Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Parasite Immunol ; 34(7): 360-71, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22443237

RESUMEN

Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500,000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients' urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.


Asunto(s)
Antígenos de Protozoos/orina , Leishmania donovani/inmunología , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/inmunología , Animales , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Cromatografía Líquida de Alta Presión , Cricetinae , Escherichia coli/genética , Femenino , Humanos , Leishmania donovani/química , Leishmania infantum/química , Vacunas contra la Leishmaniasis/administración & dosificación , Vacunas contra la Leishmaniasis/genética , Leishmaniasis Visceral/parasitología , Espectrometría de Masas , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Bazo/parasitología , Células TH1/inmunología , Orina/química , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
2.
J Cell Biol ; 122(2): 307-23, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8391537

RESUMEN

Current models for nucleotide sugar use in the Golgi apparatus predict a critical role for the lumenal nucleoside diphosphatase. After transfer of sugars to endogenous macromolecular acceptors, the enzyme converts nucleoside diphosphates to nucleoside monophosphates which in turn exit the Golgi lumen in a coupled antiporter reaction, allowing entry of additional nucleotide sugar from the cytosol. To test this model, we cloned the gene for the S. cerevisiae guanosine diphosphatase and constructed a null mutation. This mutation should reduce the concentrations of GDP-mannose and GMP and increase the concentration of GDP in the Golgi lumen. The alterations should in turn decrease mannosylation of proteins and lipids in this compartment. In fact, we found a partial block in O- and N-glycosylation of proteins such as chitinase and carboxypeptidase Y and underglycosylation of invertase. In addition, mannosylinositolphosphorylceramide levels were drastically reduced.


Asunto(s)
Ceramidas/biosíntesis , Aparato de Golgi/metabolismo , Proteínas/metabolismo , Pirofosfatasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Carboxipeptidasas/biosíntesis , Catepsina A , Pared Celular/química , Pared Celular/ultraestructura , Quitinasas/metabolismo , Clonación Molecular , Genes Fúngicos , Glicósido Hidrolasas/metabolismo , Glicosilación , Manosa/metabolismo , Datos de Secuencia Molecular , Mutación , Pirofosfatasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae , beta-Fructofuranosidasa
3.
Trends Biochem Sci ; 17(1): 32-6, 1992 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1533966

RESUMEN

A variety of distinct protein glycosylation reactions occur in the endoplasmic reticulum (ER) of eukaryotic cells. In some instances, both the proteins to be glycosylated and the precursor sugar donors must be translocated across the membrane from the cytoplasm to the lumen of the ER. Elucidation of the individual steps in each of the glycosylation pathways has revealed the topographic complexity of these reactions.


Asunto(s)
Retículo Endoplásmico/metabolismo , Acetilglucosamina/metabolismo , Animales , Transporte Biológico Activo , Secuencia de Carbohidratos , Membrana Celular/metabolismo , Retículo Endoplásmico/química , Glucolípidos/metabolismo , Glicosilación , Glicosilfosfatidilinositoles , Hígado/metabolismo , Datos de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Monosacáridos de Poliisoprenil Fosfato/metabolismo
4.
Trends Biochem Sci ; 22(6): 203-7, 1997 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-9204706

RESUMEN

Proteins and glycolipids are glycosylated, sulfated and phosphorylated in the lumen of the Golgi apparatus. The nucleotide substrates of these reactions must first be translocated from the cytosol into the Golgi lumen by specific transporters (antiporters). These are hydrophobic, transmembrane spanning proteins that appear to regulate post-translational modifications in the Golgi lumen.


Asunto(s)
Adenosina Trifosfato/metabolismo , Antiportadores/metabolismo , Metabolismo de los Hidratos de Carbono , Aparato de Golgi/metabolismo , Nucleótidos/metabolismo , Animales , Antiportadores/química , Transporte Biológico , Retículo Endoplásmico/metabolismo , Glicosilación , Mutación , Fosforilación , Sulfatos/metabolismo
5.
Mol Biol Cell ; 9(10): 2729-38, 1998 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9763440

RESUMEN

CWH41, a gene involved in the assembly of cell wall beta-1,6-glucan, has recently been shown to be the structural gene for Saccharomyces cerevisiae glucosidase I that is responsible for initiating the trimming of terminal alpha-1,2-glucose residue in the N-glycan processing pathway. To distinguish between a direct or indirect role of Cwh41p in the biosynthesis of beta-1,6-glucan, we constructed a double mutant, alg5Delta (lacking dolichol-P-glucose synthase) cwh41Delta, and found that it has the same phenotype as the alg5Delta single mutant. It contains wild-type levels of cell wall beta-1,6-glucan, shows moderate underglycosylation of N-linked glycoproteins, and grows at concentrations of Calcofluor White (which interferes with cell wall assembly) that are lethal to cwh41Delta single mutant. The strong genetic interactions of CWH41 with KRE6 and KRE1, two other genes involved in the beta-1,6-glucan biosynthetic pathway, disappear in the absence of dolichol-P-glucose synthase (alg5Delta). The triple mutant alg5Deltacwh41Deltakre6Delta is viable, whereas the double mutant cwh41Deltakre6Delta in the same genetic background is not. The severe slow growth phenotype and 75% reduction in cell wall beta-1,6-glucan, characteristic of the cwh41Deltakre1Delta double mutant, are not observed in the triple mutant alg5Deltacwh41Deltakre1Delta. Kre6p, a putative Golgi glucan synthase, is unstable in cwh41Delta strains, and its overexpression renders these cells Calcofluor White resistant. These results demonstrate that the role of glucosidase I (Cwh41p) in the biosynthesis of cell wall beta-1,6-glucan is indirect and that dolichol-P-glucose is not an intermediate in this pathway.


Asunto(s)
Glucanos/biosíntesis , Glicoproteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , alfa-Glucosidasas/metabolismo , beta-Glucanos , Bencenosulfonatos/farmacología , Secuencia de Carbohidratos , Pared Celular/metabolismo , Farmacorresistencia Microbiana , Proteínas Fúngicas/metabolismo , Genotipo , Glucanos/química , Glicoproteínas de Membrana/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , alfa-Glucosidasas/genética
6.
Mol Biol Cell ; 10(4): 1019-30, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10198054

RESUMEN

It has been proposed that synthesis of beta-1,6-glucan, one of Saccharomyces cerevisiae cell wall components, is initiated by a uridine diphosphate (UDP)-glucose-dependent reaction in the lumen of the endoplasmic reticulum (ER). Because this sugar nucleotide is not synthesized in the lumen of the ER, we have examined whether or not UDP-glucose can be transported across the ER membrane. We have detected transport of this sugar nucleotide into the ER in vivo and into ER-containing microsomes in vitro. Experiments with ER-containing microsomes showed that transport of UDP-glucose was temperature dependent and saturable with an apparent Km of 46 microM and a Vmax of 200 pmol/mg protein/3 min. Transport was substrate specific because UDP-N-acetylglucosamine did not enter these vesicles. Demonstration of UDP-glucose transport into the ER lumen in vivo was accomplished by functional expression of Schizosaccharomyces pombe UDP-glucose:glycoprotein glucosyltransferase (GT) in S. cerevisiae, which is devoid of this activity. Monoglucosylated protein-linked oligosaccharides were detected in alg6 or alg5 mutant cells, which transfer Man9GlcNAc2 to protein; glucosylation was dependent on the inhibition of glucosidase II or the disruption of the gene encoding this enzyme. Although S. cerevisiae lacks GT, it contains Kre5p, a protein with significant homology and the same size and subcellular location as GT. Deletion mutants, kre5Delta, lack cell wall beta-1,6 glucan and grow very slowly. Expression of S. pombe GT in kre5Delta mutants did not complement the slow-growth phenotype, indicating that both proteins have different functions in spite of their similarities.


Asunto(s)
Retículo Endoplásmico/metabolismo , Glucosiltransferasas/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Uridina Difosfato Glucosa/metabolismo , Secuencia de Carbohidratos , Glucosiltransferasas/genética , Glicosilación , Cinética , Datos de Secuencia Molecular , Oligosacáridos/metabolismo , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/genética , Transducción de Señal , Especificidad por Sustrato , Uridina Difosfato N-Acetilglucosamina/metabolismo
7.
Genetics ; 158(4): 1397-411, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11514435

RESUMEN

css1 mutants display a novel defect in Schizosaccharomyces pombe cell wall formation. The mutant cells are temperature-sensitive and accumulate large deposits of material that stain with calcofluor and aniline blue in their periplasmic space. Biochemical analyses of this material indicate that it consists of alpha- and beta-glucans in the same ratio as found in cell walls of wild-type S. pombe. Strikingly, the glucan deposits in css1 mutant cells do not affect their overall morphology. The cells remain rod shaped, and the thickness of their walls is unaltered. Css1p is an essential protein related to mammalian neutral sphingomyelinase and is responsible for the inositolphosphosphingolipid-phospholipase C activity observed in S. pombe membranes. Furthermore, expression of css1(+) can compensate for loss of ISC1, the enzyme responsible for this activity in Saccharomyces cerevisiae membranes. Css1p localizes to the entire plasma membrane and secretory pathway; a C-terminal fragment of Css1p, predicted to encode a single membrane-spanning segment, is sufficient to direct membrane localization of the heterologous protein, GFP. Our results predict the existence of an enzyme(s) or process(es) essential for the coordination of S. pombe cell wall formation and division that is, in turn, regulated by a sphingolipid metabolite.


Asunto(s)
Glucanos/metabolismo , Schizosaccharomyces/metabolismo , Esfingomielina Fosfodiesterasa/química , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielina Fosfodiesterasa/fisiología , Secuencia de Aminoácidos , División Celular , Membrana Celular/enzimología , Pared Celular/metabolismo , Clonación Molecular , Epítopos , Eliminación de Gen , Immunoblotting , Microscopía Electrónica , Microscopía Fluorescente , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Plásmidos/metabolismo , Polisacáridos/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Esfingolípidos/metabolismo , Fracciones Subcelulares , Temperatura , Factores de Tiempo , Fosfolipasas de Tipo C/metabolismo
8.
Proc Natl Acad Sci U S A ; 85(4): 1010-4, 1988 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-3422474

RESUMEN

We have examined the topography of N-acetylglucosamine-terminating glycoproteins in membranes from rat liver smooth and rough endoplasmic reticulum (SER and RER). It was found that some of these glycoproteins are intrinsic membrane proteins with their sugars facing the cytosolic rather than the luminal side. This conclusion was reached by using vesicles from the SER and RER that were sealed and of the same topographical orientation as in vivo. These vesicles were incubated with UDP-[14C]galactose (which does not enter the vesicles) and saturating amounts of soluble galactosyltransferase from milk, an enzyme that does not penetrate the lumen of the vesicles and that specifically adds galactose to terminal N-acetylglucosamine in a beta 1-4 linkage. Radioactive galactose was mainly transferred to SER proteins of apparent molecular mass 56 and 110 kDa and to a lesser extent to RER and SER proteins of apparent molecular mass 46 and 72 kDa. These proteins are intrinsic membrane proteins, based on the inability of sodium carbonate at pH 11.5 to remove them from the membranes. Studies with peptide N-glycosidase F and chemical beta-elimination showed that the 56-kDa protein of the SER vesicles contained terminal N-acetylglucosamine in an O-linkage to the protein. The above results suggest that some sugars of glycoproteins in the endoplasmic reticulum may attain their final orientation in the membrane by mechanisms yet to be determined.


Asunto(s)
Acetilglucosamina/análisis , Retículo Endoplásmico/análisis , Galactosa/análisis , Glucosamina/análogos & derivados , Glicoproteínas de Membrana/análisis , Animales , Citosol , Membranas Intracelulares/análisis , Ratas
9.
J Biol Chem ; 262(9): 4153-9, 1987 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-3104337

RESUMEN

We have studied the subcellular site of synthesis of the GalNAc(alpha-1-0) Ser/Thr linkage in rat liver. The specific and total activities of polypeptide:N-acetylgalactosaminyltransferase (using apomucin as exogenous acceptor) were highly enriched in membrane fractions derived from the Golgi apparatus; virtually no activity was detected in membranes from the rough and smooth endoplasmic reticulum. Vesicles of the above organelles (which were sealed and of the same membrane topographical orientation as in vivo) were able to translocate UDP-GalNAc into their lumen in an assay in vitro; the initial translocation rate into Golgi vesicles was 4-6-fold higher than that into vesicles from the rough and smooth endoplasmic reticulum. Translocation of UDP-GalNAc into Golgi vesicles was temperature dependent and saturable with an apparent Km of 8-10 microM. UDP-GalNAc labeled with different radioisotopes in the uridine and sugar was used to determine that the intact sugar nucleotide was being translocated in a reaction coupled to the exit of luminal UMP. Following translocation of UDP-GalNAc, transfer of GalNAc into endogenous macromolecular acceptors was detected in Golgi vesicles and not in those from the rough and smooth endoplasmic reticulum. The above results together with previous studies on the O-xylosylation of the linkage region of proteoglycans (Nuwayhid, N., Glaser, J.H., Johnson, J.C., Conrad, H.E., Hauser, S.C., and Hirschberg, C.B. (1986) J. Biol. Chem. 261, 12936-12941) strongly suggest that, in rat liver, the bulk of O-glycosylation reactions occur in the Golgi apparatus.


Asunto(s)
Acetilgalactosamina/biosíntesis , Galactosamina/análogos & derivados , Galactosiltransferasas/metabolismo , Hígado/ultraestructura , N-Acetilgalactosaminiltransferasas , Serina/metabolismo , Treonina/metabolismo , Animales , Radioisótopos de Carbono , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Membranas Intracelulares/enzimología , Ratas , Tritio , Uridina Difosfato N-Acetilgalactosamina/metabolismo , Polipéptido N-Acetilgalactosaminiltransferasa
10.
J Biol Chem ; 265(24): 14691-5, 1990 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-2117613

RESUMEN

Previous studies on the topography of the reactions leading to the formation of dolichol-P-P-Glc-NAc2Man9Glc3 have shown that these occur on both sides of the endoplasmic reticulum membrane (Hirschberg, C. B., and Snider, M. D. (1987) Annu. Rev. Biochem. 56, 63-87). Dolichol-P-P-GlcNAc2Man5 has been detected on the cytoplasmic side of the endoplasmic reticulum membrane while the subsequent dolichol-oligosaccharide intermediates face the lumen. Less clear is the side of the membrane where dolichol-P-P-GlcNAc2 is assembled. We now present evidence strongly suggesting that the active sites of the enzymes catalyzing the synthesis of this latter intermediate are on the cytoplasmic side of the endoplasmic reticulum membrane. In addition, dolichol-P-P-GlcNAc2 has also been detected on this side. Incubations of sealed, "right side out" rat liver endoplasmic reticulum-derived vesicles with [beta-32P] UDP-GlcNAc in the presence of 5-Br-UMP resulted in the formation of radiolabeled dolichol-P-P-GlcNAc and dolichol-P-P-GlcNAc2 under conditions where there was complete inhibition of transport of the nucleotide sugar. In other experiments with the above radiolabeled nucleotide sugar and sealed vesicles, it was demonstrated that EDTA (a membrane-impermeable reagent) inhibited the N-acetylglucosamine-1-phosphate transferase under conditions where transport of the nucleotide sugar into the lumen was unaffected. Finally, sealed vesicles were first incubated with [32P]UDP-GlcNAc and subsequently with UDP-Gal and soluble galactosyltransferase. This resulted in galactosylation of dolichol-P-P-GlcNAc2. The above results, together with the previous observations, strongly suggest that all reactions leading to this latter dolichol intermediate occur on the cytosolic side of the endoplasmic reticulum membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Hígado/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Azúcares de Uridina Difosfato/metabolismo , Animales , Bromodesoxiuridina/farmacología , Ácido Edético/farmacología , Retículo Endoplásmico/efectos de los fármacos , Galactosiltransferasas/metabolismo , Glicosilación , Modelos Biológicos , Radioisótopos de Fósforo , Azúcares de Poliisoprenil Fosfato/aislamiento & purificación , Azúcares de Poliisoprenil Fosfato/metabolismo , Procesamiento Proteico-Postraduccional , Ratas , Tritio , Tunicamicina/farmacología
11.
J Biol Chem ; 263(36): 19778-82, 1988 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-3198650

RESUMEN

We have recently described the occurrence of integral membrane glycoproteins in rat liver smooth and rough endoplasmic reticulum with O-N-acetylglucosamine facing the cytosolic and luminal sides of the membrane (Abeijon, C., and Hirschberg, C. B. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 1010-1014). We now report that integral membrane glycoproteins with cytosolic facing O-N-acetylglucosamine also occur in membranes of rat liver Golgi apparatus. This was determined following incubation of vesicles from the Golgi apparatus, which were sealed and of the same membrane topographical orientation as in vivo, with UDP-[14C]galactose and saturating amounts of bovine milk galactosyltransferase. This enzyme does not enter the lumen of the vesicles and specifically catalyzes the addition of galactose, in a beta 1-4 linkage, to terminal N-acetylglucosamine. Under these conditions, galactose was transferred to a glycoprotein of molecular mass of 92 kDa. This protein was insoluble in sodium carbonate, pH 11.5, conditions under which integral membrane proteins remain membrane bound and was insensitive to treatment with peptide:N-glycosidase F. beta Elimination and chromatography showed that radiolabeled galactose was part of a disaccharide which was characterized as Gal beta 1-4GlcNAcitol. This glycoprotein is specific of the Golgi apparatus membrane. Intrinsic membrane glycoproteins with this unusual carbohydrate membrane orientation thus occur in the endoplasmic reticulum and Golgi apparatus of rat liver.


Asunto(s)
Acetilglucosamina/análisis , Glucosamina/análogos & derivados , Aparato de Golgi/ultraestructura , Membranas Intracelulares/ultraestructura , Hígado/enzimología , Glicoproteínas de Membrana/aislamiento & purificación , Animales , Fraccionamiento Celular , Citosol/ultraestructura , Retículo Endoplásmico/ultraestructura , Masculino , Peso Molecular , Oligosacáridos/aislamiento & purificación , Ratas , Ratas Endogámicas
12.
Proc Natl Acad Sci U S A ; 93(12): 5963-8, 1996 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-8650202

RESUMEN

The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha1-->2-linked N-acetylglucosamine. The biosynthesis of these chains probably occurs in the lumen of the Golgi apparatus, by analogy to S. cerevisiae. The sugar donors, GDP-mannose and UDP-GlcNAc, must first be transported from the cytosol, their site of synthesis, via specific Golgi membrane transporters into the lumen where they are substrates in the biosynthesis of these mannoproteins. A mutant of K. lactis, mnn2-2, that lacks terminal N-acetylglucosamine in its mannan chains in vivo, has recently been characterized and shown to have a specific defect in transport of UDP-GlcNAc into the lumen of Golgi vesicles in vitro. We have now cloned the gene encoding the K. lactis Golgi membrane UDP-GlcNAc transporter by complementation of the mnn2-2 mutation. The mnn2-2 mutant was transformed with a genomic library from wild-type K. lactis in a pKD1-derived vector; transformants were isolated and phenotypic correction was monitored following cell surface labeling with fluorescein isothiocyanate conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescent activated cell sorter. A 2.4-kb DNA fragment was found to restore the wild-type lectin binding phenotype. Upon loss of the plasmid containing this fragment, reversion to the mutant phenotype occurred. The above fragment contained an open reading frame for a multitransmembrane spanning protein of 328 amino acids. The protein contains a leucine zipper motif and has high homology to predicted proteins from S. cerevisiae and C. elegans. In an assay in vitro, Golgi vesicles isolated from the transformant had regained their ability to transport UDP-GlcNAc. Taken together, the above results strongly suggest that the cloned gene encodes the Golgi UDP-GlcNAc transporter of K. lactis.


Asunto(s)
Aparato de Golgi/metabolismo , Kluyveromyces/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Uridina Difosfato/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Separación Celular , Clonación Molecular , ADN Recombinante , Escherichia coli/genética , Citometría de Flujo , Kluyveromyces/metabolismo , Datos de Secuencia Molecular
13.
Proc Natl Acad Sci U S A ; 95(14): 7888-92, 1998 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-9653110

RESUMEN

Transporters in the Golgi apparatus membrane translocate nucleotide sugars from the cytosol into the Golgi lumen before these can be substrates for the glycosylation of proteins, lipids, and proteoglycans. We have cloned the mammalian Golgi membrane transporter for uridine diphosphate-N-acetylglucosamine by phenotypic correction with cDNA from MDCK cells of a recently characterized Kluyveromyces lactis mutant deficient in Golgi transport of the above nucleotide sugar. Phenotypically corrected transformants were separated from mutants in a fluorescent-activated cell sorter after labeling of K. lactis cells with fluorescein isothiocyanate (FITC) conjugated to Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine. A 2-kb DNA fragment was found to restore the wild-type cell lectin binding phenotype, which reverted to the mutant one upon loss of the plasmid. The DNA fragment contained an ORF encoding a hydrophobic, multitransmembrane spanning protein of 326 aa that had only 22% amino acid sequence identity with the corresponding transporter from K. lactis but showed 53% amino acid sequence identity to the mammalian UDP-galactose transporters and 40% to the CMP-sialic acid transporter. Golgi vesicles from the transformant regained their ability to transport UDP-GlcNAc in an assay in vitro. The above results demonstrate that the mammalian Golgi UDP-GlcNAc transporter gene has all of the necessary information for the protein to be expressed and targeted functionally to the Golgi apparatus of yeast and that two proteins with very different amino acid sequences may transport the same solute within the same Golgi membrane.


Asunto(s)
Proteínas Portadoras/genética , Aparato de Golgi/metabolismo , Uridina Difosfato N-Acetilglucosamina/metabolismo , Secuencia de Aminoácidos , Animales , Transporte Biológico , Proteínas Portadoras/metabolismo , Línea Celular , Clonación Molecular , Perros , Kluyveromyces , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia
14.
J Biol Chem ; 260(27): 14879-84, 1985 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-4055804

RESUMEN

Incubation of a highly purified fraction derived from rat liver Golgi apparatus with [gamma-32P]ATP results in phosphorylation of several endogenous phosphoproteins. One phosphoprotein with an apparent Mr of 48,300 is radiolabeled to an apparent extent at least 5-fold higher than any other phosphoprotein as part of either the Golgi apparatus or highly purified rat liver fractions derived from the rough endoplasmic reticulum, mitochondria, plasma membrane, coated vesicles, cytosol, and total homogenate. Approximately 70% of the 48.3-kDa phosphoprotein appears to be a specific extrinsic Golgi membrane protein with the phosphorylated amino acid being threonine. The protein kinase which phosphorylates the 48.3-kDa protein is an intrinsic Golgi membrane protein and is dependent on Mg2+, independent of Ca2+, calmodulin, and cAMP, and is inhibited by N-ethylmaleimide. Preliminary evidence suggests that there are also intrinsic membrane protein kinases in the Golgi apparatus which are dependent on Ca2+ and cAMP. The physiological role of the above phosphoproteins and protein kinases is not known.


Asunto(s)
Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Hígado/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Electroforesis en Gel de Poliacrilamida , Fosfoproteínas/aislamiento & purificación , Radioisótopos de Fósforo , Fosforilación , Ratas , Fracciones Subcelulares/metabolismo
15.
Annu Rev Biochem ; 67: 49-69, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9759482

RESUMEN

The lumens of the endoplasmic reticulum and Golgi apparatus are the subcellular sites where glycosylation, sulfation, and phosphorylation of secretory and membrane-bound proteins, proteoglycans, and lipids occur. Nucleotide sugars, nucleotide sulfate, and ATP are substrates for these reactions. ATP is also used as an energy source in the lumen of the endoplasmic reticulum during protein folding and degradation. The above nucleotide derivatives and ATP must first be translocated across the membrane of the endoplasmic reticulum and/or Golgi apparatus before they can serve as substrates in the above lumenal reactions. Translocation of the above solutes is mediated for highly specific transporters, which are antiporters with the corresponding nucleoside monophosphates as shown by biochemical and genetic approaches. Mutants in mammals, yeast, and protozoa showed that a defect in a specific translocator activity results in selective impairments of the above posttranslational modifications, including loss of virulence of pathogenic protozoa. Several of these transporters have been purified and cloned. Experiments with yeast and mammalian cells demonstrate that these transporters play a regulatory role in the above reactions. Future studies will address the structure of the above proteins, how they are targeted to different organelles, their potential as drug targets, their role during development, and the possible occurrence of specific diseases.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Nucleótidos/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico , Fosfoadenosina Fosfosulfato/metabolismo
16.
J Biol Chem ; 274(10): 6641-6, 1999 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-10037760

RESUMEN

The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha(1-->2)-linked N-acetylglucosamine. Previously, Smith et al. (Smith, W. L. Nakajima, T., and Ballou, C. E. (1975) J. Biol. Chem. 250, 3426-3435) characterized two mutants, mnn2-1 and mnn2-2, which lacked terminal N-acetylglucosamine in their mannoproteins. The former mutant lacks the Golgi N-acetylglucosaminyltransferase activity, whereas the latter one was recently found to be deficient in the Golgi UDP-GlcNAc transporter activity. Analysis of extensive crossings between the two mutants led Ballou and co-workers (reference cited above) to conclude that these genes were allelic or tightly linked. We have now cloned the gene encoding the K. lactis Golgi membrane N-acetylglucosaminyltransferase by complementation of the mnn2-1 mutation and named it GNT1. The mnn2-1 mutant was transformed with a 9.5-kilobase (kb) genomic fragment previously shown to contain the gene encoding the UDP-GlcNAc transporter; transformants were isolated, and phenotypic correction was monitored after cell surface labeling with fluorescein isothiocyanate-conjugated Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescence-activated cell sorter. The above 9.5-kb DNA fragment restored the wild-type lectin binding phenotype of the transferase mutant; further subcloning of this fragment yielded a smaller one containing an opening reading frame of 1,383 bases encoding a protein of 460 amino acids with an estimated molecular mass of 53 kDa, which also restored the wild-type phenotype. Transformants had also regained the ability to transfer N-acetylglucosamine to 3-0-alpha-D-mannopyranosyl-D-mannopyranoside. The gene encoding the above transferase was found to be approximately 1 kb upstream from the previously characterized MNN2 gene encoding the UDP-GlcNAc Golgi transporter. Each gene can be transcribed independently by their own promoter. To our knowledge this is the first demonstration of two Golgi apparatus functionally related genes being contiguous in a genome.


Asunto(s)
Genes Fúngicos , Genoma Fúngico , Aparato de Golgi/genética , Kluyveromyces/genética , N-Acetilglucosaminiltransferasas/genética , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Regulación Fúngica de la Expresión Génica , Aparato de Golgi/metabolismo , Humanos , Kluyveromyces/metabolismo , Kluyveromyces/ultraestructura , Datos de Secuencia Molecular , Mutación , Alineación de Secuencia
17.
Proc Natl Acad Sci U S A ; 86(18): 6935-9, 1989 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2476806

RESUMEN

"Outer-chain" addition of mannose residues to yeast glycoproteins occurs in the Golgi compartment of the cell. Essential steps in this process are thought to include transport of GDPmannose from the cytoplasm into the lumen of Golgi vesicles, transfer of mannose to glycoprotein acceptors, hydrolysis of the resulting GDP to GMP, and return of GMP and inorganic phosphate to the cytoplasm. We report detection and characterization of a GDPmannose transport activity and a GDPase by yeast vesicles. The active transport of GDPmannose as well as the GDPase and another presumed Golgi enzyme, alpha 1,2-mannosyltransferase, are concentrated in a subcellular fraction that can be partially separated, by velocity sucrose gradient centrifugation, from a fraction enriched in an endoplasmic reticulum marker enzyme.


Asunto(s)
Guanosina Difosfato Manosa/metabolismo , Azúcares de Nucleósido Difosfato/metabolismo , Pirofosfatasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Citoplasma/metabolismo , Glicosilación , Aparato de Golgi/enzimología , Hidrólisis , Cinética , Modelos Biológicos , Ribonucleótidos/metabolismo , Fracciones Subcelulares/metabolismo
18.
J Biol Chem ; 264(9): 5233-40, 1989 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-2925690

RESUMEN

The occurrence of phosphorylated secretory proteins such as caseins and vitellogenin and the recent characterization of phosphorylated proteoglycans, in the xylose and protein core, has raised the question of where in the cell and how this phosphorylation occurs. Previous studies have described a casein kinase activity in the lumen of the Golgi apparatus and this organelle as the site of xylose addition to the protein core of proteoglycans. We now report the translocation in vitro of ATP into the lumen of rat liver and mammary gland Golgi vesicles which are sealed and have the same membrane topographical orientation as in vivo. The entire ATP molecule was translocated into the lumen of the Golgi vesicles; this was established by using ATP radiolabeled with tritium in the adenine and gamma-32P. Translocation was temperature dependent and saturable, with an apparent Km of 0.9 microM and Vmax of 58 pmol/mg protein/min. Preliminary evidence suggests that translocation of ATP into the vesicles' lumen is coupled to exit of AMP from the lumen. Following translocation of ATP into the lumen of the vesicles, proteins were phosphorylated.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aparato de Golgi/metabolismo , Hígado/metabolismo , Glándulas Mamarias Animales/metabolismo , Animales , Transporte Biológico , Membranas Intracelulares/metabolismo , Masculino , Mitocondrias Hepáticas/fisiología , Fosfoproteínas/metabolismo , Radioisótopos de Fósforo , Fosforilación , Ratas , Ratas Endogámicas
19.
J Biol Chem ; 265(1): 214-20, 1990 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-2152920

RESUMEN

Rat liver cholinesterases were found to share properties and characteristics with those expressed in cholinergic tissues. The distribution and presence of different molecular forms of cholinesterases in different subcellular organelles of rat liver were studied. The rough and smooth endoplasmic reticulum and Golgi apparatus were enriched in the G4 molecular form of acetylcholinesterase (AChE) (relative to the G2 molecular form), while the inverse was found in the plasma membrane. The interaction of these molecular forms of AChE with the Golgi membrane was studied in detail. Approximately one-half of the G4 form was free within the lumen while the remainder was an intrinsic membrane protein; all the G2 molecular form was anchored to the membrane via phosphatidylinositol. Only the G1 and G2 molecular forms of butyrylcholinesterase (BuChE) were found in the above subcellular organelles; both molecular forms were soluble within the lumen of Golgi vesicles. These results indicate that rat liver expresses several molecular forms of AChE which have multiple interactions with membranes and that liver is unlikely to be the source of the G4 form of BuChE present in high concentration in the plasma.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Colinesterasas/metabolismo , Hígado/ultraestructura , Orgánulos/enzimología , Animales , Membrana Celular/enzimología , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Calor , Membranas Intracelulares/enzimología , Hígado/enzimología , Magnesio/farmacología , Masculino , Microsomas Hepáticos/enzimología , Mitocondrias Hepáticas/enzimología , Fosfatidilinositol Diacilglicerol-Liasa , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Ratas Endogámicas
20.
J Biol Chem ; 265(31): 19351-5, 1990 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-2172253

RESUMEN

We have recently described a luminal guanosine diphosphatase activity in Golgi-like vesicles of Saccharomyces cerevisiae (Abeijon, C., Orlean, P., Robbins, P. W., and Hirschberg, C. B. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6935-6939). The presumed in vivo role of this enzyme is to convert GDP into GMP. GDP is a reaction product following outer-chain mannosylation of luminal proteins and a known inhibitor of mannosyltransferases. It is hypothesized that GMP then returns to the cytosol. We have purified this enzyme to apparent homogeneity. Following solubilization from a membrane pellet using a buffer containing Triton X-100, the enzyme was purified on a concanavalin A-Sepharose column followed by Mono Q fast protein liquid chromatography (FPLC) and Superose-12 FPLC columns. After treatment with endoglycosidase H, the deglycosylated active enzyme was applied to a second Mono Q FPLC column and a phenyl-Superose FPLC column. The final enzyme activity was enriched 6500-fold over that of the Triton X-100 extract. The apparant molecular mass of the deglycosylated enzyme is 47 kDa. The purified enzyme is highly specific for guanosine diphosphate, requires Ca2+ for maximal activity, and has a broad pH optimum between 7.4 and 8.2. The apparent Km for GDP is 0.1 mM; the Vmax is 4.9 mmol/min/mg of protein. An enzyme activity with similar substrate specificity has also been detected in membranes of Schizosaccharomyces pombe.


Asunto(s)
Aparato de Golgi/enzimología , Pirofosfatasas/aislamiento & purificación , Saccharomyces cerevisiae/enzimología , Cromatografía de Afinidad , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Cinética , Peso Molecular , Pirofosfatasas/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA