Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
Add more filters

Publication year range
1.
Biochem Biophys Res Commun ; 682: 21-26, 2023 11 19.
Article in English | MEDLINE | ID: mdl-37793321

ABSTRACT

Glucose isomerase (GI) is extensively used in the food industry for production of high-fructose corn syrup and for the production of biofuels and other renewable chemicals. Structure-based studies on GI inhibitors are important for improving its efficiency in industrial applications. Here, we report the subatomic crystal structure of Streptomyces rubiginosus GI (SruGI) complexed with its inhibitor, xylitol, at 0.99 Å resolution. Electron density map and temperature factor analysis showed partial binding of xylitol to the M1 metal binding site of SruGI, providing two different conformations of the metal binding site and the substrate binding channel. The xylitol molecule induced a conformational change in the M2 metal ion-interacting Asp255 residue, which subsequently led to a conformational change in the side chain of Asp181 residue. This led to the positional shift of Pro25 by 1.71 Å and side chain rotation of Phe26 by 21°, where located on the neighboring protomer in tetrameric SruGI. The conformation change of these two residues affect the size of the substrate-binding channel of GI. Therefore, xylitol binding to M1 site of SruGI induces not only a conformational changes of the metal-binding site, but also conformational change of substrate-binding channel of the tetrameric SruGI. These results expand our knowledge about the mechanism underlying the inhibitory effect of xylitol on GI.


Subject(s)
Aldose-Ketose Isomerases , Xylitol , Xylitol/chemistry , Xylitol/pharmacology , Binding Sites , Protein Conformation , Metals/metabolism , Aldose-Ketose Isomerases/chemistry , Glucose/metabolism
2.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409233

ABSTRACT

Rotamers are stereoisomers produced by rotation (twisting) about σ bonds and are often rapidly interconverting at room temperature. Xylitol-massively produced sweetener-(2R,3r,4S)-pentane-1,2,3,4,5-pentol) forms rotamers from the linear conformer by rotation of a xylitol fragment around the C2-C3 bond (rotamer 1) or the C3-C4 bond (rotamer 2). The rotamers form two distinguishable structures. Small differences in geometry of rotamers of the main carbon chain were confirmed by theoretical calculations; however, they were beyond the capabilities of the X-ray powder diffraction technique due to the almost identical unit cell parameters. In the case of rotamers of similar compounds, the rotations occurred mostly within hydroxyl groups likewise rotations in L-arabitol and D-arabitol, which are discussed in this work. Our results, supported by theoretical calculations, showed that energetic differences are slightly higher for rotamers with rotations within hydroxyl groups instead of a carbon chain.


Subject(s)
Sugar Alcohols , Xylitol , Carbon , Stereoisomerism , Sugar Alcohols/chemistry , Xylitol/chemistry
3.
Int J Mol Sci ; 23(4)2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35216142

ABSTRACT

Biocatalyzed synthesis can be exploited to produce high-value products, such as prodrugs. The replacement of chemical approaches with biocatalytic processes is advantageous in terms of environmental prevention, embracing the principles of green chemistry. In this work, we propose the covalent attachment of xylitol to ibuprofen to produce an IBU-xylitol ester prodrug. Xylitol was chosen as a hydrophilizer for the final prodrug, enhancing the water solubility of ibuprofen. Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) extensively used as an analgesic, anti-inflammatory, and antipyretic. Despite being the third-most-prescribed medicine in the world, the aqueous solubility of ibuprofen is just 21 mg/L. This poor water solubility greatly limits the bioavailability of ibuprofen. We aimed to functionalize ibuprofen with xylitol using the reusable immobilized N435 biocatalyst. Instead of a biphasic media, we proposed a monophasic reaction environment. The characterization of the IBU-xylitol ester was performed by 1H, 13C-NMR, DEPT, COSY, HMQC, HMBC, FTIR, and MS spectroscopy. Preliminary in vitro tests showed that this enzymatically synthesized prodrug of ibuprofen reduced the expression of the interleukin 8 genes in human bronchial epithelial cells (IB3-1) from cystic fibrosis (CF) patients.


Subject(s)
Ibuprofen/chemistry , Prodrugs/chemistry , Xylitol/chemistry , Analgesics/chemistry , Analgesics/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biocatalysis , Biological Availability , Cell Line , Cystic Fibrosis/drug therapy , Esters/chemistry , Humans , Ibuprofen/pharmacology , Prodrugs/pharmacology , Solubility , Water/chemistry
4.
Molecules ; 27(4)2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35209024

ABSTRACT

The synthesis of ß-galactosyl xylitol derivatives using immobilized LacA ß-galactosidase from Lactobacillus plantarum WCFS1 is presented. These compounds have the potential to replace traditional sugars by their properties as sweetener and taking the advantages of a low digestibility. The enzyme was immobilized on different supports, obtaining immobilized preparations with different activity and stability. The immobilization on agarose-IDA-Zn-CHO in the presence of galactose allowed for the conserving of 78% of the offered activity. This preparation was 3.8 times more stable than soluble. Since the enzyme has polyhistidine tags, this support allowed the immobilization, purification and stabilization in one step. The immobilized preparation was used in synthesis obtaining two main products and a total of around 68 g/L of ß-galactosyl xylitol derivatives and improving the synthesis/hydrolysis ratio by around 30% compared to that of the soluble enzyme. The catalyst was recycled 10 times, preserving an activity higher than 50%. The in vitro intestinal digestibility of the main ß-galactosyl xylitol derivatives was lower than that of lactose, being around 6 and 15% for the galacto-xylitol derivatives compared to 55% of lactose after 120 min of digestion. The optimal amount immobilized constitutes a very useful tool to synthetize ß-galactosyl xylitol derivatives since it can be used as a catalyst with high yield and being recycled for at least 10 more cycles.


Subject(s)
Bacterial Proteins/chemistry , Lactobacillus plantarum/enzymology , Xylitol , beta-Galactosidase/chemistry , Catalysis , Xylitol/analogs & derivatives , Xylitol/chemistry
5.
Chem Rec ; 21(1): 133-148, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33180367

ABSTRACT

Xylitol is commonly known as one of the top platform intermediates for biomass conversion. Catalytic deoxygenation of xylitol provides an atomic and energetic efficient way to produce a variety of renewable chemicals including ethylene glycol, 1,2-propanediol, lactic acid and 1,4-anhydroxylitol. Despite a few initial attempts in converting xylitol into those products, improving catalyst selectivity towards C-O and C-C cleavage reactions remains a grand challenge in this area. To our best knowledge, there is lack of comprehensive review to summarize the most recent advances on catalyst design and mechanisms in deoxygenation of xylitol, offering important perspective into future development of xylitol transformation technologies. Therefore, in this mini-review, we have critically discussed the conversion routes involved in xylitol deoxygenation over solid catalyst materials, the nanostructures of supported metal catalysts for C-H, C-C and C-O bond cleavage reactions, and mechanistic investigation for xylitol conversion. The outcome of this work provides new insights into rational design of effective deoxygenation catalyst materials for upgrading of xylitol and future process development in converting hemicellulosic biomass.


Subject(s)
Ethers/chemical synthesis , Glycols/chemical synthesis , Xylitol/chemistry , Catalysis , Hydrogen/chemistry , Metals, Heavy/chemistry , Models, Chemical , Nanostructures/chemistry , Oxidation-Reduction
6.
Microb Cell Fact ; 20(1): 50, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618706

ABSTRACT

BACKGROUND: Xylitol is a five-carbon sugar alcohol that has numerous beneficial health properties. It has almost the same sweetness as sucrose but has lower energy value compared to the sucrose. Metabolism of xylitol is insulin independent and thus it is an ideal sweetener for diabetics. It is widely used in food products, oral and personal care, and animal nutrition as well. Here we present a two-stage strategy to produce bio-xylitol from D-xylose using a recombinant Pichia pastoris expressing a heterologous xylose reductase gene. The recombinant P. pastoris cells were first generated by a low-cost, standard procedure. The cells were then used as a catalyst to make the bio-xylitol from D-xylose. RESULTS: Pichia pastoris expressing XYL1 from P. stipitis and gdh from B. subtilis demonstrated that the biotransformation was very efficient with as high as 80% (w/w) conversion within two hours. The whole cells could be re-used for multiple rounds of catalysis without loss of activity. Also, the cells could directly transform D-xylose in a non-detoxified hemicelluloses hydrolysate to xylitol at 70% (w/w) yield. CONCLUSIONS: We demonstrated here that the recombinant P. pastoris expressing xylose reductase could transform D-xylose, either in pure form or in crude hemicelluloses hydrolysate, to bio-xylitol very efficiently. This biocatalytic reaction happened without the external addition of any NAD(P)H, NAD(P)+, and auxiliary substrate as an electron donor. Our experimental design & findings reported here are not limited to the conversion of D-xylose to xylitol only but can be used with other many oxidoreductase reactions also, such as ketone reductases/alcohol dehydrogenases and amino acid dehydrogenases, which are widely used for the synthesis of high-value chemicals and pharmaceutical intermediates.


Subject(s)
Aldehyde Reductase/metabolism , Metabolic Engineering , Pichia/metabolism , Xylitol/biosynthesis , Xylose/metabolism , Electrons , Pichia/genetics , Recombinant Proteins/metabolism , Xylitol/chemistry , Xylose/chemistry
7.
Biol Pharm Bull ; 44(9): 1309-1315, 2021.
Article in English | MEDLINE | ID: mdl-34471059

ABSTRACT

Confectionery ingredients are expected to enhance the medication adherence of pediatric patients taking bitter-tasting drugs when adequate pediatric medicines are not available in practical settings. Gum is a familiar confectionery, and several drug-loaded gums are on the market as medicated chewing gums. In this study, medical gum tablets composed of confectionery xylitol gum and a drug (ibuprofen or acetaminophen) were prepared and evaluated for the purpose of potential hospital applications. The effect of the sintering process, a heating treatment, on the physical properties of the solid materials was also examined. The sintering process markedly improved the hardness of the gum tablets. The sintering temperature and time affected the hardness of both ibuprofen- and acetaminophen-loaded gum tablets, whereas heat treatment around the melting point of ibuprofen or xylitol and longer heat treatment resulted in failure of the preparation or a reduction in hardness. The sintered gum tablets exhibited a delayed drug release profile in artificial saliva after an in vitro chewing test. The current results provide basic and useful information about the preparation of gum-containing tablets in future clinical settings.


Subject(s)
Chewing Gum , Excipients/chemistry , Medication Adherence , Xylitol/chemistry , Acetaminophen/chemistry , Acetaminophen/pharmacokinetics , Chemistry, Pharmaceutical , Child , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Liberation , Humans , Ibuprofen/chemistry , Ibuprofen/pharmacokinetics , Saliva/chemistry , Tablets , Taste
8.
Biotechnol Lett ; 43(6): 1195-1209, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33651230

ABSTRACT

OBJECTIVES: To increase xylose concentration of the chestnut shell hemicellulosic hydrolysate with an acceptable phenolic compound level in order to enhance xylitol production by Candida tropicalis M43. RESULTS: The xylose concentration and total phenolic compound concentration of the hydrolysate were obtained as 33.68 g/L and 77.38 mg gallic acid equivalent/L, respectively by optimization of detoxification parameters and concentration level (60 °C, 115 min contact time, 5.942% (w/v) dosage of activated charcoal, 120 strokes/min shaking rate and 0.2 volume ratio). Xylitol production was achieved in the hydrolysate by using Candida tropicalis M43. The maximum xylitol concentration was 6.30 g/L and productivity, yield and percentage of substrate conversion were calculated as 0.11 g/L h, 19.13% and 97.79%, respectively. In addition, the chestnut shell hydrolysate fortified with xylose and the maximum xylitol concentration increased to 18.08 g/L in the hydrolysate-based medium containing 80 g/L xylose. CONCLUSIONS: Optimizing detoxification conditions with concentration level was found to be useful for enhancing xylitol production. In addition, fortification of the hydrolysate caused a three fold increase in maximum xylitol concentration.


Subject(s)
Candida tropicalis/growth & development , Charcoal/chemistry , Fagaceae/chemistry , Xylitol/isolation & purification , Candida tropicalis/metabolism , Culture Media/chemistry , Fermentation , Hydrolysis , Inactivation, Metabolic , Plant Extracts/chemistry , Xylitol/chemistry
9.
Bioprocess Biosyst Eng ; 44(4): 713-725, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33387004

ABSTRACT

Xylitol was biotechnologically produced by Kluyveromyces marxianus ATCC36907 using the hemicellulosic hydrolysate of the cashew apple bagasse (CABHH). Sequentially, the present study investigated the recovery and purification of xylitol evaluating different antisolvents [ethanol, isopropanol and the ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA)], their proportion in the medium (10-90% v/v), and their cooling rate (VC 0.25-0.50 °C/min). These processes were contrasted with the crystallization process of commercial xylitol. This study is the first to assess xylitol crystallization using a protic ionic liquid. The hydrolysate obtained from a mild treatment with sulfuric acid contained mainly glucose and xylose at concentrations of 15.7 g/L and 11.9 g/L, respectively. With this bioprocess, a maximum xylitol production of 4.5 g/L was achieved. The performance of the investigated antisolvents was similar in all conditions evaluated in the crystallization process of the commercial xylitol, with no significant difference in yields. For the crystallization processes of the produced xylitol, the best conditions were: 50% (v/v) isopropanol as antisolvent, cooling rate of 0.5 °C/min, with a secondary nucleation of yield and purity of 69.7% and 84.8%, respectively. Under the same linear cooling rate, using ethanol, isopropanol or the protic ionic liquid 2-hydroxyl-ethylammonium acetate (2-HEAA), crystallization did not occur, probably due to the presence of carbohydrates not metabolized by the yeast in the broth, which influences the solubility curve of xylitol. With the results of this work, a possible economical and environmentally friendly process of recovery and purification of xylitol from CABHH could be proposed.


Subject(s)
Biotechnology/methods , Cellulose/chemistry , Industrial Microbiology/methods , Kluyveromyces/metabolism , Malus , Polysaccharides/chemistry , Xylitol/chemistry , Anacardium/metabolism , Crystallization , Ethanol/metabolism , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Ionic Liquids , Microscopy, Electron, Scanning , Solubility , Solvents , Sulfuric Acids/chemistry , Temperature , Time Factors , Xylose/metabolism
10.
Int J Mol Sci ; 22(8)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918749

ABSTRACT

Glucose isomerase (GI) is an important enzyme that is widely used in industrial applications, such as in the production of high-fructose corn syrup or bioethanol. Studying inhibitor effects on GI is important to deciphering GI-specific molecular functions, as well as potential industrial applications. Analysis of the existing xylitol-bound GI structure revealed low metal occupancy at the M2 site; however, it remains unknown why this phenomenon occurs. This study reports the room-temperature structures of native and xylitol-bound GI from Streptomyces rubiginosus (SruGI) determined by serial millisecond crystallography. The M1 site of native SruGI exhibits distorted octahedral coordination; however, xylitol binding results in the M1 site exhibit geometrically stable octahedral coordination. This change results in the rearrangement of metal-binding residues for the M1 and M2 sites, the latter of which previously displayed distorted metal coordination, resulting in unstable coordination of Mg2+ at the M2 site and possibly explaining the inducement of low metal-binding affinity. These results enhance the understanding of the configuration of the xylitol-bound state of SruGI and provide insights into its future industrial application.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Models, Molecular , Protein Conformation , Xylitol/chemistry , Binding Sites , Crystallography, X-Ray , Metals/chemistry , Protein Binding , Structure-Activity Relationship , Temperature
11.
Molecules ; 26(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34771112

ABSTRACT

In addition to dermatological complications, acne can affect the quality of life of individuals in numerous ways, such as employment, social habits and body dissatisfaction. According to our expertise, caprylic acid and propanediol would not have a direct action on Cutibacterium acnes. Despite this, we investigated the existence of a synergistic effect among xylitol, caprylic acid and propanediol as a mixture of compounds representing a single topical active ingredient that could benefit the treatment against acne. In vitro and in vivo assays were performed to challenge and to prove the efficacy of propanediol, xylitol and caprylic acid (PXCA) against acne. PXCA had its MIC challenged against C. acnes (formerly Propionibacterium acnes) and Staphylococcus aureus, resulting in concentrations of 0.125% and 0.25%, respectively, and it also developed antimicrobial activity against C. acnes (time-kill test). PXCA was able to reduce the 5-alpha reductase expression in 24% (p < 0.01) in comparison with the testosterone group. By the end of 28 days of treatment, the compound reduced the skin oiliness, porphyrin amount and the quantity of inflammatory lesions in participants. According to the dermatologist evaluation, PXCA improved the skin's general appearance, acne presence and size.


Subject(s)
Acne Vulgaris/drug therapy , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Caprylates/administration & dosage , Propylene Glycols , Xylitol/administration & dosage , Acne Vulgaris/etiology , Caprylates/chemistry , Clinical Trials as Topic , Disease Management , Disease Susceptibility , Humans , Microbial Sensitivity Tests , Propylene Glycols/chemistry , Staphylococcus aureus/drug effects , Treatment Outcome , Xylitol/chemistry
12.
Bioprocess Biosyst Eng ; 43(12): 2153-2163, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32627063

ABSTRACT

Apple pomace was studied as a raw material for the production of xylitol and 2G ethanol, since this agroindustrial residue has a high concentration of carbohydrate macromolecules, but is still poorly studied for the production of fermentation bioproducts, such as polyols. The dry biomass was subjected to dilute-acid hydrolysis with H2SO4 to obtain the hemicellulosic hydrolysate, which was concentrated, detoxified and fermented. The hydrolyzate after characterization was submitted to submerged fermentations, which were carried out in Erlenmeyer flasks using, separately, the yeasts Candida guilliermondii and Kluyveromyces marxianus. High cellulose (32.62%) and hemicellulose (23.60%) contents were found in this biomass, and the chemical hydrolysis yielded appreciable quantities of fermentable sugars, especially xylose. Both yeasts were able to metabolize xylose, but Candida guilliermondii produced only xylitol (9.35 g L-1 in 96 h), while K. marxianus produced ethanol as the main product (10.47 g L-1 in 24 h) and xylitol as byproduct (9.10 g L-1 xylitol in 96 h). Maximum activities of xylose reductase and xylitol dehydrogenase were verified after 24 h of fermentation with C. guilliermondii (0.23 and 0.53 U/mgprot, respectively) and with K. marxianus (0.08 e 0.08 U/mgprot, respectively). Apple pomace has shown potential as a raw material for the fermentation process, and the development of a biotechnological platform for the integrated use of both the hemicellulosic and cellulosic fraction could add value to this residue and the apple production chain.


Subject(s)
Biotechnology/methods , Ethanol/chemistry , Malus/metabolism , Xylitol/chemistry , Aldehyde Reductase/chemistry , Biomass , Bioreactors , Candida , Cellulose/metabolism , D-Xylulose Reductase/chemistry , Fermentation , Glucose/metabolism , Hydrolysis , Kluyveromyces , Polymers/chemistry , Polysaccharides/chemistry , Saccharomycetales , Time Factors , Xylose/metabolism
13.
Int J Food Sci Nutr ; 71(6): 706-714, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31918589

ABSTRACT

This study investigated the role of non-nutritive sweeteners in the formation of advanced glycation end-products (AGEs) and their reactive intermediates using endogenous and exogenous models. In the endogenous model, xylitol and sorbitol formed similar levels of reactive intermediates compared to sucralose. Protein-bound fluorescent AGEs, Nε-carboxymethyllysine (CML), and Nε-carboxyethyllysine (CEL) levels in the xylitol and sorbitol treatment were significantly higher compared to the sucralose treatment. In the exogenous model, sucralose treatment showed significantly higher glyoxal and fructosamine levels compared to xylitol and sorbitol, respectively. However, protein-bound fluorescent AGEs, CML, and CEL were lower in the sucralose treatment compared to other sugar treatments. The data suggest that the structure of sugar alcohols which are similar to reducing sugars may contribute to the formation of AGEs and their reactive intermediates in the endogenous model. The long-term effects of non-nutritive sweeteners consumption on AGEs formation and health implications should be verified with population studies.


Subject(s)
Fructosamine/analysis , Glyoxal/analysis , Lysine/analogs & derivatives , Sorbitol/chemistry , Sucrose/analogs & derivatives , Xylitol/chemistry , Cooking , Electrophoresis, Polyacrylamide Gel , Glycation End Products, Advanced , Hot Temperature , Lysine/analysis , Non-Nutritive Sweeteners/chemistry , Proof of Concept Study , Sucrose/chemistry
14.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374405

ABSTRACT

The main reason why peritoneal dialysis (PD) still has limited use in the management of patients with end-stage renal disease (ESRD) lies in the fact that the currently used glucose-based PD solutions are not completely biocompatible and determine, over time, the degeneration of the peritoneal membrane (PM) and consequent loss of ultrafiltration (UF). Here we evaluated the biocompatibility of a novel formulation of dialytic solutions, in which a substantial amount of glucose is replaced by two osmometabolic agents, xylitol and l-carnitine. The effect of this novel formulation on cell viability, the integrity of the mesothelial barrier and secretion of pro-inflammatory cytokines was evaluated on human mesothelial cells grown on cell culture inserts and exposed to the PD solution only at the apical side, mimicking the condition of a PD dwell. The results were compared to those obtained after exposure to a panel of dialytic solutions commonly used in clinical practice. We report here compelling evidence that this novel formulation shows better performance in terms of higher cell viability, better preservation of the integrity of the mesothelial layer and reduced release of pro-inflammatory cytokines. This new formulation could represent a step forward towards obtaining PD solutions with high biocompatibility.


Subject(s)
Carnitine/chemistry , Dialysis Solutions/chemistry , Epithelium/metabolism , Glucose/metabolism , Peritoneal Dialysis/methods , Bicarbonates/pharmacology , Biocompatible Materials , Cell Survival , Cytokines/metabolism , Humans , Inflammation , Kidney Failure, Chronic , Microscopy, Confocal , Peritoneum/drug effects , Tight Junctions/metabolism , Ultrafiltration , Xylitol/chemistry
15.
Molecules ; 25(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231016

ABSTRACT

In this work, a bio-based copolyester with good mechanical properties was synthesized and characterized in terms of structure, main properties and biodegradability Determining the chemical structure of such materials is important to understand their behavior and properties. Performing an extraction of insoluble cross-linked polymer using different solvents allowed us to analyze how the polymer behaves when subjected to different chemical environments, and to obtain soluble samples suitable for more in-depth analysis. Chemical structure of poly (xylitol sebacate-co-butylene sebacate) was determined by a 1H NMR and FTIR analysis of both prepolymer gel sample and samples obtained by extraction of cross-linked polymer using different solvents. Block structure of the copolymer was confirmed by both NMR and DSC. Gel fraction, swelling value, water contact angle, and mechanical properties were also analyzed. Biodegradability of this material was confirmed by performing enzymatic and hydrolytic degradation. Synthesizing sugar-alcohol based copolyester using three monomers leads to obtaining a material with interesting chemical structure and desirable mechanical properties comparable to conventional elastomers.


Subject(s)
Alkenes/chemistry , Biocompatible Materials/chemistry , Polyesters/chemistry , Xylitol/chemistry , Magnetic Resonance Spectroscopy , Materials Testing , Molecular Structure , Spectroscopy, Fourier Transform Infrared
16.
Molecules ; 25(15)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707753

ABSTRACT

The natural deep eutectic solvent (NADES) is an excellent solvent for insoluble natural products and medicines. Eutectogels formed by gelation of NADESs are interesting materials that deserve attention. In this study, xanthan gum was used as a gelator to gel choline chloride-xylitol with different water contents in virtue of the excellent solubility of choline chloride-xylitol (1:1) to quercetin. We observed that water was critical to the formation of eutectogels. An MTT assay indicated that our eutectogel had excellent biocompatibility as its corresponding hydrogel. According to rheological tests, xanthan gum-based eutectogels had better viscoelastic properties, higher thermal stability, and more defined shear thinning behavior than its corresponding hydrogel. Texture profile analysis showed that eutectogels with less water content had higher hardness and adhesiveness. Meanwhile, Differential scanning calorimeter (DSC) results suggested that the various rheological and texture properties of eutectogels could be attributed to changes in the water state, which was influenced by the hydrogen bonding network of NADES. This biocompatible eutectogel with tunable properties was expected to find applications in novel drug delivery vehicles, which are widely used in the fields of medicine and food.


Subject(s)
Biocompatible Materials/chemistry , Biological Products/chemistry , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Cell Survival , Choline/chemistry , Hep G2 Cells , Humans , Hydrogen Bonding , Mechanical Phenomena , Phase Transition , Rheology , Solubility , Temperature , Xylitol/chemistry
17.
Molecules ; 25(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023899

ABSTRACT

Natural deep eutectic solvents (NADES) are a type of ionic liquid (IL) or deep eutectic solvent (DES), the ingredients of which are exclusively natural products (non-toxic and environmentally friendly). Here, we explore the potential of NADES as an alternative to conventional organic solvents (e.g., aqueous methanol or ethanol) for the extraction of flavonoids from Scutellaria baicalensis stem bark to investigate their extractability depending on structural variation. Four NADES, each containing citric acid in combination with ß-alanine, glucose, xylitol, or proline (at a molar ratio of 1:1), and a variable amount of water, were used to extract the flavonoid aglycones: baicalein (1), scutellarein (3), wogonin (5), and oroxylin A (7), and their glycosides, baicalin (2), scutellarin (4), wogonoside (6) and oroxyloside (8) from the powdered bark of S. baicalensis. The chemical profile and yield of the extracts were determined using HPTLC and HPLC. The extractability of individual flavonoids was found to be influenced by the concentration of water (20-60%, w/w) in the NADES. Among the tested flavonoids, the extraction yield of baicalein (1), scutellarein (3), wogonin (5), oroxylin A (7) with NADES was 2 to 6 times that of aqueous methanol. However, the amount of their corresponding glycosides (baicalin (2), wogonoside (6) and oroxyloside (8)) extracted with NADES was only 1.5-1.8 times higher than with aqueous methanol. Interestingly, the more hydrophilic glycosides were less extracted than their corresponding aglycones despite the high hydrophilicity of the NADES. These results prove that NADES may be used for extraction of compounds with a wide range of hydrophilicity.


Subject(s)
Citric Acid/chemistry , Flavonoids/analysis , Scutellaria baicalensis/chemistry , Solvents/chemistry , Water/chemistry , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Glucose/chemistry , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Plant Extracts/chemistry , Proline/chemistry , Xylitol/chemistry , beta-Alanine/chemistry
18.
Molecules ; 25(2)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940875

ABSTRACT

The xylitol ester of hydrogenated rosin (XEHR) was obtained for the first time from biomass-based hydrogenated rosin and xylitol using an environmentally friendly, high-pressure CO2 catalytic synthesis. This compound is intended for use as an emulsifier for food. Analyses by ICP-AES showed the absence of heavy metal residues in the product, such that it met food standards. Fourier transform infrared and nuclear magnetic resonance spectroscopies together with gel permeation chromatography confirmed the successful esterification and the formation of a monoester and diester with molar masses of 427 and 772 g/mol. The emulsification of water/soybean oil mixtures by adding the XEHR was assessed at pH values of 4, 6.86, and 10 and in the presence of NaCl, KCl, MgCl2, and CaCl2. The XEHR was found to act as an emulsifier by reducing the interfacial tension of such mixtures to less than 2 mN/m under all conditions. The highest emulsifying activity index (9.52 m2/g) and emulsifying stability index (94.53%) were obtained after adding MgCl2 (100 mM). Particle size and confocal microscopy showed that the presence of salts gave a more uniform droplet size and a finer emulsion structure. The high viscosities of the emulsions containing salts also suggested a more cohesive oil droplet network.


Subject(s)
Emulsifying Agents/chemical synthesis , Esters/chemistry , Food Additives/chemical synthesis , Resins, Plant/chemistry , Xylitol/chemistry , Biomass , Carbon Dioxide/chemistry , Emulsifying Agents/analysis , Esters/analysis , Food Additives/analysis , Humans , Hydrogen-Ion Concentration , Hydrogenation , Magnesium Chloride/chemistry , Particle Size , Pressure , Soybean Oil/chemistry , Surface Tension , Water/chemistry , Xylitol/analysis
19.
Bioprocess Biosyst Eng ; 42(1): 83-92, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30264227

ABSTRACT

The present study evaluated 13 strains of yeast for ethanol and xylitol production from xylose. Among them, Spathaspora hagerdaliae UFMG-CM-Y303 produced ethanol yields (YP/S) of 0.25 g g- 1 and 0.39 g g- 1 under aerobic and microaerophilic conditions, respectively, from a mixture of glucose and xylose in flasks. A pH of 5.0 and an inoculum of 3.0 × 108 cells mL- 1r resulted in the highest ethanol yields. These conditions were tested in a bioreactor for fermenting a medium containing an enzymatic hydrolysate of sugarcane bagasse with 15.5 g L- 1 of glucose and 3 g L- 1 of xylose, and achieved a YP/S of 0.47 g g- 1, in relation to total available sugar. These results suggest that S. hagerdaliae UFMG-CM-Y303 has potential for use in second-generation ethanol studies.


Subject(s)
Cellulose/metabolism , Ethanol/chemistry , Glucose/chemistry , Saccharomycetales/metabolism , Saccharum/metabolism , Xylose/chemistry , Bioengineering/methods , Biomass , Bioreactors , Culture Media , Fermentation , Hydrogen-Ion Concentration , Kinetics , Lignin/chemistry , Saccharomyces cerevisiae/metabolism , Xylitol/chemistry
20.
Development ; 142(23): 4168-79, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26493404

ABSTRACT

Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research.


Subject(s)
Fluorescent Dyes/chemistry , Indicators and Reagents/chemistry , Microscopy, Fluorescence/methods , Plants/metabolism , Urea/chemistry , Xylitol/chemistry , Arabidopsis , Chlorophyll/chemistry , Cloning, Molecular , Fluorescence , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Microscopy, Fluorescence/instrumentation , Phloem , Photons , Plant Leaves/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL