation , Superior Colliculi/cytology , Superior Colliculi/physiology , Thalamus/cytology , Thalamus/physiology , Visual Pathways/cytology , Visual Pathways/physiology , Visual Pathways/ultrastructure , Zebrafish/physiology
20.
Nature ; 608(7923): 578-585, 2022 08.
Article in English | MEDLINE | ID: mdl-35922512

ABSTRACT

Hierarchical and parallel networks are fundamental structures of the mammalian brain1-8. During development, lower- and higher-order thalamic nuclei and many cortical areas in the visual system form interareal connections and build hierarchical dorsal and ventral streams9-13. One hypothesis for the development of visual network wiring involves a sequential strategy wherein neural connections are sequentially formed alongside hierarchical structures from lower to higher areas14-17. However, this sequential strategy would be inefficient for building the entire visual network comprising numerous interareal connections. We show that neural pathways from the mouse retina to primary visual cortex (V1) or dorsal/ventral higher visual areas (HVAs) through lower- or higher-order thalamic nuclei form as parallel modules before corticocortical connections. Subsequently, corticocortical connections among V1 and HVAs emerge to combine these modules. Retina-derived activity propagating the initial parallel modules is necessary to establish retinotopic inter-module connections. Thus, the visual network develops in a modular manner involving initial establishment of parallel modules and their subsequent concatenation. Findings in this study raise the possibility that parallel modules from higher-order thalamic nuclei to HVAs act as templates for cortical ventral and dorsal streams and suggest that the brain has an efficient strategy for the development of a hierarchical network comprising numerous areas.


Subject(s)
Visual Cortex , Visual Pathways , Animals , Brain Mapping , Mice , Models, Neurological , Retina/cytology , Retina/physiology , Thalamic Nuclei/cytology , Thalamic Nuclei/physiology , Visual Cortex/cytology , Visual Cortex/physiology , Visual Pathways/cytology , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL