Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 525
Filter
Add more filters

Publication year range
1.
Cell ; 172(4): 683-695.e15, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29425490

ABSTRACT

Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning.


Subject(s)
Calcium Signaling/physiology , Interneurons/metabolism , Learning/physiology , Nerve Net/metabolism , Neuronal Plasticity/physiology , Animals , Interneurons/cytology , Mice , Mice, Transgenic , N-Methylaspartate/metabolism , Nerve Net/cytology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
2.
J Neurosci ; 43(30): 5448-5457, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37419688

ABSTRACT

Activity-dependent changes in the number of AMPA-type glutamate receptors (AMPARs) at the synapse underpin the expression of LTP and LTD, cellular correlates of learning and memory. Post-translational ubiquitination has emerged as a key regulator of the trafficking and surface expression of AMPARs, with ubiquitination of the GluA1 subunit at Lys-868 controlling the post-endocytic sorting of the receptors into the late endosome for degradation, thereby regulating their stability at synapses. However, the physiological significance of GluA1 ubiquitination remains unknown. In this study, we generated mice with a knock-in mutation in the major GluA1 ubiquitination site (K868R) to investigate the role of GluA1 ubiquitination in synaptic plasticity, learning, and memory. Our results reveal that these male mice have normal basal synaptic transmission but exhibit enhanced LTP and deficits in LTD. They also display deficits in short-term spatial memory and cognitive flexibility. These findings underscore the critical roles of GluA1 ubiquitination in bidirectional synaptic plasticity and cognition in male mice.SIGNIFICANCE STATEMENT Subcellular targeting and membrane trafficking determine the precise number of AMPA-type glutamate receptors at synapses, processes that are essential for synaptic plasticity, learning, and memory. Post-translational ubiquitination of the GluA1 subunit marks AMPARs for degradation, but its functional role in vivo remains unknown. Here we demonstrate that the GluA1 ubiquitin-deficient mice exhibit an altered threshold for synaptic plasticity accompanied by deficits in short-term memory and cognitive flexibility. Our findings suggest that activity-dependent ubiquitination of GluA1 fine-tunes the optimal number of synaptic AMPARs required for bidirectional synaptic plasticity and cognition in male mice. Given that increases in amyloid-ß cause excessive ubiquitination of GluA1, inhibiting that GluA1 ubiquitination may have the potential to ameliorate amyloid-ß-induced synaptic depression in Alzheimer's disease.


Subject(s)
Neuronal Plasticity , Receptors, AMPA , Mice , Male , Animals , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Neuronal Plasticity/physiology , Synapses/physiology , Receptors, Glutamate/metabolism , Ubiquitination , Cognition , Hippocampus/metabolism
3.
Eur J Neurosci ; 60(3): 4362-4389, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38857895

ABSTRACT

The excitatory monosynaptic activation of hippocampal CA1 pyramidal cells is spatially segregated such that the proximal part of the apical dendritic tree in stratum radiatum (SR) receives input from the hippocampal CA3 region while the distal part in the stratum-lacunosum-moleculare (SLM) receives input mainly from the entorhinal cortex. The AMPA receptor-mediated (AMPA) signalling of SLM synapses in slices from neonatal rats was previously found to considerably differ from that of the SR synapses. In the present study, AMPA signalling of SLM synapses in 1-month-old rats has been examined, that is, when the hippocampus is essentially functionally mature. For the SR synapses, this time is characterized by a facilitatory shift in short-term plasticity, in the disappearance of labile postsynaptic AMPA signalling, a property thought to be important for early activity-dependent organization of neural circuits, and the expression of an adult form of long-term potentiation. We found that the SLM synapses alter their short-term plasticity similarly to that of the SR synapses. However, the labile postsynaptic AMPA signalling was not only maintained but substantially enhanced in the SLM synapses. The long-term potentiation observed was not of the adult form but like that of the neonatal SR synapses based on unsilencing of AMPA labile synapses. We propose that these features of the SLM synapses in the mature hippocampus will help to produce a flexible map of the multimodal sensory input reaching the SLM required for its conjunctive operation with the SR input to generate a proper functional output from the CA1 region.


Subject(s)
CA1 Region, Hippocampal , Glutamic Acid , Rats, Wistar , Receptors, AMPA , Synaptic Transmission , Animals , Rats , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/metabolism , Synaptic Transmission/physiology , Glutamic Acid/metabolism , Receptors, AMPA/metabolism , Neuronal Plasticity/physiology , Excitatory Postsynaptic Potentials/physiology , Synapses/physiology , Synapses/metabolism , Male , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Pyramidal Cells/physiology , Pyramidal Cells/metabolism , Patch-Clamp Techniques
4.
Arch Biochem Biophys ; 754: 109951, 2024 04.
Article in English | MEDLINE | ID: mdl-38452968

ABSTRACT

Glutamate excitotoxicity accompanies numerous brain pathologies, including traumatic brain injury, ischemic stroke, and epilepsy. Disturbances of the ion homeostasis, mitochondria dysfunction, and further cell death are considered the main detrimental consequences of excitotoxicity. It is well known that neurons demonstrate different vulnerability to pathological exposures. In this regard, neurons containing calcium-permeable AMPA receptors (CP-AMPARs) may show higher susceptibility to excitotoxicity due to an additional pathway of Ca2+ influx. Here, we demonstrate that neurons containing CP-AMPARs are characterized by the higher amplitude of the glutamate-induced elevation of intracellular Ca2+ concentration ([Ca2+]i) and slower restoration of [Ca2+]i level compared to non-CP-AMPA neurons. Moreover, we have found that NASPM, an antagonist of CP-AMPARs, significantly decreases the amplitude of the [Ca2+]i elevation induced by glutamate or selective AMPARs agonist, 5-fluorowillardiine. In contrast, the antagonists of NMDARs or KARs affect insignificantly. We have also described some peculiarities of Na+, K+, and H+ intracellular dynamics in neurons containing CP-AMPARs. In particular, the amplitude of [Na+]i elevation was lower compared to non-CP-AMPA neurons, whereas the amplitude of [K+]i decrease was higher. We have shown the significant inverse correlation between [K+]i and [Ca2+]i and between intracellular pH and [Na+]i in CP-AMPARs-containing and non-CP-AMPA neurons upon glutamate excitotoxicity. Our data indicate that CP-AMPARs-mediated Ca2+ influx and slow removal of Ca2+ from the cytosol may underlie the vulnerability of the CP-AMPARs-containing neurons to glutamate excitotoxicity. Further studies of the mechanisms mediating the disturbances in ion homeostasis are crucial for developing new approaches for protecting these neurons at brain pathologies.


Subject(s)
Calcium , Receptors, AMPA , Receptors, AMPA/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Calcium/metabolism , Neurons/metabolism , Glutamic Acid/metabolism , Homeostasis
5.
Purinergic Signal ; 20(2): 181-192, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37458955

ABSTRACT

L-Glutamate (L-Glu) is an amino acid present in the diet that plays a fundamental role in the central nervous system, as the main excitatory neurotransmitter participating in learning and memory processes. In addition, the nucleoside adenosine has a crucial role in L-Glu metabolism, by regulating the liberation of this neurotransmitter through four different receptors: A1, A2A, A2B and A3, which activate (A2A and A2B) or inhibit (A1 and A3) adenylate cyclase pathway. L-Glu at high concentrations can act as a neurotoxin and induce oxidative stress. The study of the oxidative stress correlated with an excess of L-Glu consumption during maternity is key to understand its effects on foetuses and neonates. Previous studies have shown that there is a change in the receptor levels in the brain of pregnant rats and their foetuses when mothers are administered L-Glu during gestation; however, its effect on the cerebellum is unknown. Cerebellum is known to be responsible for motor, cognitive and emotional functions, so its possible involvement after L-Glu consumption is an important issue to study. Therefore, the aim of the present work was to study the effect of L-Glu exposure during gestation and lactation on oxidative stress biomarkers and neurotransmitter receptors from the cerebellum of foetuses and neonates. After maternal L-Glu intake during gestation, oxidative stress was increased, as the ionotropic L-Glu receptors, and GluR1 AMPA subunit levels were altered in foetuses. A1 adenosine receptor suffered changes after L-Glu treatment during gestation, lactation or both, in lactating neonate cerebellum, while adenylate cyclase activity remain unaltered. Further studies will be necessary to elucidate the importance of L-Glu intake and its possible excitotoxicity in the cerebellum of Wistar rats during the pregnancy period and their involvement in long-term neurodegeneration.


Subject(s)
Glutamic Acid , Prenatal Exposure Delayed Effects , Humans , Animals , Rats , Female , Pregnancy , Glutamic Acid/metabolism , Lactation , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Rats, Wistar , Adenosine/metabolism , Receptors, AMPA , Adenylyl Cyclases/metabolism , Adenylyl Cyclases/pharmacology , Cerebellum/metabolism , Fetus/metabolism , Oxidative Stress , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology
6.
Cereb Cortex ; 33(5): 2342-2360, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35732315

ABSTRACT

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-d-aspartate) glutamate receptors are driving forces for synaptic transmission and plasticity at neocortical synapses. However, their distribution pattern in the adult rat neocortex is largely unknown and was quantified using freeze fracture replication combined with postimmunogold-labeling. Both receptors were co-localized at layer (L)4 and L5 postsynaptic densities (PSDs). At L4 dendritic shaft and spine PSDs, the number of gold grains detecting AMPA was similar, whereas at L5 shaft PSDs AMPA-receptors outnumbered those on spine PSDs. Their number was significantly higher at L5 vs. L4 PSDs. At L4 and L5 dendritic shaft PSDs, the number of gold grains detecting GluN1 was ~2-fold higher than at spine PSDs. The number of gold grains detecting the GluN1-subunit was higher for both shaft and spine PSDs in L5 vs. L4. Both receptors showed a large variability in L4 and L5. A high correlation between the number of gold grains and PSD size for both receptors and targets was observed. Both receptors were distributed over the entire PSD but showed a layer- and target-specific distribution pattern. The layer- and target-specific distribution of AMPA and GluN1 glutamate receptors partially contribute to the observed functional differences in synaptic transmission and plasticity in the neocortex.


Subject(s)
Glutamic Acid , Receptors, N-Methyl-D-Aspartate , Rats , Animals , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Glutamic Acid/metabolism , N-Methylaspartate/metabolism , Somatosensory Cortex/metabolism , Electrons , Receptors, Glutamate/metabolism , Synapses/metabolism
7.
Environ Res ; 252(Pt 1): 118831, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38580005

ABSTRACT

Significant levels of glyphosate, the world's most widely used herbicide, and its primary metabolites, AMPA and MPA, are detected in various human organs and body fluids, including blood. Several studies have associated the presence of glyphosate in humans with health problems, and effects on immune cells and their functions have been reported. However, the impact of this molecule and its metabolites on neutrophils, the most abundant leukocytes in the human bloodstream, is still poorly documented. We isolated neutrophils from human donor blood and investigated the effects of exposure to glyphosate, AMPA, and MPA on viability, energy metabolism, and essential antimicrobial functions in vitro. We observed that neutrophil viability was unaffected at the blood-relevant average concentrations of the general population and exposed workers, as well as at higher intoxication concentrations. Neutrophil energy metabolism was also not altered following exposure to the chemicals. However, while phagocytosis was unaffected, reactive oxygen species generation and CXCL8/IL-8 production were altered by exposure to the molecules. Alterations in function following exposure to glyphosate and metabolites differed according to the sex of the donors, which could be linked to glyphosate's known role as an endocrine disruptor. While ROS generation was increased in both sexes, male neutrophils exposed to glyphosate had increased intracellular production of CXCL8/IL-8, with no effect on female neutrophils. Conversely, exposure to the metabolites AMPA and MPA decreased extracellular production of this chemokine only in female neutrophils, with MPA also increasing intracellular production in male cells exposed to the chemoattractant N-formyl-methionine-leucyl-phenylalanine. Our study highlights the effects of glyphosate and its metabolites on the antimicrobial functions of neutrophils, which could be associated with health problems as future studies provide a better understanding of the risks associated with glyphosate use. Advances in knowledge will enable better and potentially stricter regulations to protect the public.


Subject(s)
Glycine , Glyphosate , Herbicides , Interleukin-8 , Neutrophils , Reactive Oxygen Species , Humans , Glycine/analogs & derivatives , Glycine/toxicity , Neutrophils/drug effects , Neutrophils/metabolism , Herbicides/toxicity , Reactive Oxygen Species/metabolism , Female , Male , Interleukin-8/metabolism , Adult , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Tetrazoles , Sex Factors , Isoxazoles , Organophosphonates
8.
Anesth Analg ; 138(5): 1094-1106, 2024 May 01.
Article in English | MEDLINE | ID: mdl-37319016

ABSTRACT

BACKGROUND: The ketamine metabolite (2R,6R)-hydroxynorketamine ([2R,6R]-HNK) has analgesic efficacy in murine models of acute, neuropathic, and chronic pain. The purpose of this study was to evaluate the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) dependence of (2R,6R)-HNK analgesia and protein changes in the hippocampus in murine pain models administered (2R,6R)-HNK or saline. METHODS: All mice were CD-1 IGS outbred mice. Male and female mice underwent plantar incision (PI) (n = 60), spared nerve injury (SNI) (n = 64), or tibial fracture (TF) (n = 40) surgery on the left hind limb. Mechanical allodynia was assessed using calibrated von Frey filaments. Mice were randomized to receive saline, naloxone, or the brain-penetrating AMPA blocker (1,2,3,4-Tetrahydro-6-nitro-2,3-dioxobenzo [f]quinoxaline-7-sulfonamide [NBQX]) before (2R,6R)-HNK 10 mg/kg, and this was repeated for 3 consecutive days. The area under the paw withdrawal threshold by time curve for days 0 to 3 (AUC 0-3d ) was calculated using trapezoidal integration. The AUC 0-3d was converted to percent antiallodynic effect using the baseline and pretreatment values as 0% and 100%. In separate experiments, a single dose of (2R,6R)-HNK 10 mg/kg or saline was administered to naive mice (n = 20) and 2 doses to PI (n = 40), SNI injury (n = 40), or TF (n = 40) mice. Naive mice were tested for ambulation, rearing, and motor strength. Immunoblot studies of the right hippocampal tissue were performed to evaluate the ratios of glutamate ionotropic receptor (AMPA) type subunit 1 (GluA1), glutamate ionotropic receptor (AMPA) type subunit 2 (GluA2), phosphorylated voltage-gated potassium channel 2.1 (p-Kv2.1), phosphorylated-calcium/calmodulin-dependent protein kinase II (p-CaMKII), brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-AKT), phosphorylated extracellular signal-regulated kinase (p-ERK), CXC chemokine receptor 4 (CXCR4), phosphorylated eukaryotic translation initiation factor 2 subunit 1 (p-EIF2SI), and phosphorylated eukaryotic translation initiation factor 4E (p-EIF4E) to glyceraldehyde 3-phosphate dehydrogenase (GAPDH). RESULTS: No model-specific gender difference in antiallodynic responses before (2R,6R)-HNK administration was observed. The antiallodynic AUC 0-3d of (2R,6R)-HNK was decreased by NBQX but not with pretreatment with naloxone or saline. The adjusted mean (95% confidence interval [CI]) antiallodynic effect of (2R,6R)-HNK in the PI, SNI, and TF models was 40.7% (34.1%-47.3%), 55.1% (48.7%-61.5%), and 54.7% (46.5%-63.0%), greater in the SNI, difference 14.3% (95% CI, 3.1-25.6; P = .007) and TF, difference 13.9% (95% CI, 1.9-26.0; P = .019) compared to the PI model. No effect of (2R,6R)-HNK on ambulation, rearing, or motor coordination was observed. Administration of (2R,6R)-HNK was associated with increased GluA1, GluA2, p-Kv2.1, and p-CaMKII and decreased BDNF ratios in the hippocampus, with model-specific variations in proteins involved in other pain pathways. CONCLUSIONS: (2R,6R)-HNK analgesia is AMPA-dependent, and (2R,6R)-HNK affected glutamate, potassium, calcium, and BDNF pathways in the hippocampus. At 10 mg/kg, (2R,6R)-HNK demonstrated a greater antiallodynic effect in models of chronic compared with acute pain. Protein analysis in the hippocampus suggests that AMPA-dependent alterations in BDNF-TrkB and Kv2.1 pathways may be involved in the antiallodynic effect of (2R,6R)-HNK.


Subject(s)
Ketamine , Animals , Female , Male , Mice , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Antidepressive Agents , Brain-Derived Neurotrophic Factor , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Glutamates/metabolism , Glutamates/pharmacology , Hippocampus , Ketamine/pharmacology , Ketamine/analogs & derivatives , Naloxone , Pain/metabolism
9.
J Neurosci ; 42(32): 6211-6220, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35790402

ABSTRACT

Exposure to nontraumatic noise in vivo drives long-lasting changes in auditory nerve synapses, which may influence hearing, but the induction mechanisms are not known. We mimicked activity in acute slices of the cochlear nucleus from mice of both sexes by treating them with high potassium, after which voltage-clamp recordings from bushy cells indicated that auditory nerve synapses had reduced EPSC amplitude, quantal size, and vesicle release probability (P r). The effects of high potassium were prevented by blockers of nitric oxide (NO) synthase and protein kinase A. Treatment with the NO donor, PAPA-NONOate, also decreased P r, suggesting NO plays a central role in inducing synaptic changes. To identify the source of NO, we activated auditory nerve fibers specifically using optogenetics. Strobing for 2 h led to decreased EPSC amplitude and P r, which was prevented by antagonists against ionotropic glutamate receptors and NO synthase. This suggests that the activation of AMPA and NMDA receptors in postsynaptic targets of auditory nerve fibers drives release of NO, which acts retrogradely to cause long-term changes in synaptic function in auditory nerve synapses. This may provide insight into preventing or treating disorders caused by noise exposure.SIGNIFICANCE STATEMENT Auditory nerve fibers undergo long-lasting changes in synaptic properties in response to noise exposure in vivo, which may contribute to changes in hearing. Here, we investigated the cellular mechanisms underlying induction of synaptic changes using high potassium and optogenetic stimulation in vitro and identified important signaling pathways using pharmacology. Our results suggest that auditory nerve activity drives postsynaptic depolarization through AMPA and NMDA receptors, leading to the release of nitric oxide, which acts retrogradely to regulate presynaptic neurotransmitter release. These experiments revealed that auditory nerve synapses are unexpectedly sensitive to activity and can show dramatic, long-lasting changes in a few hours that could affect hearing.


Subject(s)
Cochlear Nucleus , Nitric Oxide , Animals , Auditory Pathways/metabolism , Cochlear Nerve/physiology , Cochlear Nucleus/physiology , Female , Male , Mice , Neuronal Plasticity/physiology , Nitric Oxide/metabolism , Potassium/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Synaptic Transmission/physiology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
10.
J Neurochem ; 165(6): 809-826, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36444683

ABSTRACT

Key pathological features of Alzheimer's disease (AD) include build-up of amyloid ß (Aß), which promotes synaptic abnormalities and ultimately leads to neuronal cell death. Metabolic dysfunction is known to influence the risk of developing AD. Impairments in the leptin system have been detected in AD patients, which has fuelled interest in targeting this system to treat AD. Increasing evidence supports pro-cognitive and neuroprotective actions of leptin and these beneficial effects of leptin are mirrored by a bioactive leptin fragment (leptin116-130 ). Here we extend these studies to examine the potential cognitive enhancing and neuroprotective actions of 8 six-amino acid peptides (hexamers) derived from leptin116-130 . In this study, we show that four of the hexamers (leptin116-121, 117-122, 118-123 and 120-125 ) replicate the ability of leptin to promote α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking and facilitate hippocampal synaptic plasticity. Moreover, the pro-cognitive effects of the hexamers were verified in behavioural studies, with the administration of leptin117-122 enhancing performance in episodic memory tasks. The bioactive hexamers replicated the neuroprotective actions of leptin by preventing the acute hippocampal synapto-toxic effects of Aß, and the chronic effects of Aß on neuronal cell viability, Aß seeding and tau phosphorylation. These findings provide further evidence to support leptin and leptin-derived peptides as potential therapeutics for AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Animals , Amyloid beta-Peptides/metabolism , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Leptin/pharmacology , Alzheimer Disease/metabolism , Neuronal Plasticity/physiology , Hippocampus/metabolism , Disease Models, Animal
11.
J Neurochem ; 164(6): 786-812, 2023 03.
Article in English | MEDLINE | ID: mdl-36695027

ABSTRACT

mRNA translation is critical for regulation of various aspects of the nervous system. Ionotropic glutamate and gamma-aminobutyric acid type A (GABAA ) receptors are fundamental synaptic ion channels that control excitatory and inhibitory synaptic transmission, respectively. However, little is known about the translation of these receptors during brain development and function. By utilizing polysome profiling, a powerful tool for investigating translational machinery and mRNA translational states, we characterized the translational patterns of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA), and GABAA receptor subunits, and compared them with total mRNA and protein levels during mouse brain development, in different brain regions, and in response to behavioral stimuli. Most of the receptor subunits exhibited developmental changes at total mRNA, translation, and protein levels, among which translation of Gria1, Gria2, Grin1, Grin2a, Gabra1, and Gabrg2 contributed greatly to their protein levels. Most of the receptor subunits also displayed differentiated levels of total mRNA, translation, and protein in the prefrontal cortex and hippocampus, among which translation of Gria1, Gria2, Gabrb2, and Gabrg2 contributed to their protein levels. Finally, we showed that acute foot shock stress had a rapid influence in both the prefrontal cortex and hippocampus, with the prefrontal cortex displaying more changes at translational and protein levels. Notably, Grin2a is translationally repressed by stress which was followed by a decrease of GluN2A protein in both brain regions. Together, this study provides a new understanding of the translational patterns of critical ionotropic synaptic receptors during brain development and behavioral stress.


Subject(s)
Glutamic Acid , Receptors, GABA , Mice , Animals , Glutamic Acid/metabolism , Receptors, GABA/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Brain/metabolism , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , RNA, Messenger/metabolism
12.
J Neuroinflammation ; 20(1): 1, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36593485

ABSTRACT

Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFß levels and membrane expression of TGFß receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1ß which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFß in the EVs from MSCs, which activates TGFß receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1ß, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.


Subject(s)
Extracellular Vesicles , Hyperammonemia , Mesenchymal Stem Cells , Rats , Animals , Rats, Wistar , Inflammation/metabolism , Neuroinflammatory Diseases , Receptors, N-Methyl-D-Aspartate/metabolism , Hyperammonemia/therapy , Hyperammonemia/metabolism , NF-kappa B/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Hippocampus/metabolism , Cognition , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Transforming Growth Factor beta/metabolism
13.
Cell Mol Neurobiol ; 43(6): 2785-2799, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36689065

ABSTRACT

Abelson non-receptor tyrosine kinases (Abl1 and Abl2) are established cellular signaling proteins, implicated in cytoskeletal reorganization essential for modulation of cell morphology and motility. During development of the central nervous system, Abl kinases play fundamental roles in neurulation and neurite outgrowth, relaying information from axon guidance cues and growth factor receptors to promote cytoskeletal rearrangements. In mature neurons, Abl kinases localize to pre- and postsynaptic compartments and are involved in regulation of synaptic stability and plasticity. Although emerging evidence indicates interchangeability of these isoforms in managing of cellular functions, in healthy adult neurons, Abl1 contribution is less elucidated, while Abl2 is required for optimal synaptic functioning. Our previous study demonstrated compartmentalization of Abl1 to the presynapse and Abl2 to the postsynapse and characterized their modulatory effect on spontaneous excitatory synaptic transmission. Here, we further delineate the role of Abl2 on regulation of the postsynaptic component of miniature excitatory postsynaptic current (mEPSC). Our findings show that both acute and prolonged activation of Abl2, in line with reduction of mEPSC amplitude, also decrease AMPA and NMDA current amplitudes. In contrast with the current-detrimental effect, prolonged Abl2 activity stabilizes spines, particularly contributing to maintenance of active synapses at distal (perhaps apical) segments of dendrites. Hence, we propose that attenuation of ion currents via ionotropic glutamatergic receptors by Abl2 kinase derives from either reduction of the receptor sensitivity for glutamate or is due to alteration of channel gating mechanisms. Abl2 and excitatory postsynapses: Abl2 expression level affects active excitatory synapse density on distal dendrites, while Abl2 activity impacts current density through AMPA and NMDA receptors.


Subject(s)
Synapses , Synaptic Transmission , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Synaptic Transmission/physiology , Synapses/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism
14.
Cell Mol Neurobiol ; 43(4): 1619-1635, 2023 May.
Article in English | MEDLINE | ID: mdl-36002608

ABSTRACT

Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propoinic acid (AMPA) receptors instigates excitotoxicity via enhanced calcium influx in the neurons thus inciting deleterious consequences. Additionally, Endoplasmic Reticulum (ER) is pivotal in maintaining the intracellular calcium balance. Considering this, studying the aftermath of enhanced calcium uptake by neurons and its effect on ER environment can assist in delineating the pathophysiological events incurred by excitotoxicty. The current study was premeditated to decipher the role of ER pertaining to calcium homeostasis in AMPA-induced excitotoxicity. The findings showed, increased intracellular calcium levels (measured by flowcytometry and spectroflourimeter using Fura 2AM) in AMPA excitotoxic animals (male Sprague dawely rats) (intra-hippocampal injection of 10 mM AMPA). Further, ER resident proteins like calnexin, PDI and ERp72 were found to be upregulated, which further modulated the functioning of ER membrane calcium channels viz. IP3R, RyR, and SERCA pump. Altered calcium homeostasis further led to ER stress and deranged the protein folding capacity of ER post AMPA toxicity, which was ascertained by unfolded protein response (UPR) pathway markers such as IRE1α, eIF2α, and ATF6α. Chemical chaperone, 4-phenybutric acid (4-PBA), ameliorated the protein folding capacity and subsequent UPR markers. In addition, modulation of calcium channels and calcium regulating machinery of ER post 4-PBA administration restored the calcium homeostasis. Therefore the study reinforces the significance of ER stress, a debilitating outcome of impaired calcium homeostasis, under AMPA-induced excitotoxicity. Also, employing chaperone-based therapeutic approach to curb ER stress can restore the calcium imbalance in the neuropathological diseases.


Subject(s)
Calcium , Endoribonucleases , Male , Rats , Animals , Calcium/metabolism , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Protein Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Neurons/metabolism , Receptors, AMPA/metabolism , Calcium Channels/metabolism
15.
PLoS Biol ; 18(11): e3000680, 2020 11.
Article in English | MEDLINE | ID: mdl-33253166

ABSTRACT

Proopiomelanocortin (POMC) neurons are major regulators of energy balance and glucose homeostasis. In addition to being regulated by hormones and nutrients, POMC neurons are controlled by glutamatergic input originating from multiple brain regions. However, the factors involved in the formation of glutamatergic inputs and how they contribute to bodily functions remain largely unknown. Here, we show that during the development of glutamatergic inputs, POMC neurons exhibit enriched expression of the Efnb1 (EphrinB1) and Efnb2 (EphrinB2) genes, which are known to control excitatory synapse formation. In vivo loss of Efnb1 in POMC-expressing progenitors decreases the amount of glutamatergic inputs, associated with a reduced number of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptor subunits and excitability of these cells. We found that mice lacking Efnb1 in POMC-expressing progenitors display impaired glucose tolerance due to blunted vagus nerve activity and decreased insulin secretion. However, despite reduced excitatory inputs, mice lacking Efnb2 in POMC-expressing progenitors showed no deregulation of insulin secretion and only mild alterations in feeding behavior and gluconeogenesis. Collectively, our data demonstrate the role of ephrins in controlling excitatory input amount into POMC-expressing progenitors and show an isotype-specific role of ephrins on the regulation of glucose homeostasis and feeding.


Subject(s)
Ephrin-B1/metabolism , Glucose/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Brain/metabolism , Energy Metabolism/physiology , Ephrin-B1/physiology , Ephrin-B2/metabolism , Ephrin-B2/physiology , Excitatory Amino Acid Agents/metabolism , Homeostasis/physiology , Male , Mice , Mice, Knockout , N-Methylaspartate/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
16.
Proc Natl Acad Sci U S A ; 117(9): 4948-4958, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071234

ABSTRACT

Hebbian plasticity, comprised of long-term potentiation (LTP) and depression (LTD), allows neurons to encode and respond to specific stimuli; while homeostatic synaptic scaling is a counterbalancing mechanism that enables the maintenance of stable neural circuits. Both types of synaptic plasticity involve the control of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) abundance, which is modulated by AMPAR phosphorylation. To address the necessity of GluA2 phospho-Y876 in synaptic plasticity, we generated phospho-deficient GluA2 Y876F knock-in mice. We show that, while GluA2 phospho-Y876 is not necessary for Hebbian plasticity, it is essential for both in vivo and in vitro homeostatic upscaling. Bidirectional changes in GluA2 phospho-Y876 were observed during homeostatic scaling, with a decrease during downscaling and an increase during upscaling. GluA2 phospho-Y876 is necessary for synaptic accumulation of glutamate receptor interacting protein 1 (GRIP1), a crucial scaffold protein that delivers AMPARs to synapses, during upscaling. Furthermore, increased phosphorylation at GluA2 Y876 increases GluA2 binding to GRIP1. These results demonstrate that AMPAR trafficking during homeostatic upscaling can be gated by a single phosphorylation site on the GluA2 subunit.


Subject(s)
Homeostasis/physiology , Neuronal Plasticity/physiology , Receptors, AMPA/metabolism , Tyrosine/metabolism , Adaptor Proteins, Signal Transducing , Animals , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Phosphorylation , Protein Transport , Synapses/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
17.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37958673

ABSTRACT

The endocannabinoid system (ECS) is a new target for the development of retinal disease therapeutics, whose pathophysiology involves neurodegeneration and neuroinflammation. The endocannabinoid 2-arachidonoylglycerol (2-AG) affects neurons and microglia by activating CB1/CB2 cannabinoid receptors (Rs). The aim of this study was to investigate the effects of 2-AG on the CB1R expression/downregulation and retinal neurons/reactive microglia, when administered repeatedly (4 d), in three different paradigms. These involved the 2-AG exogenous administration (a) intraperitoneally (i.p.) and (b) topically and (c) by enhancing the 2-AG endogenous levels via the inhibition (AM11920, i.p.) of its metabolic enzymes (MAGL/ABHD6). Sprague Dawley rats were treated as mentioned above in the presence or absence of CB1/CB2R antagonists and the excitatory amino acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA). Immunohistochemistry, Western blot and a 2-AG level analyses were performed. The 2-AG repeated treatment (i.p.) induced the CB1R downregulation, abolishing its neuroprotective actions. However, 2-AG attenuated the AMPA-induced activation of microglia via the CB2R, as concurred by the AM630 antagonist effect. Topically administered 2-AG was efficacious as a neuroprotectant/antiapoptotic and anti-inflammatory agent. AM11920 increased the 2-AG levels providing neuroprotection against excitotoxicity and reduced microglial activation without affecting the CB1R expression. Our findings show that 2-AG, in the three paradigms studied, displays differential pharmacological profiles in terms of the downregulation of the CB1R and neuroprotection. All treatments, however, attenuated the activation of microglia via the CB2R activation, supporting the anti-inflammatory role of 2-AG in the retina.


Subject(s)
Endocannabinoids , Microglia , Rats , Animals , Endocannabinoids/pharmacology , Endocannabinoids/metabolism , Receptors, Cannabinoid/metabolism , Microglia/metabolism , Rats, Sprague-Dawley , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , Retina/metabolism , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism
18.
Eur J Neurosci ; 55(1): 18-31, 2022 01.
Article in English | MEDLINE | ID: mdl-34902209

ABSTRACT

In the central nervous system, the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling cascade has an established role in fine-tuning of synaptic transmission. In the present study, we asked which isoform of NO-sensitive guanylyl cyclase, NO-GC1 or NO-GC2, is responsible for generation of N-methyl-d-aspartate (NMDA)- and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-induced cGMP signals and which of the phosphodiesterases (PDEs) is responsible for degradation. To this end, we performed live cell fluorescence measurements of primary hippocampal neurons isolated from NO-GC isoform-deficient mice. Although both isoforms contributed to the NMDA- and AMPA-induced cGMP signals, NO-GC2 clearly played the predominant role. Whereas under PDE-inhibiting conditions the cGMP levels elicited by both glutamatergic ligands were comparable, NMDA-induced cGMP signals were clearly higher than the AMPA-induced ones in the absence of PDE inhibitors. Thus, AMPA-induced cGMP signals are more tightly controlled by PDE-mediated degradation than NMDA-induced signals. In addition, these findings are compatible with the existence of at least two different pools of cGMP in both of which PDE1 and PDE2-known to be highly expressed in the hippocampus-are mainly responsible for cGMP degradation. The finding that distinct pools of cGMP are equipped with different amounts of PDEs highlights the importance of PDEs for the shape of NO-induced cGMP signals in the central nervous system.


Subject(s)
N-Methylaspartate , Nitric Oxide , Animals , Cyclic GMP/metabolism , Hippocampus/metabolism , Mice , N-Methylaspartate/pharmacology , Nitric Oxide/metabolism , Phosphoric Diester Hydrolases/metabolism , Protein Isoforms/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
19.
Bioconjug Chem ; 33(9): 1654-1662, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35951365

ABSTRACT

Thiocyanate (SCN-) alters the potency of certain agonists for the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, and dysfunctions in AMPA receptor signaling are considered to underlie a number of neurological diseases. While humans may be exposed to SCN- from the environment, including food sources, a carrier-mediated system transports SCN- from the brain into the blood and is an important regulator of SCN- distribution in the central nervous system. The assessment of this SCN- efflux system in the brain would thus be useful for understanding the mechanisms underlying the neurotoxicity of SCN- and for elucidating the relationship between the efflux system and brain diseases. However, the currently available technique for studying SCN- efflux is severely limited by its invasiveness. Here, we describe the development of a SCN- protracer, 9-pentyl-6-[11C]thiocyanatopurine ([11C]1), to overcome this limitation. [11C]1 was synthesized by the reaction of the iodo-precursor and [11C]SCN- or the reaction of the disulfide precursor with [11C]NH4CN. The protracer [11C]1 entered the brain after intravenous injection into mice and was rapidly metabolized to [11C]SCN-, which was then eliminated from the brain. The efflux of [11C]SCN- was dose-dependently inhibited by perchlorate, a monovalent anion, and the highest dose caused an 82% reduction in the efflux rate. Our findings demonstrate that [11C]1 can be used for the noninvasive and quantitative assessment of the SCN- efflux system in the brain.


Subject(s)
Perchlorates , Receptors, AMPA , Animals , Anions , Brain/diagnostic imaging , Brain/metabolism , Disulfides/metabolism , Humans , Mice , Perchlorates/metabolism , Receptors, AMPA/metabolism , Thiocyanates/metabolism , Thiocyanates/pharmacology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
20.
Horm Behav ; 145: 105233, 2022 09.
Article in English | MEDLINE | ID: mdl-35878471

ABSTRACT

Following acute exercise, a temporal window exists wherein neuroplasticity is thought to be heightened. Although a number of studies have established that pairing this post-exercise period with motor training enhances learning, the mechanisms through which exercise-induced priming occurs are not well understood. Previously, we characterized a rodent model of acute exercise that generates significant enhancement in glutamatergic receptor phosphorylation as a possible mechanism to explain how exercise-induced priming might occur. However, whether these changes are stimulated by peripheral factors (e.g., glucocorticoids), central effects (e.g., brain-derived neurotrophic factor (BDNF), or a combination of the two remains unclear. Herein, we explored the possible individual and/or cumulative contribution corticosterone (CORT) and BDNF may have on glutamate receptor phosphorylation and synaptic surface expression. Tissue slices from the sensorimotor cortex were prepared and acutely (30 min) incubated with either CORT (200 nM), BDNF (20 ng/mL), or the simultaneous application of CORT and BDNF (CORT+BDNF). Immunoblotting with biotinylated synaptoneurosomes (which provide an enrichment of proteins from the synaptic surface) suggested divergent effects between CORT and BDNF. Acute CORT application enhanced NMDA- (GluN2A, B) and AMPA- (GluA1) receptor phosphorylation, whereas BDNF preferentially increased synaptic surface expression of both NMDA- and AMPA-receptor subunits. The combined effects of CORT+BDNF resulted in a unique subset of signaling patterns that favored phosphorylation in the absence of surface expression. Taken together, these data provide a mechanistic framework for how CORT and BDNF may alter glutamatergic synapses during exercise-induced priming.


Subject(s)
Brain-Derived Neurotrophic Factor , Corticosterone , Animals , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/pharmacology , Corticosterone/metabolism , Corticosterone/pharmacology , Hippocampus , Male , N-Methylaspartate/metabolism , N-Methylaspartate/pharmacology , Phosphorylation , Rats , Rats, Sprague-Dawley , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL