Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 19(46): e2304031, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37455347

RESUMEN

Amyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-ß peptide (Aß) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid. In this study, it is shown that forming amyloid-like nanofibrils is an inherent property preserved by various spider silk proteins (spidroins). Both spidroins and Aß capped by spidroin N- and C-terminal domains, can assemble into macroscopic spider silk-like fibers that consist of straight nanofibrils parallel to the fiber axis as observed in native spider silk. While Aß forms amyloid nanofibrils through a nucleation-dependent pathway and exhibits strong cytotoxicity and seeding effects, spidroins spontaneously and rapidly form amyloid-like nanofibrils via a non-nucleation-dependent polymerization pathway that involves lateral packing of fibrils. Spidroin nanofibrils share amyloid-like properties but lack strong cytotoxicity and the ability to self-seed or cross-seed human amyloidogenic peptides. These results suggest that spidroins´ unique primary structures have evolved to allow functional properties of amyloid, and at the same time direct their fibrillization pathways to avoid formation of cytotoxic intermediates.


Asunto(s)
Fibroínas , Arañas , Humanos , Animales , Seda/química , Fibroínas/química , Polimerizacion , Amiloide , Péptidos beta-Amiloides/metabolismo , Arañas/metabolismo
2.
PLoS One ; 14(2): e0212648, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30794655

RESUMEN

Senile plaques are well-known hallmarks of Alzheimer's Diseases (AD). However, drugs targeting tangles of the protein tau and plaques of ß-amyloid have no significant effect on disease progression, and the studies on the underlying mechanism of AD remain in high demand. Growing evidence supports the protective role of senile plaques in local inflammation driven by S100A9. We herein demonstrate that oleic acid (OA) micelles interact with hen egg white lysozyme (HEWL) and promote its amyloid formation. Consequently, SH-SY5Y cell line and mouse neural stem cells are rescued from OA toxicity by co-aggregation of OA and HEWL. Using atomic force microscopy in combination with fluorescence microscopy, we revealed that HEWL forms round-shaped aggregates in the presence of OA micelles instead of protofibrils of HEWL alone. These HEWL amyloids act as a sink for toxic OA micelles and their co-aggregate form large clumps, suggesting a protective function in amyloid and OA cytotoxicity.


Asunto(s)
Amiloide/química , Micelas , Muramidasa/química , Ácido Oléico/química , Enfermedad de Alzheimer/metabolismo , Animales , Línea Celular , Pollos , Humanos , Muramidasa/metabolismo , Ácido Oléico/metabolismo , Agregación Patológica de Proteínas/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA