Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Nature ; 618(7965): 489-493, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316718

RESUMEN

Saturn's moon Enceladus harbours a global1 ice-covered water ocean2,3. The Cassini spacecraft investigated the composition of the ocean by analysis of material ejected into space by the moon's cryovolcanic plume4-9. The analysis of salt-rich ice grains by Cassini's Cosmic Dust Analyzer10 enabled inference of major solutes in the ocean water (Na+, K+, Cl-, HCO3-, CO32-) and its alkaline pH3,11. Phosphorus, the least abundant of the bio-essential elements12-14, has not yet been detected in an ocean beyond Earth. Earlier geochemical modelling studies suggest that phosphate might be scarce in the ocean of Enceladus and other icy ocean worlds15,16. However, more recent modelling of mineral solubilities in Enceladus's ocean indicates that phosphate could be relatively abundant17. Here we present Cassini's Cosmic Dust Analyzer mass spectra of ice grains emitted by Enceladus that show the presence of sodium phosphates. Our observational results, together with laboratory analogue experiments, suggest that phosphorus is readily available in Enceladus's ocean in the form of orthophosphates, with phosphorus concentrations at least 100-fold higher in the moon's plume-forming ocean waters than in Earth's oceans. Furthermore, geochemical experiments and modelling demonstrate that such high phosphate abundances could be achieved in Enceladus and possibly in other icy ocean worlds beyond the primordial CO2 snowline, either at the cold seafloor or in hydrothermal environments with moderate temperatures. In both cases the main driver is probably the higher solubility of calcium phosphate minerals compared with calcium carbonate in moderately alkaline solutions rich in carbonate or bicarbonate ions.

2.
Philos Trans A Math Phys Eng Sci ; 382(2273): 20230208, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38736336

RESUMEN

The selected ice nanoparticle accelerator, SELINA, was used to prepare beams of single ice particles with positive or negative charge. Positively charged particles were prepared from deionized water and 0.05-0.2 molar solutions of sodium chloride in water, and negatively charged ice particles were generated from water without salt. Depending on the electrospray source configuration, the measured particles vary from 50 to 1000 nm in diameter. The kinetic energy per charge for all particles was set to 200 eV by the collisional equilibration in quadrupoles, which resulted in primary velocities up to 600 m/s for the lowest m/z particles. The electrospray ionization and thus particle formation from SELINA become less efficient with increasing salt concentration, resulting in a lower detected particle frequency and size. Good instrument operation is achievable for concentrations below 0.2 M. After we have verified and characterized positively and negatively charged ice particles, we have combined SELINA with a target and time-of-flight spectrometer for a 'proof-of-principle' post acceleration of 120 nm particles towards hypervelocity (v ~ 3000 m/s) and detection of fragments from the particle impact (SELINA-HIMS). General conditions are discussed for the acceleration of particles between 50 and 1000 nm to velocities well above 3000 m/s with SELINA-HIMS instrument. This article is part of the theme issue 'Dust in the Solar System and beyond'.

3.
Nature ; 558(7711): 564-568, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29950623

RESUMEN

Saturn's moon Enceladus harbours a global water ocean 1 , which lies under an ice crust and above a rocky core 2 . Through warm cracks in the crust 3 a cryo-volcanic plume ejects ice grains and vapour into space4-7 that contain materials originating from the ocean8,9. Hydrothermal activity is suspected to occur deep inside the porous core10-12, powered by tidal dissipation 13 . So far, only simple organic compounds with molecular masses mostly below 50 atomic mass units have been observed in plume material6,14,15. Here we report observations of emitted ice grains containing concentrated and complex macromolecular organic material with molecular masses above 200 atomic mass units. The data constrain the macromolecular structure of organics detected in the ice grains and suggest the presence of a thin organic-rich film on top of the oceanic water table, where organic nucleation cores generated by the bursting of bubbles allow the probing of Enceladus' organic inventory in enhanced concentrations.


Asunto(s)
Medio Ambiente Extraterrestre/química , Saturno , Exobiología , Hielo/análisis , Volatilización
4.
Angew Chem Int Ed Engl ; 63(4): e202314784, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37917653

RESUMEN

Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified. In our study, we showcase the synergy between two sequentially applied "preparative mass spectrometry" methods: initiating accelerated reactions within microdroplets during electrospray ionization to generate gaseous ionic intermediates in high abundance, which are subsequently mass-selected and soft-landed to react with a provided reagent on a substrate. This allows the generation of products at a nanomolar scale, amenable to further characterization. In this proof-of-concept study, the contrasting reaction pathways between intrinsically neutral and pre-charged reagents, respectively, both in microdroplets and in layers generated by ion soft-landing are investigated. This provides new insights into the role of partially solvated reagents at microdroplet surfaces for increased reaction rates. Additionally, further insights into reactions of ions of the same polarity under various conditions is obtained.

5.
Anal Chem ; 95(7): 3621-3628, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36753610

RESUMEN

The coupling of an Orbitrap-based mass analyzer to the laser-induced liquid beam ion desorption (LILBID) technique has been investigated, with the aim to reproduce the mass spectra recorded by Cassini's Cosmic Dust Analyzer (CDA) in the vicinity of Saturn's icy moon Enceladus. LILBID setups are usually coupled with time-of-flight (TOF) mass analyzers, with a limited mass resolution (∼800 m/Δm). Thanks to the Orbitrap technology, we developed a unique analytical setup that is able to simulate hypervelocity ice grains' impact in the laboratory (at speeds in the range of 15-18 km/s) with an unprecedented high mass resolution of up to 150 000 m/Δm (at m/z 19 for a 500 ms signal duration). The results will be implemented in the LILBID database and will be useful for the calibration and future data interpretation of the Europa Clipper's SUrface Dust Analyzer (SUDA), which will characterize the habitability of Jupiter's icy moon Europa.

6.
Photochem Photobiol Sci ; 22(9): 2143-2151, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37277672

RESUMEN

Water-insoluble organic UV filters like tris-biphenyl-triazine (TBPT) can be prepared as aqueous dispersions of nanoparticles. The particles consist of the respective UV absorber molecules and show strong UV absorbance. Since there is a certain solubility of such UV absorbers in organic solvents, it is possible to measure the absorbance spectrum also in solution, for instance in ethanol or dioxane. The UV spectrum of the aqueous dispersion shows a slight hypsochromic shift of the original band with an additional shoulder at longer wavelengths. For the understanding of the observed changes of UV-Vis spectra of this UV absorber, either dissolved in an organic solvent or dispersed as nanoparticles in water, DFT calculations were carried out with the respective monomer and aggregates of TBPT molecules in the different media. The calculated UV-Vis spectra of isolated, that means dissolved, TBPT molecules in ethanol and in dioxane agree well with experimentally observed ones. The observed changes in the shape of experimental UV-Vis spectra in aqueous dispersion cannot be explained with a solvent effect only. It was found that the studied molecules could form stable energetically favorable π-stacked aggregates, which show UV-Vis spectra in reasonable agreement with those experimentally observed in aqueous dispersion. Such aggregates of TBPT are most likely the reason for the observed additional shoulder in the UV/vis absorbance spectrum. In addition, the mechanism of the photochemical deactivation of excited TBPT molecules was studied in detail with TD DFT in dioxane and in water.

7.
Phys Chem Chem Phys ; 25(16): 11732-11744, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37066667

RESUMEN

Precise, efficient, and effective control of chemical reaction conditions is a viable measure for the environment-conscious time and energy resource management in modern laboratories and in industry. Parameter changes such as surface enlargement, pH, local reactant accumulation by solvent evaporation and polarization effects, etc., have been shown to greatly affect the reaction rate of a chemical reaction. In electrospray (ES) ionization - a soft ionization method often used for mass spectrometry - all these parameters change constantly and with high dynamics during the nebulization process that generates droplets as the ultimate confined µ-reaction vessels. Therefore, high acceleration factors are reported in literature for a manifold of such µ-droplet reactions. Here, the tri-molecular Mannich reaction was identified as a suitable candidate for studying thermal, electronic, and fluidic manipulation of the ES process to achieve high conversion rates with short reaction times and compare them to the batch reaction. Some of these manipulations were conducted separately to better quantify their individual contributions. Here, the keto-enol-tautomerism of the used ß-diketones, the high proton concentrations, and the longer reaction times in the µ-droplets are presumed to have the greatest impact on these enhancement factors. Experiments were performed to find ES conditions with small initial droplets and long droplet flight times where the highest reaction conversion rates are obtained. A sharp increase in the product peak was found at large distances between the mass spectrometry (MS) inlet and ES source at high voltages. Moreover, different trends were found for the two ketones studied, acetylacetone (AcAc) and 1,3-cyclohexanedione (Cyclo), by changing the temperature of the heated ES source. Finally, high conversion rates were obtained for the combination of formaldehyde (Fal) and piperidine (Pip) with AcAc and Cyclo, respectively, with over 90%. With respect to the batch reaction, this is mainly due to an increase in reaction kinetics as well as a shift in thermodynamics for the µ-droplet reaction environment.

8.
Acc Chem Res ; 54(17): 3377-3389, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34427081

RESUMEN

This Account highlights recent experimental and theoretical work focusing on the development of polyoxometalates (POMs) as possible active switching units in what may be called "molecule-based memory cells". Herein, we critically discuss how multiply charged vanadium-containing POMs, which exhibit stable metal-oxo bonds and are characterized by the excellent ability to change their redox states without significant structural distortions of the central polyoxoanion core, can be immobilized best and how they may work optimally at appropriate surfaces. Furthermore, we critically discuss important issues and challenges on the long way toward POM-based nanoelectronics. This Account is divided into four sections shedding light on POM interplay in solution and on surfaces, ion soft-landing of mass-selected POMs on surfaces, electronic modification of POMs on surfaces, and computational modeling of POMs on surfaces. The sections showcase the complex nature of far-reaching POM interactions with the chemical surroundings in solution and the properties of POMs in the macroscopic environment of electrode surfaces. Section 2 describes complex relationships of POMs with their counter-cations, solvent molecules, and water impurities, which have been shown to exhibit a direct impact on the resulting surface morphology, where a concentration-dependent formation of micellar structures can be potentially observed. Section 3 gives insights into the ion soft-landing deposition of mass-selected POMs on electrode surfaces, which emerges as an appealing method because the simultaneous deposition of agglomeration-stimulating counter-cations can be avoided. Section 4 provides details of electronic properties of POMs and their modification by external electronic stimuli toward the development of multiple-state resistive (memristive) switches. Section 5 sheds light on issues of the determination of the electronic structure properties of POMs across their interfaces, which is difficult to address by experiment. The studies summarized in these four sections have employed various X-ray-scattering, microscopy, spectroscopy, and computational techniques for imaging of POM interfaces in solution and on surfaces to determine the adsorption type, agglomeration tendency, distribution, and oxidation state of deposited molecules. The presented research findings and conceptual ideas may assist experimentalists and theoreticians to advance the exploration of POM electrical conductivity as a function of metal redox and spin states and to pave the way for a realization of ("brain-inspired") POM-based memory devices, memristive POM-surface device engineering, and energy efficient nonvolatile data storage and processing technologies.

9.
J Phys Chem A ; 126(21): 3373-3383, 2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35579333

RESUMEN

An experimental setup for molecular beam scattering from flat liquid sheets has been developed, with the goal of studying reactions at gas-liquid interfaces for volatile liquids. Specifically, a crossed molecular beam instrument that can measure angular and translational energy distributions of scattered products has been adapted for liquid jet scattering. A microfluidic chip is used to create a stable flat liquid sheet inside vacuum from which scattering occurs, and both evaporation and scattering from this sheet are characterized using a rotatable mass spectrometer that can measure product time-of-flight distributions. This article describes the instrument and reports on the first measurements of evaporation of dodecane and Ne from a Ne-doped dodecane flat jet, as well as scattering of Ne from a flat jet of pure dodecane.

10.
Angew Chem Int Ed Engl ; 61(16): e202117855, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35088489

RESUMEN

Exotic oxidation states of the first-row transition metals have recently attracted much interest. In order to investigate the oxidation states of a series of iron-oxalate complexes, an aqueous solution of iron(III) nitrate and oxalic acid was studied by infrared free liquid matrix-assisted laser desorption/ionization as well as ionspray mass spectrometry. Here, we show that iron is not only detected in its common oxidation states +II and +III, but also in its unusual oxidation state +I, detectable in both positive-ion and in negative-ion modes, respectively. Vibrational spectra of the gas phase anionic iron oxalate complexes [FeIII (C2 O4 )2 ]- , [FeII (C2 O4 )CO2 ]- , and [FeI (C2 O4 )]- were measured by means of infrared photodissociation spectroscopy and their structures were assigned by comparison to anharmonic vibrational spectra based on second-order perturbation theory.

11.
Chemistry ; 27(60): 14899-14910, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34490947

RESUMEN

The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(µ-SR)2 (µ1,3 -O2 CR)CrN3 core structure with µ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1) cm-1 (1), +34.8(4) cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-µ-alkoxido-µ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750 nm when excited into the 4 LMCT state on the 4 A2 → 2 T1 (ν2 ) bands (λexc =405 nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77 K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).

12.
Inorg Chem ; 60(14): 10415-10425, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34192460

RESUMEN

The controlled adsorption of polynuclear coordination compounds with specific structural and electronic characteristics on surfaces is crucial for the prospective implementation of molecule-surface interfaces into practical electronic devices. From this perspective, a neutral 3d,4f-coordination cluster [MnII3MnIVYb3O3(OH)(L·SMe)3(OOCMe)9]·2MeCN·3EtOH (1·2MeCN·3EtOH), where L·SMe- is a Schiff base, has been synthesized and fully characterized and its adsorption on two different solid substrates, gold and graphite, has been studied. The mixed-valence compound with a bilayered metal core structure and the structurally exposed thioether groups exhibits a substantially different surface bonding to metallic gold and semimetallic graphite substrates. While on graphite the adsorption takes place only on distinguished attraction points with a locally increased number of potential bonding sites such as terrace edges and other surface defects, on gold the molecules were found to adsorb rather weakly on randomly distributed adsorption sites of the surface terraces. This entirely different behavior provides important information for the development of advanced surface materials that may enable well-distributed ordered molecular assemblies.

13.
Anal Bioanal Chem ; 413(6): 1561-1570, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33479818

RESUMEN

By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light. This works both for non-polar solvents such as n-heptane and for water non-miscible solvents like chloroform. In a proof of concept study, this approach is applied to monitor a photooxidation of N-phenyl-1,2,3,4-tetrahydroisoquinoline. By using water as an infrared absorbing matrix, analytes, dissolved in non-polar solvents from reactions carried out on a microchip, can be desorbed and ionized for investigation by mass spectrometry.

14.
Angew Chem Int Ed Engl ; 60(47): 24910-24914, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523217

RESUMEN

While reactions between ions and neutral molecules in the gas phase have been studied extensively, reactions between molecular ions of same polarity remain relatively unexplored. Herein we show that reactions between fragment ions generated in the gas phase and molecular ions of the same polarity are possible by soft-landing of both reagents on surfaces. The reactive [B12 I11 ]1- anion was deposited on a surface layer built up by landing the generally unreactive [B12 I12 ]2- . Ex-situ analysis of the generated material shows that [B24 I23 ]3- was formed. A computational study shows that the product is metastable in the gas phase, but a charge-balanced environment of a grounded surface may stabilize the triply charged product, as suggested by model calculations. This opens new opportunities for the generation of highly charged clusters using unconventional building blocks from the gas phase.

15.
Biomacromolecules ; 21(2): 783-792, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31887030

RESUMEN

The islet amyloid polypeptide (IAPP) is a regulatory peptide that can aggregate into fibrillar structures associated with type 2 diabetes. In this study, the IAPP21-27 segment was modified with a biotin linker at the N-terminus (Btn-GNNFGAIL) to immobilize peptide fibrils on streptavidin-coated surfaces. Key residues for fibril formation of the N-terminal biotinylated IAPP21-27 segment were identified by using an alanine scanning approach combined with molecular dynamics simulations, thioflavin T fluorescence measurements, and scanning electron microscopy. Significant contributions of phenylalanine (F23), leucine (L27), and isoleucine (I26) for the fibrillation of the short peptide segment were identified. The fibril morphologies of the peptide variants differed depending on their primary sequence, ranging from flexible and semiflexible to stiff and crystal-like structures. These insights could advance the design of new functional hybrid bionanomaterials and fibril-engineered surface coatings using short peptide segments. To validate this concept, the biotinylated fibrils were immobilized on streptavidin-coated surfaces under spatial control.


Asunto(s)
Biotinilación/métodos , Variación Genética/genética , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Polimorfismo Genético/genética , Humanos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Propiedades de Superficie
16.
J Phys Chem A ; 124(4): 625-632, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31904233

RESUMEN

Water-insoluble organic UV filters such as 2,2'-methylene-bis-(6-(2H-benzotriazole-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol) (MBBT) can be prepared as aqueous dispersions of nanoparticles. The particles consist of the respective UV absorber molecules and show strong UV absorbance. Because there is a certain solubility of such UV absorbers in organic solvents, it is possible to measure the absorbance spectrum in solution also, for instance, in ethanol or dioxane. The UV spectrum of the aqueous dispersion shows a significant bathochromic shift of the long-wavelength band with an additional shoulder. For the understanding of the observed changes of UV-vis spectra of this UV absorber, either dissolved in an organic solvent or dispersed as nanoparticles in water, density functional theory (DFT) calculations were carried out with the respective monomer and aggregates of MBBT molecules in different media. The calculated UV-vis spectra of isolated, that means dissolved, MBBT molecules in ethanol and in dioxane agree well with the experimentally observed ones. The observed changes in the shape and position of experimental UV-vis spectra in aqueous dispersion cannot be explained with the solvent effect alone. It was found that the studied molecules could form stable energetically favorable π-stacked dimers, which show UV-vis spectra in reasonable agreement with those experimentally observed in aqueous dispersion. Such aggregates of MBBT are most likely the reason for the observed bathochromic shift in the UV-vis absorption spectrum. In addition, the mechanism of the photochemical deactivation of the excited MBBT molecules was studied in detail with time-dependent DFT in dioxane and in water. The energetically most favorable pathway for the deactivation of absorbed energy by MBBT occurs through intramolecular enol-keto tautomerization in the first excited singlet state.

17.
Biochemistry ; 58(35): 3656-3668, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31385514

RESUMEN

Many peptides aggregate into insoluble ß-sheet rich amyloid fibrils. Some of these aggregation processes are linked to age-related diseases, such as Alzheimer's disease and type 2 diabetes. Here, we show that the secondary structure of the peptide uperin 3.5 directs the kinetics and mechanism of amyloid fibrillar aggregation. Uperin 3.5 variants were investigated using thioflavin T fluorescence assays, circular dichroism spectroscopy, and structure prediction methods. Our results suggest that those peptide variants with a strong propensity to form an α-helical secondary structure under physiological conditions are more likely to aggregate into amyloid fibrils than peptides in an unstructured or "random coil" conformation. This conclusion is in good agreement with the hypothesis that an α-helical transition state is required for peptide aggregation into amyloid fibrils. Specifically, uperin 3.5 variants in which charged amino acids were replaced by alanine were richer in α-helical content, leading to enhanced aggregation compared to that of wild type uperin 3.5. However, the addition of 2,2,2-trifluoroethanol as a major co-solute or membrane-mimicking phospholipid environments locked uperin 3.5 to the α-helical conformation preventing amyloid aggregation. Strategies for stabilizing peptides into their α-helical conformation could provide therapeutic approaches for overcoming peptide aggregation-related diseases. The impact of the physiological environment on peptide secondary structure could explain aggregation processes in a cellular environment.


Asunto(s)
Amiloide , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Amiloide/química , Amiloide/metabolismo , Animales , Anuros , Benzotiazoles/química , Fluorescencia , Cinética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína
18.
Langmuir ; 35(45): 14522-14531, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31537064

RESUMEN

Surfaces are abundant in living systems, such as in the form of cellular membranes, and govern many biological processes. In this study, the adsorption of the amyloidogenic model peptides GNNQQNY, NNFGAIL, and VQIVYK as well as the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5) were studied at low concentrations (100 µM) to different surfaces. The technique of a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied as it enables the monitoring of mass binding to sensors at nanogram sensitivity. Gold-coated quartz sensors were used as unmodified gold surfaces or functionalized with self-assembled monolayers (SAMs) of alkanethiols (terminated as methyl, amino, carboxyl, and hydroxyl) resulting in different adsorption affinities of the peptides. Our objective was to evaluate the underlying role of the nature and feature of interfaces in biological systems which could concentrate peptides and impact or trigger peptide aggregation processes. In overall, the largely hydrophobic peptides adsorbed with preference to hydrophobic or countercharged surfaces. Further, the glycoprotein lubricin (LUB) was tested as an antiadhesive coating. Despite its hydrophilicity, the adsorption of peptides to LUB coated sensors was similar to the adsorption to unmodified gold surfaces, which indicates that some peptides diffused through the LUB layer to reach the underlying gold sensor surface. The LUB protein-antiadhesive is thus more effective as a biomaterial coating against larger biomolecules than small peptides under the conditions used here. This study provides directions toward a better understanding of amyloid peptide adsorption to biologically relevant interfaces, such as cellular membranes.


Asunto(s)
Proteínas Amiloidogénicas/química , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Tecnicas de Microbalanza del Cristal de Cuarzo , Propiedades de Superficie
19.
Rapid Commun Mass Spectrom ; 33(22): 1751-1760, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31286576

RESUMEN

RATIONALE: Detecting ice grains with impact ionization mass spectrometers in space provides information about the compositions of ice grains and their sources. Depending on the impact speeds of the ice grains onto the metal target of a mass spectrometer, ionization conditions can vary substantially, resulting in changes to the appearance of the resulting mass spectra. METHODS: Here we accurately reproduce mass spectra of water ice grains, recorded with the Cosmic Dust Analyzer (CDA) on board the Cassini spacecraft at typical impact speeds ranging between 4 km/s to 21 km/s, with a laboratory analogue experiment. In this Laser-Induced Liquid Beam Ion Desorption (LILBID) approach, a µm-sized liquid water beam is irradiated with a pulsed infrared laser, desorbing charged analyte and solvent aggregates and isolated ions, which are subsequently analyzed in a time-of-flight (TOF) mass spectrometer. RESULTS: We show that our analogue experiment can reproduce impact ionization mass spectra of ice grains obtained over a wide range of impact speeds, aiding the quantitative analyses of mass spectra from space. CONCLUSIONS: Spectra libraries created with the LILBID experiment will be a vital tool for inferring the composition of ice grains from mass spectra recorded by both past and future impact ionization mass spectrometers (e.g. the SUrface Dust Analyzer (SUDA) onboard NASA's Europa Clipper Mission or detectors on a future Enceladus Mission).

20.
Phys Chem Chem Phys ; 21(38): 21464-21472, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31535122

RESUMEN

Analyzing and interpreting the nanoscale morphology of semiconducting polymers is one of the key challenges for advancing in organic electronics. The orientation persistence length (OPL) as a tool to analyze orientation maps generated by photoemission electron microscopy (PEEM) - a state of the art tool for nanoscale imaging/spectroscopy - is presented here. The OPL is a way to quantify the chain orientation within the polymer film in a single graph. In this regard, it is a convincing method that will enable additional direct correlations between the chain orientation and electrical or optical parameters. In this report, we provide computational insights into the factors that contribute to the OPL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA