Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.397
Filter
Add more filters

Publication year range
1.
Cell ; 183(2): 537-548.e12, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33064989

ABSTRACT

Sequential activation of neurons has been observed during various behavioral and cognitive processes, but the underlying circuit mechanisms remain poorly understood. Here, we investigate premotor sequences in HVC (proper name) of the adult zebra finch forebrain that are central to the performance of the temporally precise courtship song. We use high-density silicon probes to measure song-related population activity, and we compare these observations with predictions from a range of network models. Our results support a circuit architecture in which heterogeneous delays between sequentially active neurons shape the spatiotemporal patterns of HVC premotor neuron activity. We gauge the impact of several delay sources, and we find the primary contributor to be slow conduction through axonal collaterals within HVC, which typically adds between 1 and 7.5 ms for each link within the sequence. Thus, local axonal "delay lines" can play an important role in determining the dynamical repertoire of neural circuits.


Subject(s)
Finches/physiology , Prosencephalon/physiology , Vocalization, Animal/physiology , Animal Communication , Animals , Axons , Male , Motor Cortex/physiology , Nerve Net/physiology , Neural Pathways/physiology , Neurons/physiology
2.
Cell ; 178(1): 44-59.e7, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31104844

ABSTRACT

Hypothalamic Agrp neurons regulate food ingestion in adult mice. Whether these neurons are functional before animals start to ingest food is unknown. Here, we studied the functional ontogeny of Agrp neurons during breastfeeding using postnatal day 10 mice. In contrast to adult mice, we show that isolation from the nursing nest, not milk deprivation or ingestion, activated Agrp neurons. Non-nutritive suckling and warm temperatures blunted this effect. Using in vivo fiber photometry, neonatal Agrp neurons showed a rapid increase in activity upon isolation from the nest, an effect rapidly diminished following reunion with littermates. Neonates unable to release GABA from Agrp neurons expressed blunted emission of isolation-induced ultrasonic vocalizations. Chemogenetic overactivation of these neurons further increased emission of these ultrasonic vocalizations, but not milk ingestion. We uncovered important functional properties of hypothalamic Agrp neurons during mouse development, suggesting these neurons facilitate offspring-to-caregiver bonding.


Subject(s)
Agouti-Related Protein/metabolism , Feeding Behavior/physiology , Hypothalamus/cytology , Neurons/metabolism , Agouti-Related Protein/genetics , Animals , Animals, Newborn , Eating/physiology , Maternal Behavior/physiology , Mice , Mice, Knockout , Milk , Proto-Oncogene Proteins c-fos/metabolism , Social Isolation , Sucking Behavior/physiology , Temperature , Vocalization, Animal/physiology , gamma-Aminobutyric Acid/metabolism
3.
Annu Rev Neurosci ; 45: 295-316, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35316612

ABSTRACT

Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (a) the Content Pathway, which selects the movements constituting a response; (b) the Timing Pathway, which temporally structures responses; and (c) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species.


Subject(s)
Language , Vocalization, Animal , Animals , Humans , Vocalization, Animal/physiology
4.
Nature ; 628(8006): 117-121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509376

ABSTRACT

Vocal learning in songbirds is thought to have evolved through sexual selection, with female preference driving males to develop large and varied song repertoires1-3. However, many songbird species learn only a single song in their lifetime4. How sexual selection drives the evolution of single-song repertoires is not known. Here, by applying dimensionality-reduction techniques to the singing behaviour of zebra finches (Taeniopygia guttata), we show that syllable spread in low-dimensional feature space explains how single songs function as honest indicators of fitness. We find that this Gestalt measure of behaviour captures the spectrotemporal distinctiveness of song syllables in zebra finches; that females strongly prefer songs that occupy more latent space; and that matching path lengths in low-dimensional space is difficult for young males. Our findings clarify how simple vocal repertoires may have evolved in songbirds and indicate divergent strategies for how sexual selection can shape vocal learning.


Subject(s)
Finches , Learning , Mating Preference, Animal , Vocalization, Animal , Animals , Female , Male , Courtship , Finches/physiology , Learning/physiology , Vocalization, Animal/physiology , Mating Preference, Animal/physiology
5.
Nature ; 622(7984): 794-801, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37821705

ABSTRACT

Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage the Drosophila song production system3 to investigate the role of several neuron types4-7 in song patterning near versus far from the female fly. Male flies sing 'simple' trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8 between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9 can be combined to enable circuit flexibility required for dynamic communication.


Subject(s)
Brain , Drosophila melanogaster , Neural Pathways , Neurons , Psychomotor Performance , Vocalization, Animal , Animals , Female , Male , Brain/cytology , Brain/physiology , Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Neural Pathways/physiology , Neurons/physiology , Vocalization, Animal/physiology
6.
Nature ; 621(7980): 788-795, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730989

ABSTRACT

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Subject(s)
Maternal Behavior , Neural Pathways , Neurons , Oxytocin , Vocalization, Animal , Animals , Female , Mice , Cues , Hypothalamus/cytology , Hypothalamus/physiology , Maternal Behavior/physiology , Neurons/metabolism , Oxytocin/metabolism , Photometry , Thalamic Nuclei/physiology , Vocalization, Animal/physiology , Wakefulness
7.
Nature ; 623(7986): 375-380, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758948

ABSTRACT

Hunger, thirst, loneliness and ambition determine the reward value of food, water, social interaction and performance outcome1. Dopamine neurons respond to rewards meeting these diverse needs2-8, but it remains unclear how behaviour and dopamine signals change as priorities change with new opportunities in the environment. One possibility is that dopamine signals for distinct drives are routed to distinct dopamine pathways9,10. Another possibility is that dopamine signals in a given pathway are dynamically tuned to rewards set by the current priority. Here we used electrophysiology and fibre photometry to test how dopamine signals associated with quenching thirst, singing a good song and courting a mate change as male zebra finches (Taeniopygia guttata) were provided with opportunities to retrieve water, evaluate song performance or court a female. When alone, water reward signals were observed in two mesostriatal pathways but singing-related performance error signals were routed to Area X, a striatal nucleus specialized for singing. When courting a female, water seeking was reduced and dopamine responses to both water and song performance outcomes diminished. Instead, dopamine signals in Area X were driven by female calls timed with the courtship song. Thus the dopamine system handled coexisting drives by routing vocal performance and social feedback signals to a striatal area for communication and by flexibly re-tuning to rewards set by the prioritized drive.


Subject(s)
Brain , Courtship , Dopamine , Dopaminergic Neurons , Feedback, Physiological , Feedback, Psychological , Finches , Animals , Female , Male , Dopamine/metabolism , Finches/physiology , Vocalization, Animal/physiology , Water , Feedback, Physiological/physiology , Drinking/physiology , Thirst/physiology , Dopaminergic Neurons/metabolism , Electrophysiology , Brain/cytology , Brain/physiology , Communication , Reward , Feedback, Psychological/physiology
8.
Nature ; 616(7955): 132-136, 2023 04.
Article in English | MEDLINE | ID: mdl-36949189

ABSTRACT

While motor cortical circuits contain information related to specific movement parameters1, long-range inputs also have a critical role in action execution2,3. Thalamic projections can shape premotor activity2-6 and have been suggested7 to mediate the selection of short, stereotyped actions comprising more complex behaviours8. However, the mechanisms by which thalamus interacts with motor cortical circuits to execute such movement sequences remain unknown. Here we find that thalamic drive engages a specific subpopulation of premotor neurons within the zebra finch song nucleus HVC (proper name) and that these inputs are critical for the progression between vocal motor elements (that is, 'syllables'). In vivo two-photon imaging of thalamic axons in HVC showed robust song-related activity, and online perturbations of thalamic function caused song to be truncated at syllable boundaries. We used thalamic stimulation to identify a sparse set of thalamically driven neurons within HVC, representing ~15% of the premotor neurons within that network. Unexpectedly, this population of putative thalamorecipient neurons is robustly active immediately preceding syllable onset, leading to the possibility that thalamic input can initiate individual song components through selectively targeting these 'starter cells'. Our findings highlight the motor thalamus as a director of cortical dynamics in the context of an ethologically relevant behavioural sequence.


Subject(s)
Courtship , Finches , Thalamus , Vocalization, Animal , Animals , Finches/physiology , Neurons/physiology , Thalamus/cytology , Thalamus/physiology , Vocalization, Animal/physiology , Motor Cortex/cytology , Motor Cortex/physiology , Neural Pathways/physiology , Brain/cytology , Brain/physiology , Male
9.
Annu Rev Neurosci ; 42: 129-147, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30786225

ABSTRACT

Across the animal kingdom, social interactions rely on sound production and perception. From simple cricket chirps to more elaborate bird songs, animals go to great lengths to communicate information critical for reproduction and survival via acoustic signals. Insects produce a wide array of songs to attract a mate, and the intended receivers must differentiate these calls from competing sounds, analyze the quality of the sender from spectrotemporal signal properties, and then determine how to react. Insects use numerically simple nervous systems to analyze and respond to courtship songs, making them ideal model systems for uncovering the neural mechanisms underlying acoustic pattern recognition. We highlight here how the combination of behavioral studies and neural recordings in three groups of insects-crickets, grasshoppers, and fruit flies-reveals common strategies for extracting ethologically relevant information from acoustic patterns and how these findings might translate to other systems.


Subject(s)
Courtship , Insecta/physiology , Pattern Recognition, Physiological/physiology , Sexual Behavior, Animal/physiology , Vocalization, Animal/physiology , Animal Structures/physiology , Animals , Drosophila/physiology , Female , Forecasting , Grasshoppers/physiology , Gryllidae/physiology , Male , Mating Preference, Animal/physiology , Sense Organs/physiology , Species Specificity , Temperature , Time Factors
10.
Nature ; 599(7886): 635-639, 2021 11.
Article in English | MEDLINE | ID: mdl-34671166

ABSTRACT

Musical and athletic skills are learned and maintained through intensive practice to enable precise and reliable performance for an audience. Consequently, understanding such complex behaviours requires insight into how the brain functions during both practice and performance. Male zebra finches learn to produce courtship songs that are more varied when alone and more stereotyped in the presence of females1. These differences are thought to reflect song practice and performance, respectively2,3, providing a useful system in which to explore how neurons encode and regulate motor variability in these two states. Here we show that calcium signals in ensembles of spiny neurons (SNs) in the basal ganglia are highly variable relative to their cortical afferents during song practice. By contrast, SN calcium signals are strongly suppressed during female-directed performance, and optogenetically suppressing SNs during practice strongly reduces vocal variability. Unsupervised learning methods4,5 show that specific SN activity patterns map onto distinct song practice variants. Finally, we establish that noradrenergic signalling reduces vocal variability by directly suppressing SN activity. Thus, SN ensembles encode and drive vocal exploration during practice, and the noradrenergic suppression of SN activity promotes stereotyped and precise song performance for an audience.


Subject(s)
Finches/physiology , Neurons/physiology , Psychomotor Performance/physiology , Vocalization, Animal/physiology , Adrenergic Neurons/metabolism , Animals , Basal Ganglia/cytology , Basal Ganglia/physiology , Calcium Signaling , Female , Male , Models, Neurological
11.
Nature ; 593(7857): 108-113, 2021 05.
Article in English | MEDLINE | ID: mdl-33790464

ABSTRACT

Innate vocal sounds such as laughing, screaming or crying convey one's feelings to others. In many species, including humans, scaling the amplitude and duration of vocalizations is essential for effective social communication1-3. In mice, female scent triggers male mice to emit innate courtship ultrasonic vocalizations (USVs)4,5. However, whether mice flexibly scale their vocalizations and how neural circuits are structured to generate flexibility remain largely unknown. Here we identify mouse neurons from the lateral preoptic area (LPOA) that express oestrogen receptor 1 (LPOAESR1 neurons) and, when activated, elicit the complete repertoire of USV syllables emitted during natural courtship. Neural anatomy and functional data reveal a two-step, di-synaptic circuit motif in which primary long-range inhibitory LPOAESR1 neurons relieve a clamp of local periaqueductal grey (PAG) inhibition, enabling excitatory PAG USV-gating neurons to trigger vocalizations. We find that social context shapes a wide range of USV amplitudes and bout durations. This variability is absent when PAG neurons are stimulated directly; PAG-evoked vocalizations are time-locked to neural activity and stereotypically loud. By contrast, increasing the activity of LPOAESR1 neurons scales the amplitude of vocalizations, and delaying the recovery of the inhibition clamp prolongs USV bouts. Thus, the LPOA disinhibition motif contributes to flexible loudness and the duration and persistence of bouts, which are key aspects of effective vocal social communication.


Subject(s)
Hypothalamus/physiology , Vocalization, Animal/physiology , Animals , Courtship , Estrogen Receptor alpha/metabolism , Female , Hypothalamus/cytology , Male , Mice , Mice, Inbred BALB C , Neurons/physiology , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Preoptic Area/cytology , Preoptic Area/physiology , Synapses/metabolism , Time Factors , Ultrasonic Waves
12.
Proc Natl Acad Sci U S A ; 121(25): e2313093121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38814875

ABSTRACT

While rhythm can facilitate and enhance many aspects of behavior, its evolutionary trajectory in vocal communication systems remains enigmatic. We can trace evolutionary processes by investigating rhythmic abilities in different species, but research to date has largely focused on songbirds and primates. We present evidence that cetaceans-whales, dolphins, and porpoises-are a missing piece of the puzzle for understanding why rhythm evolved in vocal communication systems. Cetaceans not only produce rhythmic vocalizations but also exhibit behaviors known or thought to play a role in the evolution of different features of rhythm. These behaviors include vocal learning abilities, advanced breathing control, sexually selected vocal displays, prolonged mother-infant bonds, and behavioral synchronization. The untapped comparative potential of cetaceans is further enhanced by high interspecific diversity, which generates natural ranges of vocal and social complexity for investigating various evolutionary hypotheses. We show that rhythm (particularly isochronous rhythm, when sounds are equally spaced in time) is prevalent in cetacean vocalizations but is used in different contexts by baleen and toothed whales. We also highlight key questions and research areas that will enhance understanding of vocal rhythms across taxa. By coupling an infraorder-level taxonomic assessment of vocal rhythm production with comparisons to other species, we illustrate how broadly comparative research can contribute to a more nuanced understanding of the prevalence, evolution, and possible functions of rhythm in animal communication.


Subject(s)
Cetacea , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Cetacea/physiology , Biological Evolution , Periodicity
13.
Proc Natl Acad Sci U S A ; 121(22): e2316818121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38768360

ABSTRACT

In mammals, offspring vocalizations typically encode information about identity and body condition, allowing parents to limit alloparenting and adjust care. But how do these vocalizations mediate parental behavior in species faced with the problem of rearing not one, but multiple offspring, such as domestic dogs? Comprehensive acoustic analyses of 4,400 whines recorded from 220 Beagle puppies in 40 litters revealed litter and individual (within litter) differences in call acoustic structure. By then playing resynthesized whines to mothers, we showed that they provided more care to their litters, and were more likely to carry the emitting loudspeaker to the nest, in response to whine variants derived from their own puppies than from strangers. Importantly, care provisioning was attenuated by experimentally moving the fundamental frequency (fo, perceived as pitch) of their own puppies' whines outside their litter-specific range. Within most litters, we found a negative relationship between puppies' whine fo and body weight. Consistent with this, playbacks showed that maternal care was stronger in response to high-pitched whine variants simulating relatively small offspring within their own litter's range compared to lower-pitched variants simulating larger offspring. We thus show that maternal care in a litter-rearing species relies on a dual assessment of offspring identity and condition, largely based on level-specific inter- and intra-litter variation in offspring call fo. This dual encoding system highlights how, even in a long-domesticated species, vocalizations reflect selective pressures to meet species-specific needs. Comparative work should now investigate whether similar communication systems have convergently evolved in other litter-rearing species.


Subject(s)
Maternal Behavior , Vocalization, Animal , Animals , Dogs , Maternal Behavior/physiology , Vocalization, Animal/physiology , Female , Body Weight
14.
Proc Natl Acad Sci U S A ; 121(28): e2400596121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968119

ABSTRACT

In adult songbirds, new neurons are born in large numbers in the proliferative ventricular zone in the telencephalon and migrate to the adjacent song control region HVC (acronym used as proper name) [A. Reiner et al., J. Comp. Neurol. 473, 377-414 (2004)]. Many of these new neurons send long axonal projections to the robust nucleus of the arcopallium (RA). The HVC-RA circuit is essential for producing stereotyped learned song. The function of adult neurogenesis in this circuit has not been clear. A previous study suggested that it is important for the production of well-structured songs [R. E. Cohen, M. Macedo-Lima, K. E. Miller, E. A. Brenowitz, J. Neurosci. 36, 8947-8956 (2016)]. We tested this hypothesis by infusing the neuroblast migration inhibitor cyclopamine into HVC of male Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) to block seasonal regeneration of the HVC-RA circuit. Decreasing the number of new neurons in HVC prevented both the increase in spontaneous electrical activity of RA neurons and the improved structure of songs that would normally occur as sparrows enter breeding condition. These results show that the incorporation of new neurons into the adult HVC is necessary for the recovery of both electrical activity and song behavior in breeding birds and demonstrate the value of the bird song system as a model for investigating adult neurogenesis at the level of long projection neural circuits.


Subject(s)
Neurogenesis , Prosencephalon , Vocalization, Animal , Animals , Neurogenesis/physiology , Prosencephalon/physiology , Prosencephalon/cytology , Vocalization, Animal/physiology , Male , Sparrows/physiology , Neurons/physiology , Nerve Regeneration/physiology
15.
Proc Natl Acad Sci U S A ; 121(25): e2305948121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38857400

ABSTRACT

For over a century, the evolution of animal play has sparked scientific curiosity. The prevalence of social play in juvenile mammals suggests that play is a beneficial behavior, potentially contributing to individual fitness. Yet evidence from wild animals supporting the long-hypothesized link between juvenile social play, adult behavior, and fitness remains limited. In Western Australia, adult male bottlenose dolphins (Tursiops aduncus) form multilevel alliances that are crucial for their reproductive success. A key adult mating behavior involves allied males using joint action to herd individual females. Juveniles of both sexes invest significant time in play that resembles adult herding-taking turns in mature male (actor) and female (receiver) roles. Using a 32-y dataset of individual-level association patterns, paternity success, and behavioral observations, we show that juvenile males with stronger social bonds are significantly more likely to engage in joint action when play-herding in actor roles. Juvenile males also monopolized the actor role and produced an adult male herding vocalization ("pops") when playing with females. Notably, males who spent more time playing in the actor role as juveniles achieved more paternities as adults. These findings not only reveal that play behavior provides male dolphins with mating skill practice years before they sexually mature but also demonstrate in a wild animal population that juvenile social play predicts adult reproductive success.


Subject(s)
Bottle-Nosed Dolphin , Reproduction , Sexual Behavior, Animal , Social Behavior , Animals , Male , Bottle-Nosed Dolphin/physiology , Female , Reproduction/physiology , Sexual Behavior, Animal/physiology , Western Australia , Vocalization, Animal/physiology , Play and Playthings
16.
Proc Natl Acad Sci U S A ; 121(25): e2405588121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861607

ABSTRACT

Many animals can extract useful information from the vocalizations of other species. Neuroimaging studies have evidenced areas sensitive to conspecific vocalizations in the cerebral cortex of primates, but how these areas process heterospecific vocalizations remains unclear. Using fMRI-guided electrophysiology, we recorded the spiking activity of individual neurons in the anterior temporal voice patches of two macaques while they listened to complex sounds including vocalizations from several species. In addition to cells selective for conspecific macaque vocalizations, we identified an unsuspected subpopulation of neurons with strong selectivity for human voice, not merely explained by spectral or temporal structure of the sounds. The auditory representational geometry implemented by these neurons was strongly related to that measured in the human voice areas with neuroimaging and only weakly to low-level acoustical structure. These findings provide new insights into the neural mechanisms involved in auditory expertise and the evolution of communication systems in primates.


Subject(s)
Auditory Perception , Magnetic Resonance Imaging , Neurons , Vocalization, Animal , Voice , Animals , Humans , Neurons/physiology , Voice/physiology , Magnetic Resonance Imaging/methods , Vocalization, Animal/physiology , Auditory Perception/physiology , Male , Macaca mulatta , Brain/physiology , Acoustic Stimulation , Brain Mapping/methods
17.
Annu Rev Neurosci ; 41: 553-572, 2018 07 08.
Article in English | MEDLINE | ID: mdl-29986164

ABSTRACT

Hearing is often viewed as a passive process: Sound enters the ear, triggers a cascade of activity through the auditory system, and culminates in an auditory percept. In contrast to a passive process, motor-related signals strongly modulate the auditory system from the eardrum to the cortex. The motor modulation of auditory activity is most well documented during speech and other vocalizations but also can be detected during a wide variety of other sound-generating behaviors. An influential idea is that these motor-related signals suppress neural responses to predictable movement-generated sounds, thereby enhancing sensitivity to environmental sounds during movement while helping to detect errors in learned acoustic behaviors, including speech and musicianship. Findings in humans, monkeys, songbirds, and mice provide new insights into the circuits that convey motor-related signals to the auditory system, while lending support to the idea that these signals function predictively to facilitate hearing and vocal learning.


Subject(s)
Auditory Pathways/physiology , Hearing/physiology , Movement/physiology , Vocalization, Animal/physiology , Acoustic Stimulation , Animals , Humans
18.
Nature ; 577(7791): 526-530, 2020 01.
Article in English | MEDLINE | ID: mdl-31915383

ABSTRACT

Changes in behaviour resulting from environmental influences, development and learning1-5 are commonly quantified on the basis of a few hand-picked features2-4,6,7 (for example, the average pitch of acoustic vocalizations3), assuming discrete classes of behaviours (such as distinct vocal syllables)2,3,8-10. However, such methods generalize poorly across different behaviours and model systems and may miss important components of change. Here we present a more-general account of behavioural change that is based on nearest-neighbour statistics11-13, and apply it to song development in a songbird, the zebra finch3. First, we introduce the concept of 'repertoire dating', whereby each rendition of a behaviour (for example, each vocalization) is assigned a repertoire time, reflecting when similar renditions were typical in the behavioural repertoire. Repertoire time isolates the components of vocal variability that are congruent with long-term changes due to vocal learning and development, and stratifies the behavioural repertoire into 'regressions', 'anticipations' and 'typical renditions'. Second, we obtain a holistic, yet low-dimensional, description of vocal change in terms of a stratified 'behavioural trajectory', revealing numerous previously unrecognized components of behavioural change on fast and slow timescales, as well as distinct patterns of overnight consolidation1,2,4,14,15 across the behavioral repertoire. We find that diurnal changes in regressions undergo only weak consolidation, whereas anticipations and typical renditions consolidate fully. Because of its generality, our nonparametric description of how behaviour evolves relative to itself-rather than to a potentially arbitrary, experimenter-defined goal2,3,14,16-appears well suited for comparing learning and change across behaviours and species17,18, as well as biological and artificial systems5.


Subject(s)
Finches/physiology , Learning/physiology , Models, Neurological , Psychomotor Performance/physiology , Vocalization, Animal/physiology , Acoustics , Animals , Computer Simulation , Data Interpretation, Statistical , Male , Time Factors
19.
Nature ; 582(7813): 539-544, 2020 06.
Article in English | MEDLINE | ID: mdl-32555461

ABSTRACT

Coordinated skills such as speech or dance involve sequences of actions that follow syntactic rules in which transitions between elements depend on the identities and order of past actions. Canary songs consist of repeated syllables called phrases, and the ordering of these phrases follows long-range rules1 in which the choice of what to sing depends on the song structure many seconds prior. The neural substrates that support these long-range correlations are unknown. Here, using miniature head-mounted microscopes and cell-type-specific genetic tools, we observed neural activity in the premotor nucleus HVC2-4 as canaries explored various phrase sequences in their repertoire. We identified neurons that encode past transitions, extending over four phrases and spanning up to four seconds and forty syllables. These neurons preferentially encode past actions rather than future actions, can reflect more than one song history, and are active mostly during the rare phrases that involve history-dependent transitions in song. These findings demonstrate that the dynamics of HVC include 'hidden states' that are not reflected in ongoing behaviour but rather carry information about prior actions. These states provide a possible substrate for the control of syntax transitions governed by long-range rules.


Subject(s)
Canaries/physiology , Neurons/physiology , Singing/physiology , Vocalization, Animal/physiology , Animals , Brain/anatomy & histology , Brain/cytology , Brain/physiology , Canaries/anatomy & histology , Canaries/genetics , Male , Models, Neurological , Psycholinguistics , Time Factors
20.
Proc Natl Acad Sci U S A ; 120(19): e2222008120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126672

ABSTRACT

Referential signaling, a complex form of communication in which specific signals are associated with external referents, was once thought to be limited to primates. Recent research has documented referential signaling in several other cooperative taxa, predominantly in kin-based societies. Here, we show that greater anis, communally nesting birds that breed in nonkin groups, give one type of alarm call in response to aerial threats (flying raptors) and another to more general threats (nonaerial predators). Observational data show that anis give these calls in response to different classes of threats, and playback experiments in the field confirmed that the alarm calls alone are sufficient to elicit appropriate behavioral responses even in the absence of an actual threat. Genetic data on a subset of groups confirmed that breeding groups are composed of nonkin, suggesting that referential alarm calls are often given in situations when no genetic relatives are present. These results suggest that complex referential communication can occur in social groups composed of nonrelatives, despite the absence of kin-selected fitness benefits.


Subject(s)
Raptors , Vocalization, Animal , Animals , Vocalization, Animal/physiology , Birds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL