Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cereb Cortex ; 33(1): 135-151, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35388407

RESUMEN

Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.


Asunto(s)
Acoplamiento Neurovascular , Humanos , Animales , Ratones , Anciano , Acoplamiento Neurovascular/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Envejecimiento/fisiología , Oxígeno
2.
Neuroimage ; 215: 116812, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32276075

RESUMEN

Behavioral studies investigating fundamental cognitive abilities provide evidence that processing speed accounts for large proportions of performance variability between individuals. Processing speed decline is a hallmark feature of the cognitive disruption observed in healthy aging and in demyelinating diseases such as multiple sclerosis (MS), neuromyelitis optica, and Wilson's disease. Despite the wealth of evidence suggesting a central role for processing speed in cognitive decline, the neural mechanisms of this fundamental ability remain unknown. Intact neurovascular coupling, acute localized blood flow increases following neural activity, is essential for optimal neural function. We hypothesized that efficient coupling forms the neural basis of processing speed. Because MS features neural-glial-vascular system disruption, we used it as a model to test this hypothesis. To assess the integrity of the coupling system, we measured blood-oxygen-level-dependent (BOLD) signal in healthy controls (HCs) and MS patients using a 3T MRI scanner while they viewed radial checkerboards that flickered periodically at 8 â€‹Hz. To assess processing speed and cognitive function, we administered a battery of neuropsychological tests. While MS patients exhibited reduced ΔBOLD with reductions in processing speed, no such relationships were observed in HCs. To further investigate the mechanisms that underlie ΔBOLD-processing speed relationships, we assessed the physiologic components that constitute ΔBOLD signal (i.e., cerebral blood flow, ΔCBF; cerebral metabolic rate of oxygen, ΔCMRO2; neurovascular coupling ratio) in speed-preserved and -impaired MS patients. While ΔCBF and ΔCMRO2 showed no group-differences, the neurovascular coupling ratio was significantly reduced in speed-impaired MS patients compared to speed-preserved MS patients. Together, these results suggest that neurovascular uncoupling might underlie cognitive slowing in MS and might be the central pathogenic mechanism governing processing speed decline.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Esclerosis Múltiple/fisiopatología , Acoplamiento Neurovascular/fisiología , Tiempo de Reacción/fisiología , Percepción Visual/fisiología , Adulto , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Estimulación Luminosa/métodos
3.
Mult Scler ; 26(12): 1486-1496, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31373536

RESUMEN

BACKGROUND: Cognitive slowing occurs in ~70% of multiple sclerosis (MS) patients. The pathophysiology of this slowing is unknown. Neurovascular coupling, acute localized blood flow increases following neural activity, is essential for efficient cognition. Loss of vascular compliance along the cerebrovascular tree would result in suboptimal vasodilation, neurovascular uncoupling, and cognitive slowing. OBJECTIVE: To assess vascular compliance along the cerebrovascular tree and its relationship to MS-related cognition. METHODS: We tested vascular compliance along the cerebrovascular tree by dividing cerebral cortex into nested layers. MS patients and healthy controls were scanned using a dual-echo functional magnetic resonance imaging (fMRI) sequence while they periodically inhaled room air and hypercapnic gas mixture. Cerebrovascular reactivity was calculated from both cerebral blood flow (arterial) and blood-oxygen-level-dependent signal (venous) increases per unit increase in end-tidal CO2. RESULTS: Arterial cerebrovascular reactivity changes along the cerebrovascular tree were reduced in cognitively slow MS compared to cognitively normal MS and healthy controls. These changes were fit to exponential functions, the decay constant (arterial compliance index; ACI) of which was associated with individual subjects' reaction time and predicted reaction time after controlling for disease processes. CONCLUSION: Such associations suggest prospects for utility of ACI in predicting future cognitive disturbances, monitoring cognitive deficiencies and therapeutic responses, and implicates neurovascular uncoupling as a mechanism of cognitive slowing in MS.


Asunto(s)
Circulación Cerebrovascular , Esclerosis Múltiple , Encéfalo , Cognición , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/diagnóstico por imagen
4.
Neuroimage ; 188: 198-207, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529628

RESUMEN

Functional magnetic resonance imaging (fMRI) has been used to infer age-differences in neural activity from the hemodynamic response function (HRF) that characterizes the blood-oxygen-level-dependent (BOLD) signal over time. BOLD literature in healthy aging lacks consensus in age-related HRF changes, the nature of those changes, and their implications for measurement of age differences in brain function. Between-study discrepancies could be due to small sample sizes, analysis techniques, and/or physiologic mechanisms. We hypothesize that, with large sample sizes and minimal analysis assumptions, age-related changes in HRF parameters could reflect alterations in one or more components of the neural-vascular coupling system. To assess HRF changes in healthy aging, we analyzed the large population-derived dataset from the Cambridge Center for Aging and Neuroscience (CamCAN) study (Shafto et al., 2014). During scanning, 74 younger (18-30 years of age) and 173 older participants (54-74 years of age) viewed two checkerboards to the left and right of a central fixation point, simultaneously heard a binaural tone, and responded via right index finger button-press. To assess differences in the shape of the HRF between younger and older groups, HRFs were estimated using FMRIB's Linear Optimal Basis Sets (FLOBS) to minimize a priori shape assumptions. Group mean HRFs were different between younger and older groups in auditory, visual, and motor cortices. Specifically, we observed increased time-to-peak and decreased peak amplitude in older compared to younger adults in auditory, visual, and motor cortices. Changes in the shape and timing of the HRF in healthy aging, in the absence of performance differences, support our hypothesis of age-related changes in the neural-vascular coupling system beyond neural activity alone. More precise interpretations of HRF age-differences can be formulated once these physiologic factors are disentangled and measured separately.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Envejecimiento Saludable/fisiología , Hemodinámica/fisiología , Adulto , Anciano , Circulación Cerebrovascular/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Acoplamiento Neurovascular/fisiología , Adulto Joven
5.
Psychophysiology ; 58(7): e13845, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34115388

RESUMEN

Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.


Asunto(s)
Envejecimiento/fisiología , Circulación Cerebrovascular/fisiología , Cognición/fisiología , Hemodinámica , Acoplamiento Neurovascular/fisiología , Encéfalo/fisiología , Humanos , Imagen por Resonancia Magnética
6.
Front Neurol ; 11: 758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849217

RESUMEN

Purpose: Cerebrovascular reactivity (CVR) is an index of the dilatory function of cerebral blood vessels and has shown great promise in the diagnosis of risk factors in cerebrovascular disease. Aging is one such risk factor; thus, it is important to characterize age-related differences in CVR. CVR can be measured by BOLD MRI but few studies have measured quantitative cerebral blood flow (CBF)-based CVR in the context of aging. This study aims to determine the age effect on CVR using two quantitative CBF techniques, phase-contrast (PC), and arterial spin labeling (ASL) MRI. Methods: In 49 participants (32 younger and 17 older), CVR was measured with PC, ASL, and BOLD MRI. These CVR methods were compared across young and older groups to determine their dependence on age. PC and ASL CVR were also studied for inter-correlation and mean differences. Gray and white matter CVR values were also studied. Results: PC CVR was higher in younger participants than older participants (by 17%, p = 0.046). However, there were no age differences in ASL or BOLD CVR. ASL CVR was significantly correlated with PC CVR (p = 0.042) and BOLD CVR (p = 0.016), but its values were underestimated compared to PC CVR (p = 0.045). ASL CVR map revealed no difference between gray matter and white matter tissue types, whereas gray matter was significantly higher than white matter in the BOLD CVR map. Conclusion: This study compared two quantitative CVR techniques in the context of brain aging and revealed that PC CVR is a more sensitive method for detection of age differences, despite the absence of spatial information. The ASL method showed a significant correlation with PC and BOLD, but it tends to underestimate CVR due to confounding factors associated with this technique. Importantly, our data suggest that there is not a difference in CBF-based CVR between the gray and white matter, in contrast to previous observation using BOLD MRI.

7.
Neurosci Biobehav Rev ; 107: 927-944, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31499083

RESUMEN

Theories of neurocognitive aging rely heavily on functional magnetic resonance imaging (fMRI) to test hypotheses regarding the brain basis of age-differences in cognition. This technique is based on the blood-oxygen level dependent signal (BOLD) that arises from the coordinated neural-vascular coupling that leads to increased blood flow following an increase in neural activity. Here we review the literature and current controversies regarding the mechanisms by which blood flow and neural activity are coupled, and how they change in the aging process. This literature suggests that neural-vascular coupling is a complex of processes, involving dynamic signaling between neurons, glia, and blood vessels. Nearly every component of this process is affected in aging leading to changes in BOLD and pervasive age-related cognitive changes.


Asunto(s)
Envejecimiento , Encéfalo/anatomía & histología , Acoplamiento Neurovascular , Envejecimiento/fisiología , Animales , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Envejecimiento Cognitivo/fisiología , Humanos , Acoplamiento Neurovascular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA