Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Emerg Infect Dis ; 27(2): 529-537, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33496218

RESUMEN

Multidrug resistance has been detected in the animal and zoonotic human pathogen Rhodococcus equi after mass macrolide/rifampin antibioprophylaxis in endemically affected equine farms in the United States. Multidrug-resistant (MDR) R. equi emerged upon acquisition of pRERm46, a conjugative plasmid conferring resistance to macrolides, lincosamides, streptogramins, and, as we describe, tetracycline. Phylogenomic analyses indicate that the increasing prevalence of MDR R. equi since it was first documented in 2002 is caused by a clone, R. equi 2287, attributable to coselection of pRErm46 with a chromosomal rpoBS531F mutation driven by macrolide/rifampin therapy. pRErm46 spillover to other R. equi genotypes has given rise to a novel MDR clone, G2016, associated with a distinct rpoBS531Y mutation. Our findings illustrate that overuse of antimicrobial prophylaxis in animals can generate MDR pathogens with zoonotic potential. MDR R. equi and pRErm46-mediated resistance are currently disseminating in the United States and are likely to spread internationally through horse movements.


Asunto(s)
Infecciones por Actinomycetales , Enfermedades de los Caballos , Rhodococcus equi , Rhodococcus , Infecciones por Actinomycetales/tratamiento farmacológico , Infecciones por Actinomycetales/epidemiología , Infecciones por Actinomycetales/veterinaria , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Enfermedades de los Caballos/epidemiología , Caballos , Macrólidos/farmacología , Rhodococcus equi/genética , Estados Unidos/epidemiología
2.
Environ Microbiol ; 22(7): 2858-2869, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32291839

RESUMEN

The use of mass antimicrobial treatment has been linked to the emergence of antimicrobial resistance in human and animal pathogens. Using whole-genome single-molecule real-time (SMRT) sequencing, we characterized genomic variability of multidrug-resistant Rhodococcus equi isolated from soil samples from 100 farms endemic for R. equi infections in Kentucky. We discovered the novel erm(51)-encoding resistance to MLSB in R. equi isolates from soil of horse-breeding farms. Erm(51) is inserted in a transposon (TnErm51) that is associated with a putative conjugative plasmid (pRErm51), a mobilizable plasmid (pMobErm51), or both enabling horizontal gene transfer to susceptible organisms and conferring high levels of resistance against MLSB in vitro. This new resistant genotype also carries a previously unidentified rpoB mutation conferring resistance to rifampicin. Isolates carrying both vapA and erm(51) were rarely found, indicating either a recent acquisition of erm(51) and/or impaired survival when isolates carry both genes. Isolates carrying erm(51) are closely related genetically and were likely selected by antimicrobial exposure in the environment.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Rhodococcus equi/efectos de los fármacos , Rhodococcus equi/genética , Animales , Elementos Transponibles de ADN/genética , Granjas , Transferencia de Gen Horizontal , Genoma Bacteriano/genética , Caballos , Lincosamidas/farmacología , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Estreptogramina B/farmacología , Estreptogramina Grupo B/farmacología , Virginiamicina/farmacología
3.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32169935

RESUMEN

Conjugation is one of the main mechanisms involved in the spread and maintenance of antibiotic resistance in bacterial populations. We recently showed that the emerging macrolide resistance in the soilborne equine and zoonotic pathogen Rhodococcus equi is conferred by the erm(46) gene carried on the 87-kb conjugative plasmid pRErm46. Here, we investigated the conjugal transferability of pRErm46 to 14 representative bacteria likely encountered by R. equi in the environmental habitat. In vitro mating experiments demonstrated conjugation to different members of the genus Rhodococcus as well as to Nocardia and Arthrobacter spp. at frequencies ranging from ∼10-2 to 10-6 pRErm46 transfer was also observed in mating experiments in soil and horse manure, albeit at a low frequency and after prolonged incubation at 22 to 30°C (environmental temperatures), not 37°C. All transconjugants were able to transfer pRErm46 back to R. equi Conjugation could not be detected with Mycobacterium or Corynebacterium spp. or several members of the more distant phylum Firmicutes such as Enterococcus, Streptococcus, or Staphylococcus Thus, the pRErm46 host range appears to span several actinobacterial orders with certain host restriction within the Corynebacteriales All bacterial species that acquired pRErm46 expressed increased macrolide resistance with no significant deleterious impact on fitness, except in the case of Rhodococcus rhodnii Our results indicate that actinobacterial members of the environmental microbiota can both acquire and transmit the R. equi pRErm46 plasmid and thus potentially contribute to the maintenance and spread of erm(46)-mediated macrolide resistance in equine farms.IMPORTANCE This study demonstrates the efficient horizontal transfer of the Rhodococcus equi conjugative plasmid pRErm46, recently identified as the cause of the emerging macrolide resistance among equine isolates of this pathogen, to and from different environmental Actinobacteria, including a variety of rhodococci as well as Nocardia and Arthrobacter spp. The reported data support the notion that environmental microbiotas may act as reservoirs for the endemic maintenance of antimicrobial resistance in an antibiotic pressurized farm habitat.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Macrólidos/farmacología , Rhodococcus equi/genética , Actinobacteria/genética , Plásmidos/genética
4.
J Vet Diagn Invest ; 36(1): 46-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37968872

RESUMEN

Canine respiratory coronavirus (CRCoV) is one of the main causative agents of canine infectious respiratory disease (CIRD), an illness whose epidemiology is poorly understood. We assessed the prevalence, risk factors, and genetic characterization of CRCoV in privately owned dogs in the Southeastern United States. We PCR-screened 189 nasal swabs from dogs with and without CIRD clinical signs for 9 CIRD-related pathogens, including CRCoV; 14% of dogs, all diagnosed with CIRD, were positive for CRCoV, with a significantly higher rate of cases in younger dogs and during warmer weather. Notably, the presence of CRCoV, alone or in coinfection with other CIRD pathogens, was statistically associated with a worse prognosis. We estimated a CRCoV seroprevalence of 23.7% retrospectively from 540 serum samples, with no statistical association to dog age, sex, or season, but with a significantly higher presence in urban counties. Additionally, the genomes of 6 CRCoVs were obtained from positive samples using an in-house developed targeted amplicon-based approach specific to CRCoV. Subsequent phylogeny clustered their genomes in 2 distinct genomic groups, with most isolates sharing a higher similarity with CRCoVs from Sweden and only 1 more closely related to CRCoVs from Asia. We provide new insights into CIRD and CRCoV epidemiology in the Southeastern United States and further support the association of CRCoV with more severe cases of CIRD. Additionally, we developed and successfully tested a new amplicon-based approach for whole-genome sequencing of CRCoV that can be used to further investigate the genetic diversity within CRCoVs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Canino , Enfermedades de los Perros , Infecciones del Sistema Respiratorio , Perros , Animales , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/veterinaria , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Coronavirus Canino/genética , Estudios Seroepidemiológicos , Estudios Retrospectivos , Sudeste de Estados Unidos/epidemiología
5.
Animals (Basel) ; 14(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338088

RESUMEN

GITDs are among the most common causes of death in adult and young horses in the United States (US). Previous studies have indicated a connection between GITDs and the equine gut microbiome. However, the low taxonomic resolution of the current microbiome sequencing methods has hampered the identification of specific bacterial changes associated with GITDs in horses. Here, we have compared TEHC, a new approach for 16S rRNA gene selection and sequencing, with conventional 16S rRNA gene amplicon sequencing for the characterization of the equine fecal microbiome. Both sequencing approaches were used to determine the fecal microbiome of four adult horses and one commercial mock microbiome. Our results show that TEHC yielded significantly more operational taxonomic units (OTUs) than conventional 16S amplicon sequencing when the same number of reads were used in the analysis. This translated into a deeper and more accurate characterization of the fecal microbiome when the samples were sequenced with TEHC according to the relative abundance analysis. Alpha and beta diversity metrics corroborated these findings and demonstrated that the microbiome of the fecal samples was significantly richer when sequenced with TEHC compared to 16S amplicon sequencing. Altogether, our study suggests that the TEHC strategy provides a more extensive characterization of the fecal microbiome of horses than the current alternative based on the PCR amplification of a portion of the 16S rRNA gene.

6.
Viruses ; 15(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37896821

RESUMEN

Outbreaks of the immunosuppressive infectious bursal disease (IBD) are frequently reported worldwide, despite the vaccination regimes. A 2009 Californian IBD outbreak caused by rA and rB isolates was described as very virulent (vv) IBD virus (IBDV); however, molecular factors beyond this virulence were not fully uncovered. Therefore, segments of both isolates were amplified, successfully cloned, whole genome sequenced by Next Generation Sequencing, genotyped, and the leading virulence factors were entirely investigated in terms of phylogenetic and amino acid analysis and protein modeling for positive selection orientation and interaction analysis. rA and rB isolates displayed the highest amino acid identity (97.84-100%) with Genotype 3 strains. Interestingly, rA and rB contained all virulence hallmarks of hypervariable (HVR), including 222A, 242I, 249Q, 256I, 284A, 286T, 294I, 299S, and 318G, as well as the serine-rich heptapeptide sequence. Moreover, we pinpointed the A3B2 genotype of rA and rB, predominant in non-reassortants, and we highlighted the absence of recombination events. Furthermore, gene-wise phylogenetic analysis showed the entire genes of rA and rB clustered with the vvIBDVs and emphasized their share in IBDV virulence. VP5 showed a virulence marker, MLSL (amino acid sequence). VP2 encountered three significant novel mutations apart from the HVR, including G163E in rA and Y173C and V178A in rB, all residing within interacting motifs. VP4 contained 168Y, 173N, 203S, and 239D characteristic for the vv phenotype. A235V mutation was detected at the dsRNA binding domain of VP3. In VP1, the TDN triplet and the mutation (V4I) were detected, characteristic of hypervirulence occurring at the N-terminus responsible for protein priming. Although selection analysis revealed seven sites, codon 222 was the only statistically significant selection site. The VP2 modeling of rA and rB highlighted great structure fitness, with 96.14% Ramachandran favored positioning including the 222A, i.e., not influencing the structure stability. The 222A was found to be non-interface surface residue, associated with no interaction with the attachment-mediated ligand motif. Our findings provide pivotal insights into the evolution and underlying virulence factors and will assist in the development of control strategies via sequence-based continuous monitoring for the early detection of novel vv strains.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades de las Aves de Corral , Animales , Virulencia/genética , Filogenia , Incidencia , Brotes de Enfermedades , Secuenciación Completa del Genoma , Factores de Virulencia , Aminoácidos/genética , Pollos , Infecciones por Birnaviridae/epidemiología , Infecciones por Birnaviridae/veterinaria , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/química
7.
Viruses ; 15(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38005869

RESUMEN

Avian reovirus (ARV) is an emerging pathogen which causes significant economic challenges to the chicken and turkey industry in the USA and globally, yet the molecular characterization of most ARV strains is restricted to a single particular gene, the sigma C gene. The genome of arthrogenic reovirus field isolates (R18-37308 and R18-38167), isolated from broiler chickens in North Carolina (NC), USA in 2018, was sequenced using long-read next-generation sequencing (NGS). The isolates were genotyped based on the amino acid sequence of sigma C (σC) followed by phylogenetic and amino acid analyses of the other 11 genomically encoded proteins for whole genomic constellation and genetic variation detection. The genomic length of the NC field strains was 23,494 bp, with 10 dsRNA segments ranging from 3959 bp (L1) to 1192 bp (S4), and the 5' and 3' untranslated regions (UTRs) of all the segments were found to be conserved. R18-37308 and R18-38167 were found to belong to genotype (G) VI based on the σC analysis and showed nucleotide and amino acid sequence identity ranging from 84.91-98.47% and 83.43-98.46%, respectively, with G VI strains. Phylogenetic analyses of individual genes of the NC strains did not define a single common ancestor among the available completely sequenced ARV strains. Nevertheless, most sequences supported the Chinese strain LY383 as a probable ancestor of these isolates. Moreover, amino acid analysis revealed multiple amino acid substitution events along the entirety of the genes, some of which were unique to each strain, which suggests significant divergence owing to the accumulation of point mutations. All genes from R18-37308 and R18-38167 were found to be clustered within genotypic clusters that included only ARVs of chicken origin, which negates the possibility of genetic pooling or host variation. Collectively, this study revealed sequence divergence between the NC field strains and reference ARV strains, including the currently used vaccine strains could help updating the vaccination regime through the inclusion of these highly divergent circulating indigenous field isolates.


Asunto(s)
Artritis , Orthoreovirus Aviar , Enfermedades de las Aves de Corral , Infecciones por Reoviridae , Animales , Orthoreovirus Aviar/genética , Pollos , Filogenia , North Carolina , Genoma Viral , Artritis/genética , Genómica , Aminoácidos/genética
8.
Antibiotics (Basel) ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37998833

RESUMEN

Decades of antimicrobial overuse to treat respiratory disease in foals have promoted the emergence and spread of zoonotic multidrug-resistant (MDR) Rhodococcus equi worldwide. Three main R. equi MDR clonal populations-2287, G2106, and G2017-have been identified so far. However, only clones 2287 and G2016 have been isolated from sick animals, with clone 2287 being the main MDR R. equi recovered. The genetic mechanisms that make this MDR clone superior to the others at infecting foals are still unknown. Here, we performed a deep genetic characterization of the accessory genomes of 207 R. equi isolates, and we describe IME2287, a novel genetic element in the accessory genome of clone 2287, potentially involved in the maintenance and spread of this MDR population over time. IME2287 is a putative self-replicative integrative mobilizable element (IME) carrying a DNA replication and partitioning operon and genes encoding its excision and integration from the R. equi genome via a serine recombinase. Additionally, IME2287 encodes a protein containing a Toll/interleukin-1 receptor (TIR) domain that may inhibit TLR-mediated NF-kB signaling in the host and a toxin-antitoxin (TA) system, whose orthologs have been associated with antibiotic resistance/tolerance, virulence, pathogenicity islands, bacterial persistence, and pathogen trafficking. This new set of genes may explain the success of clone 2287 over the other MDR R. equi clones.

9.
Pathogens ; 12(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37887747

RESUMEN

To enhance the efficacy of the current Newcastle disease vaccine, we have selected potential adjuvants that target well-characterized pattern recognition receptors: the toll-like receptors (TLRs). Imiquimod is a small-molecule activator of TLR7, which is a sensor of dsDNA. ODN-1826 is a mimetic of CpG DNA and ligates TLR21 (a chicken homologue of TLR9 in mammals). The activation of TLRs leads to antiviral responses, including the induction of type I interferons (IFNs). In this study, birds were vaccinated intranasally with a live LaSota strain with or without imiquimod or ODN-1826 (50 µg/bird). Two weeks after vaccination, the birds were challenged with a virulent Newcastle disease virus (chicken/CA/212676/2002). Both adjuvants (imiquimod or ODN-1826) induced higher and more uniform antibody titers among vaccinated birds compared with the live vaccine-alone group. In addition, adjuvanted vaccines demonstrated greater protective efficacy in terms of the reduction in virus-shedding titer and the number of birds shedding the challenge virus at 2 and 4 days post-challenge. A differential expression of antiviral and immune-related genes was observed among groups from tissues (Harderian gland, trachea, cecal tonsil, and spleen) collected 1 and 3 days after treatment. These results demonstrate the potential of TLR-targeted adjuvants as mucosal vaccine enhancers and warrant a further characterization of immune correlates and optimization for efficacy.

10.
PLoS One ; 17(11): e0277659, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36449522

RESUMEN

Whole-genome sequencing (WGS) data have become an integral component of public health investigations and clinical diagnostics. Still, many veterinary diagnostic laboratories cannot afford to implement next generation sequencing (NGS) due to its high cost and the lack of bioinformatic knowledge of the personnel to analyze NGS data. Trying to overcome these problems, and make NGS accessible to every diagnostic laboratory, thirteen veterinary diagnostic laboratories across the United States (US) initiated the assessment of Illumina iSeq100 sequencing platform for whole genome sequencing of important zoonotic foodborne pathogens Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The work presented in this manuscript is a continuation of this multi-laboratory effort. Here, seven AAVLD accredited diagnostic laboratories explored a further reduction in sequencing costs and the usage of user-friendly platforms for genomic data analysis. Our investigation showed that the same genomic library quality could be achieved by using a quarter of the recommended reagent volume and, therefore a fraction of the actual price, and confirmed that Illumina iSeq100 is the most affordable sequencing technology for laboratories with low WGS demand. Furthermore, we prepared step-by-step protocols for genomic data analysis in three popular user-friendly software (BaseSpace, Geneious, and GalaxyTrakr), and we compared the outcomes in terms of genome assembly quality, and species and antimicrobial resistance gene (AMR) identification. No significant differences were found in assembly quality, and the three analysis methods could identify the target bacteria species. However, antimicrobial resistance genes were only identified using BaseSpace and GalaxyTrakr; and GalaxyTrakr was the best tool for this task.


Asunto(s)
Listeria , Biología Computacional , Secuenciación Completa del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Salmonella , Escherichia coli/genética , Antibacterianos
11.
Front Vet Sci ; 8: 703414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490395

RESUMEN

The development of antimicrobial resistant bacteria and the lack of novel antibiotic strategies to combat those bacteria is an ever-present problem in both veterinary and human medicine. The goal of this study is to evaluate platelet lysate (PL) as a biological alternative antimicrobial product. Platelet lysate is an acellular platelet-derived product rich in growth factors and cytokines that is manufactured via plateletpheresis and pooled from donor horses. In the current study, we sought to define the antimicrobial properties of PL on select gram-positive and gram-negative bacteria. Results from an end-point in vitro assay showed that PL did not support bacterial growth, and in fact significantly reduced bacterial content compared to normal growth media. An in vitro assay was then utilized to further determine the effects on bacterial growth dynamics and showed that all strains exhibited a slower growth rate and lower yield in the presence of PL. The specific effects of PL were unique for each bacterial strain: E. coli and P. aeruginosa growth was affected in a concentration-dependent manner, such that higher amounts of PL had a greater effect, while this was not true for S. aureus or E. faecalis. Furthermore, the onset of exponential growth was delayed for E. coli and P. aeruginosa in the presence of PL, which has significant clinical implications for developing a dosing schedule. In conclusion, our findings demonstrate the potential value of PL as a broad-spectrum antimicrobial that would offer an alternative to traditional antibiotics for the treatment of bacterial infection in equine species.

12.
Microbiol Mol Biol Rev ; 85(2)2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33853933

RESUMEN

The development and spread of antimicrobial resistance are major concerns for human and animal health. The effects of the overuse of antimicrobials in domestic animals on the dissemination of resistant microbes to humans and the environment are of concern worldwide. Rhodococcus equi is an ideal model to illustrate the spread of antimicrobial resistance at the animal-human-environment interface because it is a natural soil saprophyte that is an intracellular zoonotic pathogen that produces severe bronchopneumonia in many animal species and humans. Globally, R. equi is most often recognized as causing severe pneumonia in foals that results in animal suffering and increased production costs for the many horse-breeding farms where the disease occurs. Because highly effective preventive measures for R. equi are lacking, thoracic ultrasonographic screening and antimicrobial chemotherapy of subclinically affected foals have been used for controlling this disease during the last 20 years. The resultant increase in antimicrobial use attributable to this "screen-and-treat" approach at farms where the disease is endemic has likely driven the emergence of multidrug-resistant (MDR) R. equi in foals and their environment. This review summarizes the factors that contributed to the development and spread of MDR R. equi, the molecular epidemiology of the emergence of MDR R. equi, the repercussions of MDR R. equi for veterinary and human medicine, and measures that might mitigate antimicrobial resistance at horse-breeding farms, such as alternative treatments to traditional antibiotics. Knowledge of the emergence and spread of MDR R. equi is of broad importance for understanding how antimicrobial use in domestic animals can impact the health of animals, their environment, and human beings.


Asunto(s)
Infecciones por Actinomycetales/tratamiento farmacológico , Infecciones por Actinomycetales/epidemiología , Antibacterianos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Rhodococcus equi/efectos de los fármacos , Animales , Humanos , Suelo
13.
Front Microbiol ; 12: 667356, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880834

RESUMEN

The Pasteurellaceae family has been associated with fatal diseases in numerous avian species. Several new taxa within this family, including Bisgaard taxon 40, have been recently described in wild birds, but their genomic characteristics and pathogenicity are not well understood. We isolated Bisgaard taxon 40 from four species of seabirds, including one sampled during a mass, multi-species mortality event in Florida, United States. Here, we present a comprehensive phenotypic and genetic characterization of Bisgaard taxon 40 and comparative genomic analysis with reference strains from the Pasteurellaceae family, aiming at determining its phylogenetic position, antimicrobial susceptibility profile, and identifying putative virulence factors. In silico multilocus sequence-based and whole-genome-based phylogenetic analysis clustered all Bisgaard taxon 40 strains together on a distinct branch separated from the other members of the Pasteurellaceae family, indicating that Bisgaard taxon 40 could represent a new genus. These findings were further supported by protein similarity analyses using the concatenation of 31 conserved proteins and other taxonomic approaches such as the percentage of conserved protein test. Additionally, several putative virulence factors were identified, including those associated with adhesion (capsule, ompA, ompH) and colonization (exbD, fur, galU, galE, lpxA, lpxC, and kdsA) of the host and a cytolethal distending toxin (cdt), which may have played a role in disease development leading to the mortality event. Considerably low minimum inhibitory concentrations (MICs) were found for all the drugs tested, in concordance with the absence of antimicrobial resistance genes in these genomes. The novel findings of this study highlight genomic and phenotypic characteristics of this bacterium, providing insights into genome evolution and pathogenicity. We propose a reclassification of these organisms within the Pasteurellaceae family, designated as Mergibacter gen. nov., with Mergibacter septicus sp. nov. as the type species. The type strain is Mergibacter septicus A25201T (=DSM 112696).

14.
Vet Microbiol ; 242: 108571, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32122585

RESUMEN

BACKGROUND: Rhodococcus equi (R. equi) infections are endemic in many horse facilities in the United States resulting significant economic loses annually. Currently, there is no commercial vaccine available and the emergence of isolates that are resistant to the current treatment and prophylaxis using antibiotics prompts closer surveillance of this pathogen. OBJECTIVE: This study compares three different genotyping techniques, Pulsed Field Gel Electrophoresis (PFGE), Multilocus Sequence Typing (MLST) and whole genome SNP-based phylogeny to determine the most accurate method to monitor the spread of macrolide-and-rifampin-resistant R. equi. METHODS: 16 macrolide and rifampin-resistant and 6 susceptible R. equi and their Illumina Miseq whole genome sequences were used in this study. The isolates were sub-typed by PFGE with VspI and a dendrogram based on their similarities generated. Additionally, three phylogenetic trees were constructed using CSI phylogeny on (i) whole genome sequences (WGS), (ii) in silico MLST sequences and (iii) MLST sequences obtained after PCR-amplification and Sanger sequencing. RESULTS: PFGE identified 18 different genetic profiles and grouped the 22 isolates into 3 clusters independently of their susceptibilities. The phylogenetic trees built from WGS and MLST data showed similar topology, separating the isolates into 2 major clades in accordance with their susceptibility profiles (susceptible and resistant). However, only the trees generated with next generation sequencing data could detect the clonality of the resistant isolates.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Electroforesis en Gel de Campo Pulsado , Caballos/microbiología , Tipificación de Secuencias Multilocus , Rhodococcus equi/efectos de los fármacos , Secuenciación Completa del Genoma , Infecciones por Actinomycetales/microbiología , Infecciones por Actinomycetales/veterinaria , Animales , Técnicas de Tipificación Bacteriana , Técnicas de Genotipaje , Enfermedades de los Caballos/microbiología , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Filogenia , Rhodococcus equi/clasificación , Rifampin/farmacología , Análisis de Secuencia de ADN
15.
Vet Microbiol ; 235: 110-117, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31282368

RESUMEN

Bovine Respiratory Disease (BRD) is a major threat to animal health and welfare in the cattle industry. Strains of Mannheimia haemolytica (Mh) that are resistant to multiple classes of antimicrobials are becoming a major concern in the beef industry, as the frequency of isolation of these strains has been increasing. Mobile genetic elements, such as integrative conjugative elements (ICE), are frequently implicated in this rapid increase in multi-drug resistance. The objectives of the current study were to determine the genetic relationship between the isolates collected at arrival before metaphylaxis and at revaccination after metaphylaxis, to identify which resistance genes might be present in these isolates, and to determine if they were carried on an ICE. Twenty calves culture positive for Mh at arrival and revaccination were identified, and a total of 48 isolates with unique susceptibility profiles (26 from arrival, and 22 from revaccination) were submitted for whole-genome sequencing (WGS). A phylogenetic tree was constructed, showing the arrival isolates falling into four clades, and all revaccination isolates within one clade. All revaccination isolates, and one arrival isolate, were positive for the presence of an ICE. Three different ICEs with resistance gene modules were identified. The resistance genes aphA1, strA, strB, sul2, floR, erm42, tetH/R, aadB, aadA25, blaOXA-2, msrE, mphE were all located within an ICE. The gene bla-ROB1 was also present in the isolates, but was not located within an ICE.


Asunto(s)
Antibacterianos/farmacología , Bovinos/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Mannheimia haemolytica/efectos de los fármacos , Mannheimia haemolytica/genética , Pasteurelosis Neumónica/microbiología , Animales , Antibacterianos/uso terapéutico , Disacáridos/uso terapéutico , Variación Genética , Genoma Bacteriano , Compuestos Heterocíclicos/uso terapéutico , Inmunización Secundaria , Secuencias Repetitivas Esparcidas , Mannheimia haemolytica/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Pasteurelosis Neumónica/tratamiento farmacológico , Filogenia , Vacunación , Secuenciación Completa del Genoma
16.
mBio ; 10(5)2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31615959

RESUMEN

Antibiotic use has been linked to changes in the population structure of human pathogens and the clonal expansion of multidrug-resistant (MDR) strains among healthcare- and community-acquired infections. Here we present a compelling example in a veterinary pathogen, Rhodococcus equi, the causative agent of a severe pulmonary infection affecting foals worldwide. We show that the erm(46) gene responsible for emerging macrolide resistance among equine R. equi isolates in the United States is part of a 6.9-kb transposable element, TnRErm46, actively mobilized by an IS481 family transposase. TnRErm46 is carried on an 87-kb conjugative plasmid, pRErm46, transferable between R. equi strains at frequencies up to 10-3 The erm(46) gene becomes stabilized in R. equi by pRErm46's apparent fitness neutrality and wholesale TnRErm46 transposition onto the host genome. This includes the conjugally exchangeable pVAPA virulence plasmid, enabling the possibility of cotransfer of two essential traits for survival in macrolide-treated foals in a single mating event. Despite its high horizontal transfer potential, phylogenomic analyses show that erm(46) is paradoxically confined to a specific R. equi clone, 2287. R. equi 2287 also carries a unique rpoBS531F mutation conferring high-level resistance to rifampin, systematically administered together with macrolides against rhodococcal pneumonia on equine farms. Our data illustrate that under sustained combination therapy, several independent "founder" genetic events are concurrently required for resistance, limiting not only its emergence but also, crucially, horizontal spread, ultimately determining multiresistance clonality.IMPORTANCE MDR clades arise upon acquisition of resistance traits, but the determinants of their clonal expansion remain largely undefined. Taking advantage of the unique features of Rhodococcus equi infection control in equine farms, involving the same dual antibiotic treatment since the 1980s (a macrolide and rifampin), this study sheds light into the determinants of multiresistance clonality and the importance of combination therapy in limiting the dissemination of mobile resistance elements. Clinically effective therapeutic alternatives against R. equi foal pneumonia are currently lacking, and the identified macrolide-rifampin MDR clone 2287 has serious implications. Still at early stages of evolution and local spread, R. equi 2287 may disseminate globally, posing a significant threat to the equine industry and, also, public health due to the risk of zoonotic transmission. The characterization of the 2287 clone and its resistance determinants will enable targeted surveillance and control interventions to tackle the emergence of MDR R. equi.


Asunto(s)
Antibacterianos/farmacología , Rhodococcus equi/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Rhodococcus equi/efectos de los fármacos , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA