Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Publication year range
1.
J Chem Ecol ; 49(1-2): 36-45, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36705801

ABSTRACT

Cuticular hydrocarbons (CHCs) are major constituents of the cuticular lipid layer of insects. They serve not only as a barrier to desiccation, but often additionally mediate communication at close range. The compositions of the CHC profiles, i.e., the specific compounds and their relative amounts, usually differ between species. Additional intraspecific variability can be found between different populations, between colonies and castes of social insects, and between the sexes. Thus, such groups can often be distinguished based on distinctive compounds and/or specific compound ratios. The CHC profile may further be influenced by biotic and abiotic factors, which therefore can impact, e.g., nestmate recognition or mate choice. However, consistent intrasexual variation seems to be rare. Here, we investigated a case of intrasexual CHC variability within a single population of a parasitoid wasp. While wasps of both sexes produced the same set of compounds, the relative amounts of specific compound classes revealed the presence of intrasexual chemical phenotypes. This is, to our knowledge, the first report of three distinct female CHC profile patterns within a population of a solitary insect that uses CHCs for mate recognition. Additionally, male CHC profiles, while overall very similar, could be separated into two chemotypes by multivariate analysis. The study of species exhibiting such intraspecific and intrasexual CHC variation will advance our understanding of the effects of CHC variability on both, desiccation resistance and intraspecific communication.


Subject(s)
Wasps , Animals , Male , Female , Wasps/chemistry , Hydrocarbons/chemistry , Insecta , Multivariate Analysis , Phenotype
2.
Amino Acids ; 54(1): 123-135, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34825276

ABSTRACT

Due to the limited effects of conventional antibiotics on the increasing emergence of drug-resistant bacteria and fungi, novel antimicrobial agents were urgently needed to alleviate this phenomenon. Nowadays, antimicrobial peptides are believed to be a promising candidate for a new generation of antimicrobial drugs. Antimicrobial peptide polybia-MPII (MPII) was first isolated from the venom of the social wasp Polybia paulista with a broad spectrum of antimicrobial activity. In the present study, the counterparts and mimics of cationic amino acids of Lys, such as Arg, His, Orn, Dab and Dap were employed to substitute Lys in the sequence of MPII. The effects of the incorporation of these amino acids on its antimicrobial activity, hemolytic activity, cytotoxicity, enzyme stability and therapeutic potential were explored. Our results showed that although the incorporation of Arg could improve its antimicrobial activity, there is no improvement in enzyme stability. The incorporation of His makes MPII exert its antimicrobial activity in a pH-dependent manner. Notably, incorporating Dap could effectively decrease its hemolytic activity and cytotoxicity and enhance its enzyme stability against trypsin. In conclusion, this study would provide an effective strategy to improve the bioavailability and metabolic stability of AMPs while decrease their hemolytic activity and cytotoxicity.


Subject(s)
Anti-Infective Agents , Wasps , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Peptides , Lysine , Microbial Sensitivity Tests , Wasp Venoms/chemistry , Wasp Venoms/pharmacology , Wasps/chemistry
3.
Molecules ; 27(2)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35056876

ABSTRACT

Antimicrobial peptides are an important class of therapeutic agent used against a wide range of pathogens such as Gram-negative and Gram-positive bacteria, fungi, and viruses. Mastoparan (MpVT) is an α-helix and amphipathic tetradecapeptide obtained from Vespa tropica venom. This peptide exhibits antibacterial activity. In this work, we investigate the effect of amino acid substitutions and deletion of the first three C-terminal residues on the structure-activity relationship. In this in silico study, the predicted structure of MpVT and its analog have characteristic features of linear cationic peptides rich in hydrophobic and basic amino acids without disulfide bonds. The secondary structure and the biological activity of six designed analogs are studied. The biological activity assays show that the substitution of phenylalanine (MpVT1) results in a higher antibacterial activity than that of MpVT without increasing toxicity. The analogs with the first three deleted C-terminal residues showed decreased antibacterial and hemolytic activity. The CD (circular dichroism) spectra of these peptides show a high content α-helical conformation in the presence of 40% 2,2,2-trifluoroethanol (TFE). In conclusion, the first three C-terminal deletions reduced the length of the α-helix, explaining the decreased biological activity. MpVTs show that the hemolytic activity of mastoparan is correlated to mean hydrophobicity and mean hydrophobic moment. The position and spatial arrangement of specific hydrophobic residues on the non-polar face of α-helical AMPs may be crucial for the interaction of AMPs with cell membranes.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/pharmacology , Wasp Venoms/chemistry , Wasp Venoms/pharmacology , Amino Acid Substitution , Animals , Anti-Bacterial Agents/chemical synthesis , Antimicrobial Peptides/chemical synthesis , Cell Survival/drug effects , Circular Dichroism , Escherichia coli/drug effects , Hemolysis/drug effects , Hydrophobic and Hydrophilic Interactions , Models, Structural , Protein Structure, Secondary , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Wasps/chemistry
4.
Chembiochem ; 22(8): 1415-1423, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33244888

ABSTRACT

Agelaia-MPI and protonectin are antimicrobial peptides isolated from the wasp Parachartergus fraternus that show antimicrobial and neuroactive activities. Previously, two analogues of these peptides, neuroVAL and protonectin-F, were designed to reduce nonspecific toxicity and improve potency. Here, the three-dimensional structures of neuroVAL, protonectin and protonectin-F were determined by using circular dichroism and NMR spectroscopy. Antibacterial, antifungal, cytotoxic and hemolytic activities were tested for the parent peptides and analogues. All peptides showed moderate antimicrobial activity against Gram-positive bacteria, with agelaia-MPI being the most active. Protonectin and protonectin-F were found to be toxic to cancerous and noncancerous cell lines. Internalization experiments revealed that these peptides accumulate inside both cell types. By contrast, neuroVAL was nontoxic to all tested cells and was able to enter cells without accumulating. In summary, neuroVAL has potential as a nontoxic cell-penetrating peptide, while protonectin-F needs further modification to realize its potential as an antitumor peptide.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Gram-Positive Bacteria/drug effects , Wasps/chemistry , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Cell Line , Humans , Microbial Sensitivity Tests
5.
J Chem Ecol ; 47(2): 139-152, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33475939

ABSTRACT

Hitchhikers (phoretic organisms) need vehicles to disperse out of unsuitable habitats. Therefore, finding vehicles with the right functional attributes is essential for phoretic organisms. To locate these vehicles, phoretic organisms employ cues within modalities, ranging from visual to chemical senses. However, how hitchhikers discriminate between individual vehicles has rarely been investigated. Using a phoretic nematode community associated with an obligate fig-fig wasp pollination mutualism, we had earlier established that hitchhiking nematodes make decisions based on vehicle species identity and number of conspecific hitchhikers already present on the vehicle. Here we investigate if hitchhikers can differentiate between physiological states of vehicles. We asked whether phoretic nematodes choose between live or dead vehicles present in a chemically crowded environment and we investigated the basis for any discrimination. We conducted two-choice and single-choice behavioral assays using single nematodes and found that plant- and animal-parasitic nematodes preferred live over dead vehicles and used volatiles as a sensory cue to make this decision. However, in single-choice assays, animal-parasitic nematodes were also attracted towards naturally dead or freeze-killed wasps. The volatile profile of the wasps was dominated by terpenes and spiroketals. We examined the volatile blend emitted by the different wasp physiological states and determined a set of volatiles that the phoretic nematodes might use to discriminate between these states which is likely coupled with respired CO2. We determined that CO2 levels emitted by single wasps are sufficient to attract nematodes, demonstrating the high sensitivity of nematodes to this metabolic product.


Subject(s)
Behavior, Animal , Carbon Dioxide/physiology , Nematoda/physiology , Volatile Organic Compounds , Wasps/chemistry , Animals , Ecosystem , Female , Ficus , Male
6.
Molecules ; 27(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35011370

ABSTRACT

The yellow-legged Asian hornet (Vespa velutina Lepeletier 1836 (Hymenoptera: Vespidae)) is naturally distributed in China, Southeast Asia, and India; however, recently it has been detected outside of its native area, confirmed as being established in South Korea, Europe, and Japan. Health risks and deaths caused by the invasive Vespa velutina stings have become a public health concern, being the most common cause of anaphylaxis due to hymenopterans in some European regions. This in turn has led to increased demand from medical practitioners and researchers for Vespa velutina venom for diagnostic and therapeutic purposes. In this study, a straightforward, quick, and inexpensive method for obtaining Vespa velutina venom by electric stimulation is described. The venom extracts were analyzed by nuclear magnetic resonance spectroscopy (1H-NMR). The availability of Vespa velutina venom will lead to improved diagnostic and therapeutic methods, mainly by venom immunotherapy (VIT), in patients allergic to this invasive species.


Subject(s)
Wasp Venoms/isolation & purification , Animals , Electric Stimulation/methods , Female , Wasp Venoms/chemistry , Wasps/chemistry , Wasps/physiology
7.
Molecules ; 26(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34885725

ABSTRACT

The ethyl acetate extract of an ISP-2 agar cultivation of the wasp nest-associated fungus Penicillium sp. CMB-MD14 exhibited promising antibacterial activity against vancomycin-resistant enterococci (VRE), with a bioassay guided chemical investigation yielding the new meroterpene, oxandrastin A (1), the first andrastin-like metabolite with an extra oxygenation at C-2. A culture media optimisation strategy informed a scaled-up rice cultivation that yielded 1, together with three new oxandrastins B-D (2-4), two known andrastins C (5) and F (6), and a new meroterpene of the austalide family, isoaustalide F (7). Structures of 1-7 were assigned based on detailed spectroscopic analysis and chemical interconversion. A GNPS molecular networking analysis of the rice cultivation extract detected the known austalides B (8), H (9), and H acid (10), tentatively identified based on molecular formulae and co-clustering with 7. That the anti-VRE properties of the CMB-MD14 extract were exclusively attributed to 1 (IC50 6.0 µM, MIC99 13.9 µM), highlights the importance of the 2-OAc and 3-OAc moieties to the oxandrastin anti-VRE pharmacophore.


Subject(s)
Anti-Bacterial Agents/chemistry , Oryza/drug effects , Penicillium/chemistry , Terpenes/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Australia , Enterococcus/drug effects , Enterococcus/pathogenicity , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Molecular Structure , Oryza/microbiology , Penicillium/growth & development , Terpenes/pharmacology , Wasps/chemistry , Wasps/microbiology
8.
J Chem Ecol ; 46(5-6): 508-519, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32506384

ABSTRACT

The Asian eulophid wasp Tetrastichus planipennisi is being released in North America as a biocontrol agent for the emerald ash borer (Agrilus planipennis), a very destructive invasive buprestid beetle that is devastating ash trees (Fraxinus spp.). We identified, synthesized, and tested a female-produced sex pheromone for the wasp. The key component eliciting behavioral responses from male wasps in flight tunnel bioassays was identified as (6S,10S)-(2E,4E,8E)-4,6,8,10-tetramethyltrideca-2,4,8-triene. Female specificity was demonstrated by gas chromatographic (GC) comparison of male and female volatile emissions and whole body extracts. The identification was aided by coupled gas chromatography/mass spectrometry analysis, microchemical reactions, NMR, GC analyses with a chiral stationary phase column, and matching GC retention times and mass spectra with those of synthetic standards. The tetramethyl-triene hydrocarbon was synthesized as a mixture of two enantiomeric pairs of diastereomers, and as the pure insect-produced stereoisomer. In flight-tunnel bioassays, males responded to both the natural pheromone and the chiral synthetic material by upwind flight and landing on the source. In contrast, the mixture of four stereoisomers was not attractive, indicating that one or more of the "unnatural" stereoisomers antagonized attraction. Field trials, using yellow pan traps baited with natural pheromone, captured significantly more male wasps than control traps over a four week trial. The identified pheromone could increase the efficiency and specificity of the current detection methods for Tetrastichus planipennisi and aid in the determination of parasitoid establishment at release sites.


Subject(s)
Sex Attractants/pharmacology , Wasps/chemistry , Animals , Coleoptera/parasitology , Female , Host-Parasite Interactions , Introduced Species , North America , Pest Control, Biological , Sex Attractants/chemical synthesis , Sex Attractants/isolation & purification , Wasps/physiology
9.
Arch Insect Biochem Physiol ; 103(2): e21633, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31587364

ABSTRACT

MicroRNAs (miRNAs) are a form of endogenous small noncoding RNAs that regulate protein-coding gene expression at the posttranscriptional level. So far, knowledge of miRNAs in parasitoids remains rudimentary. We investigated miRNAs in Pteromalus puparum, a pupal endoparasitoid wasp with genome and transcriptome sequences completed. In this study, we constructed eight small RNA libraries from selected developmental stages and genders: male embryos, male larvae, male pupae, male adults, mixed-sex embryos, mixed-sex larvae, mixed-sex pupae, and female adults. We identified 254 mature miRNAs with 5p/3p arm features originated from 75 known and 119 novel miRNA genes in P. puparum, 88 of which reside in 26 clusters. The miRNAs in more than half of the clusters exhibit a consistent expression pattern, indicating they were co-transcribed from a long transcript. Comparing miRNA expression in the eight libraries, we found that 84 mature miRNAs were differentially expressed between embryos and larvae, 20 between larvae and pupae, and 26 between pupae and adults. We found some miRNAs were differentially expressed between sexes in embryos (10), larvae (29), pupae (8), and adults (14). Target predictions resulted in 211,571 miRNA-mRNA interactions for 254 different mature miRNAs. These miRNAs may be involved in sexual and developmental regulation of gene expression.


Subject(s)
MicroRNAs/genetics , Transcriptome/genetics , Wasps/genetics , Animals , Female , Gene Expression Profiling , Larva/growth & development , Larva/metabolism , Male , MicroRNAs/chemistry , MicroRNAs/metabolism , Pupa/growth & development , Pupa/metabolism , Wasps/chemistry , Wasps/growth & development , Wasps/metabolism
10.
Arch Toxicol ; 94(11): 3609-3627, 2020 11.
Article in English | MEDLINE | ID: mdl-32700166

ABSTRACT

Poisonous animals imply a risk to human life, because their venom is a complex mixture of low molecular weight components, peptides and proteins. Hornets use the venom for self-defence, to repel intruders and to capture prey, but they can cause poisoning and allergic reactions to people. In particular, they seem to be a health problem in the countries where they are native due to their sting, which in the most severe cases can lead to severe or fatal systemic anaphylaxis. But this situation is being an emerging problem for new countries and continents because hornet incursions are increasing in the global change scenario, such as in Europe and America. Furthermore, 55 detailed cases of hornet sting were found in 27 papers during the current review where 36.4% died due to, mainly, a multi-organ failure, where renal failure and liver dysfunction were the most common complications. Moreover, the great taxonomic, ecological diversity, geographical distribution and the wide spectrum of pathophysiological symptoms of hornets have been the focus of new research. Considering this, the present systematic review summarizes the current knowledge about the components of Vespa venom and the epidemiology of its sting to serve as reference for the new research focused on the development of techniques for diagnosis, new drugs and treatments of its sting.


Subject(s)
Anaphylaxis , Insect Bites and Stings/epidemiology , Wasp Venoms/chemistry , Wasps/chemistry , Amines/chemistry , Animals , Humans , Hyaluronoglucosaminidase/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Kinins/chemistry , Peptides/chemistry , Pheromones/chemistry , Phospholipases/chemistry
11.
Chem Biodivers ; 17(7): e2000140, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32515903

ABSTRACT

Insect-microbial symbioses have vast biochemical diversity, which is beneficial to produce bioactive secondary metabolites. In this study, chemical examination of a Streptomyces sp. associated with a mud dauber wasp led to the isolation of fourteen compounds. Their structures were determined by spectroscopic methods and comparison with literature data. Among the isolates, compounds 1,2,3-benzotriazin-4(1H)-one and 4-(2-aminoethyl)phenyl acetate were first reported from this species. Bioactivities of the isolated compounds were assayed for the first time against hexokinase II. 4-(2-Aminoethyl)phenyl acetate, germicidin B, phenylacetic acid, isogermicidin A and germicidin C displayed significant inhibitory activity against hexokinase II, with the IC50 values of 5.11, 7.11, 7.15, 8.45 and 8.78 µM, respectively.


Subject(s)
Enzyme Inhibitors/pharmacology , Hexokinase/antagonists & inhibitors , Streptomyces/chemistry , Wasps/chemistry , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Hexokinase/metabolism , Humans , Molecular Structure , Streptomyces/metabolism , Structure-Activity Relationship , Wasps/metabolism
12.
Molecules ; 25(2)2020 Jan 17.
Article in English | MEDLINE | ID: mdl-31963436

ABSTRACT

Fifteen years ago, at least one multimated female yellow-legged Asian hornet (Vespa velutina Lepeletier 1836) arrived in France, which gave rise to a pan-European invasion. In this study, the isolation and characterization of chitin (CHI) that was obtained from Vespa velutina (CHIVV) is described. In addition, an easy procedure is carried out to capture the raw insect, selectively and with high rates of success. The chitin contents of dry VV was observed to be 11.7%. Fourier transform infrared spectroscopy (FTIR), solid-state NMR (ssNMR), elemental analysis (EA), scanning electron microscopy (SEM), and thermogravimetric analysis (TG) characterized the physicochemical properties of CHIVV. The obtained CHIVV is close to pure (43.47% C, 6.94% H, and 6.85% N), and full acetylated with a value of 95.44%. Additionally, lifetime and kinetic parameters such as activation E and the frequency factor A using model-free and model-fitting methods, were determined. For CHIVV the solid state mechanism that follows the thermodegradation is of type F2 (random nucleation around two nuclei). The invasive Asian hornet is a promising alternative source of CHI, based on certain factors, such as the current and probable continued abundance of the quantity and quality of the product obtained.


Subject(s)
Chitin/chemistry , Chitin/isolation & purification , Wasps/chemistry , Acetylation , Animals , Female , Finite Element Analysis , Introduced Species , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
13.
J Proteome Res ; 18(7): 2695-2705, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31244211

ABSTRACT

Through a combination of transcriptomic and proteomic analyses, we identified 817 secreted ovarian proteins from an endoparasitoid wasp, Cotesia chilonis, of which five proteins are probably involved in passive evasion. The results of an encapsulation assay revealed that one of these passive evasion-associated proteins (Crp32B), a homologue of a 32-kDa protein (Crp32) from C. rubecula, could protect resin beads from being encapsulated by host hemocytes in a dose-dependent manner. Crp32B is transcribed in ovarian cells, nurse cells, follicular cells, and oocytes, and the protein is located throughout the ovary and on the egg surface. Moreover, Crp32B has antigenic similarity to several host components. These results indicate that C. chilonis may use molecular mimicry as a mechanism to avoid host cellular immune response.


Subject(s)
Host-Parasite Interactions/immunology , Immune Evasion , Insect Proteins/physiology , Ovary/chemistry , Wasps/chemistry , Animals , Female , Hemocytes , Molecular Mimicry , Proteomics/methods , Transcriptome
14.
Insect Mol Biol ; 28(4): 499-508, 2019 08.
Article in English | MEDLINE | ID: mdl-30636014

ABSTRACT

Venom of the parasitoid wasp Nasonia vitripennis changes the metabolism and gene expression in its fly host Sarcophaga bullata to induce developmental arrest, suppression of the immune response and various other venom effects. Yet, the venom of ectoparasitoid wasps has not been fully characterized. A major component of N. vitripennis venom is an uncharacterized, high-expressing protein referred to as Venom Y. Here we describe the evolutionary history and possible functions of this venom protein. We found that Venom Y is a relatively young gene that has duplicated to form two distinct paralogue groups. A copy of Venom Y has been recruited as a venom protein in at least five wasp species. Functional analysis found that Venom Y affects detoxification and immunity genes in envenomated fly hosts. Many of these genes are fat-body specific, suggesting that Venom Y may have a targeted effect on fat body tissue. We also show that Venom Y may mitigate negative effects of other venom proteins. Finally, protein sequencing indicates that Venom Y is post-translationally modified. This study contributes to elucidating parasitoid venom by using RNA interference knockdown to investigate venom protein function in the context of the whole venom cocktail.


Subject(s)
Evolution, Molecular , Insect Proteins/genetics , Wasp Venoms/genetics , Wasps/genetics , Animals , Insect Proteins/metabolism , Wasp Venoms/chemistry , Wasps/chemistry , Wasps/metabolism
15.
Anal Bioanal Chem ; 411(13): 2981-2993, 2019 May.
Article in English | MEDLINE | ID: mdl-30957203

ABSTRACT

Long-chain cuticular hydrocarbons (CHC) are key components of chemical communication in many insects. The parasitoid jewel wasps from the genus Nasonia use their CHC profile as sex pheromone and for species recognition. The standard analytical tool to analyze CHC is gas chromatography coupled with mass spectrometric detection (GC/MS). This method reliably identifies short- to long-chain alkanes and alkenes, but CHC with more than 40 carbon atoms are usually not detected. Here, we applied two laser mass spectrometry (MS) techniques, namely direct laser desorption/ionization (d)LDI and silver-assisted (Ag-)LDI MS, respectively, to analyze CHC profiles of N. vitripennis, N. giraulti, and N. longicornis directly from the cuticle or extracts. Furthermore, we applied direct analysis in real-time (DART) MS as another orthogonal technique for extracts. The three methods corroborated previous results based on GC/MS, i.e., the production of CHC with carbon numbers between C25 and C40. However, we discovered a novel series of long-chain CHC ranging from C41 to C51/C52. Additionally, several previously unreported singly and doubly unsaturated alkenes in the C31-C39 range were found. Use of principal component analysis (PCA) revealed that the composition of the newly discovered CHC varies significantly between species, sex, and age of the animals. Our study adds to the growing literature on the presence of very long-chain CHC in insects and hints at putative roles in insect communication. Graphical abstract.


Subject(s)
Hydrocarbons/analysis , Mass Spectrometry/methods , Sex Attractants/analysis , Wasps/chemistry , Alkenes/analysis , Animal Scales/chemistry , Animals , Female , Gas Chromatography-Mass Spectrometry , Male , Principal Component Analysis
16.
Anal Bioanal Chem ; 411(8): 1591-1599, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30687886

ABSTRACT

Localized information on a specimen is considered indispensable for deciphering biological activity. Magnetic resonance spectroscopy is a notable method because of its versatility; however, one limitation is the spectral quality on a static sample. This study explores an amalgamated method with two magnetic resonance experiments: high-resolution magic-angle spinning (HR-MAS) for high-quality spectral acquisition from a spinning sample and chemical shift imaging (CSI) for spatial localization. The advantage of HR-MAS CSI is its amenity for simultaneously profiling the metabolome-with good spectral data-at different spatial regions in a single experiment. Herein, 1H HR-MAS CSI (including a T2-contrast CSI) was described and performed on various food tissues and an intact organism. Different data analyses such as multivariate and quantification were explored to identify the metabolic variants in different anatomical regions and in one case, to assist in a spatial allocation. The limitation and drawback of the experiment are also discussed. Graphical abstract.


Subject(s)
Magnetic Resonance Imaging/methods , Metabolome , Metabolomics/methods , Animals , Cheese/analysis , Food Analysis/methods , Garlic/chemistry , Garlic/metabolism , Wasps/chemistry , Wasps/metabolism
17.
J Nat Prod ; 82(7): 2009-2012, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31244148

ABSTRACT

As part of an ongoing program to identify sex attractant pheromone components that mediate sexual communication in yellowjacket wasps, a novel sesquiterpene was isolated from body surface extracts of virgin bald-faced hornet queens, Dolichovespula maculata. The gross structure of this sesquiterpene was proposed through microscale spectroscopic analyses, and the configuration of the central olefin was subsequently confirmed by total synthesis. This new natural product (termed here dolichovespulide) represents an important addition to the relatively small number of terpenoids reported from the taxonomic insect family Vespidae.


Subject(s)
Wasps/chemistry , Animals , Chromatography, High Pressure Liquid , Molecular Structure , Spectrum Analysis/methods
18.
Nature ; 494(7437): 345-8, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23407492

ABSTRACT

Sex pheromones play a pivotal role in the communication of many sexually reproducing organisms. Accordingly, speciation is often accompanied by pheromone diversification enabling proper mate finding and recognition. Current theory implies that chemical signals are under stabilizing selection by the receivers who thereby maintain the integrity of the signals. How the tremendous diversity of sex pheromones seen today evolved is poorly understood. Here we unravel the genetics of a newly evolved pheromone phenotype in wasps and present results from behavioural experiments indicating how the evolution of a new pheromone component occurred in an established sender-receiver system. We show that male Nasonia vitripennis evolved an additional pheromone compound differing only in its stereochemistry from a pre-existing one. Comparative behavioural studies show that conspecific females responded neutrally to the new pheromone phenotype when it evolved. Genetic mapping and gene knockdown show that a cluster of three closely linked genes accounts for the ability to produce this new pheromone phenotype. Our data suggest that new pheromone compounds can persist in a sender's population, without being selected against by the receiver and without the receiver having a pre-existing preference for the new pheromone phenotype, by initially remaining unperceived. Our results thus contribute valuable new insights into the evolutionary mechanisms underlying the diversification of sex pheromones. Furthermore, they indicate that the genetic basis of new pheromone compounds can be simple, allowing them to persist long enough in a population for receivers to evolve chemosensory adaptations for their exploitation.


Subject(s)
Biological Evolution , Mating Preference, Animal/physiology , Sex Attractants/metabolism , Wasps/genetics , Wasps/physiology , Animals , Female , Gene Knockdown Techniques , Genetic Speciation , Lactones/chemistry , Lactones/metabolism , Male , Molecular Sequence Data , Phylogeny , Quinazolines/chemistry , Quinazolines/metabolism , Selection, Genetic , Sex Attractants/chemistry , Species Specificity , Wasps/chemistry
19.
Biochemistry ; 57(12): 1907-1916, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29350905

ABSTRACT

The parasitoid wasp Ampulex compressa injects venom directly into the brain and subesophageal ganglion of the cockroach Periplaneta americana, inducing a 7 to 10 day lethargy termed hypokinesia. Hypokinesia presents as a significant reduction in both escape response and spontaneous walking. We examined aminergic and peptidergic components of milked venom with HPLC and MALDI-TOF mass spectrometry. HPLC coupled with electrochemical detection confirmed the presence of dopamine in milked venom, while mass spectrometry revealed that the venom gland and venom sac have distinct peptide profiles, with milked venom predominantly composed of venom sac peptides. We isolated and characterized novel α-helical, amphipathic venom sac peptides that constitute a new family of venom toxins termed ampulexins. Injection of the most abundant venom peptide, ampulexin 1, into the subesophageal ganglion of cockroaches resulted in a short-term increase in escape threshold. Neither milked venom nor venom peptides interfered with growth of Escherichia coli or Bacillus thuringiensis on agar plates, and exposure to ampulexins or milked venom did not induce cell death in Chinese hamster ovary cells (CHO-K1) or Hi5 cells ( Trichoplusia ni).


Subject(s)
Insect Proteins/chemistry , Peptides/chemistry , Wasp Venoms/chemistry , Wasps/chemistry , Animals , Insect Proteins/pharmacology , Peptides/pharmacology , Periplaneta , Wasp Venoms/pharmacology
20.
Microb Pathog ; 119: 72-80, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29626660

ABSTRACT

During the past decade, cationic antimicrobial peptides (CAPs) have gained particular interest among researchers, since they often display broad-spectrum antimicrobial activity and low possibility of resistance emergence. This study aimed to investigate in vitro effectiveness of Mastoparan-1 (MP-1), a tetradecapeptide CAP from hornet venom, against methicillin-resistant Staphylococcus aureus (MRSA) isolates. MP-1 had a high propensity to form alpha-helix based on structural predictions. MP-1 was found to possess strong antimicrobial activities and weak cytotoxic effects. Multiple treatments of MRSA with MP-1 at sub-lethal dose did not induce resistance. At 4 × minimum bactericidal concentration (MBC), MP-1 eradicated bacteria within 60 min, whereas vancomycin was unable to eradicate MRSA even after 480 min of exposure, highlighting rapid bactericidal kinetics of MP-1. Treatment of bacteria with 2 × MBC of MP-1 caused a time-dependent increase in orange/red fluorescence intensity. Compared with vancomycin, MP-1 significantly reduced biofilm formation and diminished both biofilm biomass and viability of biofilm-embedded bacteria in a concentration-dependent manner. Taken together, the current data reveal not only that MP-1 is a potent bactericidal and antibiofilm agent, but also that it is less likely to invoke antimicrobial resistance, reinforcing further studies concerning the therapeutic applications of MP-1.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biofilms/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Peptides/pharmacology , Wasp Venoms/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Biofilms/growth & development , Cell Line/drug effects , Cell Survival/drug effects , Erythrocytes/drug effects , Hemolysis , Humans , Intercellular Signaling Peptides and Proteins , Kinetics , Methicillin-Resistant Staphylococcus aureus/cytology , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Microbial Viability/drug effects , Peptides/chemistry , Protein Conformation , Time Factors , Vancomycin/pharmacology , Wasp Venoms/chemistry , Wasps/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL