Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Am Chem Soc ; 146(17): 11887-11896, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38529556

RESUMEN

Monitoring the spontaneous reconstruction of the surface of metal oxides under electrocatalytic reaction conditions is critical to identifying the active sites and establishing structure-activity relationships. Here, we report on a self-terminated surface reconstruction of Ruddlesden-Popper lanthanum nickel oxide (La2NiO4+δ) that occurs spontaneously during reaction with alkaline electrolyte species. Using a combination of high-resolution scanning transmission electron microscopy (HR-STEM), surface-sensitive X-ray photoelectron spectroscopy (XPS), and soft X-ray absorption spectroscopy (sXAS), as well as electrochemical techniques, we identify the structure of the reconstructed surface layer as an amorphous (oxy)hydroxide phase that features abundant under-coordinated nickel sites. No further amorphization of the crystalline oxide lattice (beyond the ∼2 nm thick layer formed) was observed during oxygen evolution reaction (OER) cycling experiments. Notably, the formation of the reconstructed surface layer increases the material's oxygen evolution reaction (OER) activity by a factor of 45 when compared to that of the pristine crystalline surface. In contrast, a related perovskite phase, i.e., LaNiO3, did not show noticeable surface reconstruction, and also no increase in its OER activity was observed. This work provides detailed insight into a surface reconstruction behavior dictated by the crystal structure of the parent oxide and highlights the importance of surface dynamics under reaction conditions.

2.
Proc Natl Acad Sci U S A ; 118(26)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34140337

RESUMEN

The addition of molten alkali metal salts drastically accelerates the kinetics of CO2 capture by MgO through the formation of MgCO3 However, the growth mechanism, the nature of MgCO3 formation, and the exact role of the molten alkali metal salts on the CO2 capture process remain elusive, holding back the development of more-effective MgO-based CO2 sorbents. Here, we unveil the growth mechanism of MgCO3 under practically relevant conditions using a well-defined, yet representative, model system that is a MgO(100) single crystal coated with NaNO3 The model system is interrogated by in situ X-ray reflectometry coupled with grazing incidence X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. When bare MgO(100) is exposed to a flow of CO2, a noncrystalline surface carbonate layer of ca. 7-Å thickness forms. In contrast, when MgO(100) is coated with NaNO3, MgCO3 crystals nucleate and grow. These crystals have a preferential orientation with respect to the MgO(100) substrate, and form at the interface between MgO(100) and the molten NaNO3 MgCO3 grows epitaxially with respect to MgO(100), and the lattice mismatch between MgCO3 and MgO is relaxed through lattice misfit dislocations. Pyramid-shaped pits on the surface of MgO, in proximity to and below the MgCO3 crystals, point to the etching of surface MgO, providing dissolved [Mg2+…O2-] ionic pairs for MgCO3 growth. Our studies highlight the importance of combining X-rays and electron microscopy techniques to provide atomic to micrometer scale insight into the changes occurring at complex interfaces under reactive conditions.

3.
Angew Chem Int Ed Engl ; 62(8): e202217186, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36538473

RESUMEN

Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.

4.
J Am Chem Soc ; 143(15): 5771-5778, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33789048

RESUMEN

This work critically assesses the electrocatalytic activity, stability, and nature of the active phase of a two-dimensional molybdenum carbide (MXene) with single-atomic iron sites, Mo2CTx:Fe (Tx are surface terminating groups O, OH, and F), in the catalysis of the oxygen reduction reaction (ORR). X-ray absorption spectroscopy unequivocally confirmed that the iron single sites were incorporated into the Mo2CTx structure by substituting Mo atoms in the molybdenum carbide lattice with no other detectable Fe-containing phases. Mo2CTx:Fe, the first two-dimensional carbide with isolated iron sites, demonstrates a high catalytic activity and selectivity in the oxygen reduction to hydrogen peroxide. However, an analysis of the electrode material after the catalytic tests revealed that Mo2CTx:Fe transformed in situ into a graphitic carbon framework with dispersed iron oxyhydroxide (ferrihydrite, Fh) species (Fh/C), which are the actual active species. This experimental observation and the results obtained for the titanium and vanadium 2D carbides challenge previous studies that discuss the activity of the native MXene phases in oxygen electrocatalysis. Our work showcases the role of 2D metal carbides as precursors for active carbon-based (electro)catalysts and, more fundamentally, highlights the intrinsic evolution pathways of MXenes in electrocatalysis.

5.
Phys Rev Lett ; 127(9): 097203, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506205

RESUMEN

Since the discovery of charge disproportionation in the FeO_{2} square-lattice compound Sr_{3}Fe_{2}O_{7} by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained "hidden" to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO_{2} planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on "hidden order" in other materials.

6.
J Am Chem Soc ; 142(17): 7883-7888, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32216262

RESUMEN

Ruthenium pyrochlores, that is, oxides of composition A2Ru2O7-δ, have emerged recently as state-of-the-art catalysts for the oxygen evolution reaction (OER) in acidic conditions. Here, we demonstrate that the A-site substituent in yttrium ruthenium pyrochlores Y1.8M0.2Ru2O7-δ (M = Cu, Co, Ni, Fe, Y) controls the concentration of surface oxygen vacancies (VO) in these materials whereby an increased concentration of VO sites correlates with a superior OER activity. DFT calculations rationalize these experimental trends demonstrating that the higher OER activity and VO surface density originate from a weakened strength of the M-O bond, scaling with the formation enthalpy of the respective MOx phases and the coupling between the M d states and O 2p states. Our work introduces a novel catalyst with improved OER performance, Y1.8Cu0.2Ru2O7-δ, and provides general guidelines for the design of active electrocatalysts.

7.
Phys Chem Chem Phys ; 22(42): 24697-24703, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33104144

RESUMEN

Calcium looping (CaL) is a CO2 capture technique based on the reversible carbonation/calcination of CaO that is considered promising to reduce anthropogenic CO2 emissions. However, the rapid decay of the CO2 uptake of CaO over repeated cycles of carbonation and calcination due to sintering limits its implementation at the industrial scale. Thus, the development of material design strategies to stabilize the CO2 uptake capacity of CaO is paramount. The addition of alkali metal salts to CaO has been proposed as a strategy to mitigate the rapid loss of its cyclic CO2 uptake capacity. However, there are conflicting results concerning the effect of the addition of alkali metal carbonates on the structure and CO2 capacity of CaO. In this work, we aim at understanding the effect of the addition of Na2CO3 to CaO on the sorbent's structure and its CO2 uptake capacity. We demonstrate that under industrially-relevant conditions the addition of as little as 1 wt% of Na2CO3 reduces severely the CO2 uptake of CaO. Combining TGA, XAS and FIB-SEM analysis allowed us to attribute the performance degradation to the formation of the double salt Na2Ca(CO3)2 that induces strong sintering leading to a significant loss in the sorbent's pore volume. In addition, during the carbonation step the formation of a dense layer of Na2Ca(CO3)2 that covers unreacted CaO prevents its full carbonation to CaCO3.

8.
J Am Chem Soc ; 141(34): 13497-13505, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31322870

RESUMEN

We report an operando examination of a model nanocrystalline In2O3 catalyst for methanol synthesis via CO2 hydrogenation (300 °C, 20 bar) by combining X-ray absorption spectroscopy (XAS), X-ray powder diffraction (XRD), and in situ transmission electron microscopy (TEM). Three distinct catalytic regimes are identified during CO2 hydrogenation: activation, stable performance, and deactivation. The structural evolution of In2O3 nanoparticles (NPs) with time on stream (TOS) followed by XANES-EXAFS-XRD associates the activation stage with a minor decrease of the In-O coordination number and a partial reduction of In2O3 due to the formation of oxygen vacancy sites (i.e., In2O3-x). As the reaction proceeds, a reductive amorphization of In2O3 NPs takes place, characterized by decreasing In-O and In-In coordination numbers and intensities of the In2O3 Bragg peaks. A multivariate analysis of the XANES data confirms the formation of In2O3-x and, with TOS, metallic In. Notably, the appearance of molten In0 coincides with the onset of catalyst deactivation. This phase transition is also visualized by in situ TEM, acquired under reactive conditions at 800 mbar pressure. In situ TEM revealed an electron beam assisted transformation of In2O3 nanoparticles into a dynamic structure in which crystalline and amorphous phases coexist and continuously interconvert. The regeneration of the deactivated In0/In2O3-x catalyst by reoxidation was critically assessed revealing that the spent catalyst can be reoxidized only partially in a CO2 atmosphere or air yielding an average crystallite size of the resultant In2O3 that is approximately an order of magnitude larger than the initial one.

9.
J Am Chem Soc ; 141(44): 17809-17816, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31540549

RESUMEN

Two-dimensional (2D) carbides, nitrides, and carbonitrides known as MXenes are emerging materials with a wealth of useful applications. However, the range of metals capable of forming stable MXenes is limited mostly to early transition metals of groups 3-6, making the exploration of properties inherent to mid or late transition metal MXenes very challenging. To circumvent the inaccessibility of MXene phases derived from mid-to-late transition metals, we have developed a synthetic strategy that allows the incorporation of such transition metal sites into a host MXene matrix. Here, we report the structural characterization of a Mo2CTx:Co phase (where Tx are O, OH, and F surface terminations) that is obtained from a cobalt-substituted bulk molybdenum carbide (ß-Mo2C:Co)  through a two-step synthesis: first an intercalation of gallium yielding Mo2Ga2C:Co followed by removal of Ga via HF treatment. Extended X-ray absorption fine structure (EXAFS) analysis confirms that Co atoms occupy Mo positions in the Mo2CTx lattice, providing isolated Co centers without any detectable formation of other cobalt-containing phases. The beneficial effect of cobalt substitution on the redox properties of Mo2CTx:Co is manifested in a substantially improved hydrogen evolution reaction (HER) activity, as compared to the unsubstituted Mo2CTx catalyst. Density functional theory (DFT) calculations attribute the enhanced HER kinetics of Mo2CTx:Co to the favorable binding of hydrogen on the oxygen terminated MXene surface that is strongly influenced by the substitution of Mo by Co in the Mo2CTx lattice. In addition to the remarkable HER activity, Mo2CTx:Co features excellent operational and structural stability, on par with the best performing non-noble metal-based HER catalysts. Overall, our work expands the compositional space of the MXene family by introducing a material with site-isolated cobalt centers embedded in the stable matrix of Mo2CTx. The synthetic approach presented here illustrates that tailoring the properties of MXenes for a specific application can be achieved via substitution of the host metal sites by mid or late transition metals.

10.
Phys Chem Chem Phys ; 20(18): 12736-12745, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29697120

RESUMEN

The production of high purity hydrogen with the simultaneous capture of CO2, can be achieved through a chemical looping (CL) cycle relying on an iron oxide-based oxygen carrier. Indeed, the availability of active and cyclically stable oxygen carriers is a key criterion for the practical implementation of this technology. In this regard, improving our understanding of the reduction pathway(s) of iron-based oxygen carriers and the development of concepts to increase the reduction kinetics are important aspects. The aim of this work is to evaluate the effect of the addition of copper on the redox behaviour of iron oxide based oxygen carriers stabilized on ZrO2. In situ pulsed-H2 XANES (Fe K-edge) experiments allowed for the determination of the reduction pathways in these materials, viz. the reduction of both Fe2O3 and CuFe2O4 proceeded via a Fe2+ intermediate: Fe2O3 (CuFe2O4) → Fe3O4 (Cu0) → FeO (Cu0) → Fe0 (Cu0). In the first step CuFe2O4 is reduced to Cu0 and Fe3O4, whereby Cu0 promotes the further reduction of iron oxide, increasing their rate of formation. In particular, the rate of reduction of FeO → Fe0 is accelerated most dramatically by Cu0. This is an encouraging result as the FeO → Fe0 transition is the slowest reduction reaction.

11.
Phys Chem Chem Phys ; 18(20): 13974-83, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27150335

RESUMEN

The dependence of the lattice parameter on dopant concentration in Ce1-xMxO2 (M = Sn and Ti) solid solutions is not linear. A change towards a steeper slope is observed around x ∼ 0.35, though the fluorite structure (space group Fm3m) is preserved up to x = 0.5. This phenomenon has not been observed for Ce1-xZrxO2 solid solutions showing a perfectly linear decrease of the lattice parameter up to x = 0.5. In order to understand this behavior, the oxidation state of the metal ions, the disorder in the oxygen substructure and the nature of metal-oxygen bonds have been analyzed by XPS, (119)Sn Mössbauer spectroscopy and X-ray absorption spectroscopy. It is observed that the first Sn-O coordination shell in Ce1-xSnxO2 is more compact and less flexible than that of Ce-O. The Sn coordination remains symmetric with eight equivalent, shorter Sn-O bonds, while Ce-O coordination gradually splits into a range of eight non-equivalent bonds compensating for the difference in the ionic radii of Ce(4+) and Sn(4+). Thus, a long-range effect of Sn doping is hardly extended throughout the lattice in Ce1-xSnxO2. In contrast, for Ce1-xZrxO2 solid solutions, both Ce and Zr have similar local coordination creating similar rearrangement of the oxygen substructure and showing a linear lattice parameter decrease up to 50% Zr substitution. We suggest that the localized effect of Sn substitution due to its higher electronegativity may be responsible for the deviation from Vegard's law in Ce1-xSnxO2 solid solutions.

12.
Inorg Chem ; 53(5): 2471-80, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24528235

RESUMEN

Members of the solid solution series of CeRu(1-x)Ni(x)Al can be obtained directly by arc melting of the elements. The presented compounds with 0.1 ≤ x ≤ 0.85 crystallize in the orthorhombic space group Pnma (No. 62) in the LaNiAl structure type, while for 0.9 ≤ x ≤ 1, the hexagonal ZrNiAl-type structure is found. The orthorhombic members exhibit an anomaly in the trend of the lattice parameters as well as an interesting behavior of the magnetic susceptibility, suggesting that the cerium cations exhibit no local moment. Besides the mixed-valent nature of the cerium cations, valence fluctuations along with a change in the cerium oxidation state depending on the nickel content have been found. The oxidation state has been determined from the magnetic data and additionally by XANES. Density functional theory calculations have identified the shortest Ce-Ru interaction as decisive for the stability of the orthorhombic solid solution.

13.
JACS Au ; 4(1): 237-252, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38274252

RESUMEN

Supported, bimetallic catalysts have shown great promise for the selective hydrogenation of CO2 to methanol. In this study, we decipher the catalytically active structure of Ni-Ga-based catalysts. To this end, model Ni-Ga-based catalysts, with varying Ni:Ga ratios, were prepared by a surface organometallic chemistry approach. In situ differential pair distribution function (d-PDF) analysis revealed that catalyst activation in H2 leads to the formation of nanoparticles based on a Ni-Ga face-centered cubic (fcc) alloy along with a small quantity of GaOx. Structure refinements of the d-PDF data enabled us to determine the amount of both alloyed Ga and GaOx species. In situ X-ray absorption spectroscopy experiments confirmed the presence of alloyed Ga and GaOx and indicated that alloying with Ga affects the electronic structure of metallic Ni (viz., Niδ-). Both the Ni:Ga ratio in the alloy and the quantity of GaOx are found to minimize methanation and to determine the methanol formation rate and the resulting methanol selectivity. The highest formation rate and methanol selectivity are found for a Ni-Ga alloy having a Ni:Ga ratio of ∼75:25 along with a small quantity of oxidized Ga species (0.14 molNi-1). Furthermore, operando infrared spectroscopy experiments indicate that GaOx species play a role in the stabilization of formate surface intermediates, which are subsequently further hydrogenated to methoxy species and ultimately to methanol. Notably, operando XAS shows that alloying between Ni and Ga is maintained under reaction conditions and is key to attaining a high methanol selectivity (by minimizing CO and CH4 formation), while oxidized Ga species enhance the methanol formation rate.

14.
Nat Commun ; 15(1): 1011, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38307863

RESUMEN

The reversible phase transitions in phase-change memory devices can switch on the order of nanoseconds, suggesting a close structural resemblance between the amorphous and crystalline phases. Despite this, the link between crystalline and amorphous tellurides is not fully understood nor quantified. Here we use in-situ high-temperature x-ray absorption spectroscopy (XAS) and theoretical calculations to quantify the amorphous structure of bulk and nanoscale GeTe. Based on XAS experiments, we develop a theoretical model of the amorphous GeTe structure, consisting of a disordered fcc-type Te sublattice and randomly arranged chains of Ge atoms in a tetrahedral coordination. Strikingly, our intuitive and scalable model provides an accurate description of the structural dynamics in phase-change memory materials, observed experimentally. Specifically, we present a detailed crystallization mechanism through the formation of an intermediate, partially stable 'ideal glass' state and demonstrate differences between bulk and nanoscale GeTe leading to size-dependent crystallization temperature.

15.
Phys Rev Lett ; 111(16): 167205, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24182298

RESUMEN

The semiconductor Sr2FeOsO6, depending on temperature, adopts two types of spin structures that differ in the spin sequence of ferrimagnetic iron-osmium layers along the tetragonal c axis. Neutron powder diffraction experiments, 57Fe Mössbauer spectra, and density functional theory calculations suggest that this behavior arises because a lattice instability resulting in alternating iron-osmium distances fine-tunes the balance of competing exchange interactions. Thus, Sr2FeOsO6 is an example of a double perovskite, in which the electronic phases are controlled by the interplay of spin, orbital, and lattice degrees of freedom.

16.
Inorg Chem ; 52(11): 6713-9, 2013 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-23692527

RESUMEN

In the exploration of new osmium based double perovskites, Sr2FeOsO6 is a new insertion in the existing family. The polycrystalline compound has been prepared by solid state synthesis from the respective binary oxides. Powder X-ray diffraction (PXRD) analysis shows the structure is pseudocubic at room temperature, whereas low-temperature synchrotron data refinements reveal the structure to be tetragonal, space group I4/m. Heat capacity and magnetic measurements of Sr2FeOsO6 indicated the presence of two magnetic phase transitions at T1 = 140 K and T2 = 67 K. Band structure calculations showed the compound as a narrow energy gap semiconductor, which supports the experimental results obtained from the resistivity measurements. The present study documents significant structural and electronic effects of substituting Fe(3+) for Cr(3+) ion in Sr2CrOsO6.

17.
Inorg Chem ; 52(20): 11734-43, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-24090406

RESUMEN

Cerium(III) and cerium(IV) both form formate complexes. However, their species in aqueous solution and the solid-state structures are surprisingly different. The species in aqueous solutions were investigated with Ce K-edge EXAFS spectroscopy. Ce(III) formate shows only mononuclear complexes, which is in agreement with the predicted mononuclear species of Ce(HCOO)(2+) and Ce(HCOO)2(+). In contrast, Ce(IV) formate forms in aqueous solution a stable hexanuclear complex of [Ce6(µ3-O)4(µ3-OH)4(HCOO)x(NO3)y](12-x-y). The structural differences reflect the different influence of hydrolysis, which is weak for Ce(III) and strong for Ce(IV). Hydrolysis of Ce(IV) ions causes initial polymerization while complexation through HCOO(-) results in 12 chelate rings stabilizing the hexanuclear Ce(IV) complex. Crystals were grown from the above-mentioned solutions. Two crystal structures of Ce(IV) formate were determined. Both form a hexanuclear complex with a [Ce6(µ3-O)4(µ3-OH)4](12+) core in aqueous HNO3/HCOOH solution. The pH titration with NaOH resulted in a structure with the composition [Ce6(µ3-O)4(µ3-OH)4(HCOO)10(NO3)2(H2O)3]·(H2O)9.5, while the pH adjustment with NH3 resulted in [Ce6(µ3-O)4(µ3-OH)4(HCOO)10(NO3)4]·(NO3)3(NH4)5(H2O)5. Furthermore, the crystal structure of Ce(III) formate, Ce(HCOO)3, was determined. The coordination polyhedron is a tricapped trigonal prism which is formed exclusively by nine HCOO(-) ligands. The hexanuclear Ce(IV) formate species from aqueous solution is widely preserved in the crystal structure, whereas the mononuclear solution species of Ce(III) formate undergoes a polymerization during the crystallization process.

18.
J Mater Chem A Mater ; 11(12): 6530-6542, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968616

RESUMEN

We elucidate the underlying cause of a commonly observed increase in the rate of oxygen release of an oxygen carrier with redox cycling (here specifically for the perovskite Sr0.8Ca0.2FeO3-δ ) in chemical looping applications. This phenomenon is often referred to as activation. To this end we probe the evolution of the structure and surface elemental composition of the oxygen carrier with redox cycling by both textural and morphological characterization techniques (N2 physisorption, microscopy, X-ray powder diffraction and X-ray absorption spectroscopy). We observe no appreciable changes in the surface area, pore volume and morphology of the sample during the activation period. X-ray powder diffraction and X-ray absorption spectroscopy analysis (at the Fe and Sr K-edges) of the material before and after redox cycles do not show significant differences, implying that the bulk (average and local) structure of the perovskite is largely unaltered upon cycling. The analysis of the surface of the perovskite via X-ray photoelectron and in situ Raman spectroscopy indicates the presence of surface carbonate species in the as-synthesized sample (due to its exposure to air). Yet, such surface carbonates are absent in the activated material, pointing to the removal of carbonates during cycling (in a CO2-free atmosphere) as the underlying cause behind activation. Importantly, after activation and a re-exposure to CO2, surface carbonates re-form and yield a deactivation of the perovskite oxygen carrier, which is often overlooked when using such materials at relatively low temperature (≤500 °C) in chemical looping.

19.
Sci Adv ; 9(26): eadg5690, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37379379

RESUMEN

The development of effective CO2 sorbents is vital to achieving net-zero CO2 emission targets. MgO promoted with molten salts is an emerging class of CO2 sorbents. However, the structural features that govern their performance remain elusive. Using in situ time-resolved powder x-ray diffraction, we follow the structural dynamics of a model NaNO3-promoted, MgO-based CO2 sorbent. During the first few cycles of CO2 capture and release, the sorbent deactivates owing to an increase in the sizes of the MgO crystallites, reducing in turn the abundance of available nucleation points, i.e., MgO surface defects, for MgCO3 growth. After the third cycle, the sorbent shows a continuous reactivation, which is linked to the in situ formation of Na2Mg(CO3)2 crystallites that act effectively as seeds for MgCO3 nucleation and growth. Na2Mg(CO3)2 forms due to the partial decomposition of NaNO3 during regeneration at T ≥ 450°C followed by carbonation in CO2.

20.
Chem Mater ; 35(23): 10060-10069, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107192

RESUMEN

This work provides insight into the local structure of Na in MgO-based CO2 sorbents that are promoted with NaNO3. To this end, we use X-ray absorption spectroscopy (XAS) at the Na K-edge to interrogate the local structure of Na during the CO2 capture (MgO + CO2 ↔ MgCO3). The analysis of Na K-edge XAS data shows that the local environment of Na is altered upon MgO carbonation when compared to that of NaNO3 in the as-prepared sorbent. We attribute the changes observed in the carbonated sorbent to an alteration in the local structure of Na at the NaNO3/MgCO3 interfaces and/or in the vicinity of [Mg2+···CO32-] ionic pairs that are trapped in the cooled NaNO3 melt. The changes observed are reversible, i.e., the local environment of NaNO3 was restored after a regeneration treatment to decompose MgCO3 to MgO. The ex situ Na K-edge XAS experiments were complemented by ex situ magic-angle spinning 23Na nuclear magnetic resonance (MAS 23Na NMR), Mg K-edge XAS and X-ray powder diffraction (XRD). These additional experiments support our interpretation of the Na K-edge XAS data. Furthermore, we develop in situ Na (and Mg) K-edge XAS experiments during the carbonation of the sorbent (NaNO3 is molten under the conditions of the in situ experiments). These in situ Na K-edge XANES spectra of molten NaNO3 open new opportunities to investigate the atomic scale structure of CO2 sorbents modified with Na-based molten salts by using XAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA