Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38914733

RESUMEN

The hormone Neuropeptide Y (NPY) plays critical roles in feeding, satiety, obesity, and weight control. However, its complex peptide structure has hindered the development of fast and biocompatible detection methods. Previous studies utilizing electrochemical techniques with carbon fiber microelectrodes (CFMEs) have targeted the oxidation of amino acid residues like tyrosine to measure peptides. Here, we employ the modified sawhorse waveform (MSW) to enable voltammetric identification of NPY through tyrosine oxidation. Use of MSW improves NPY detection sensitivity and selectivity by reducing interference from catecholamines like dopamine, serotonin, and others compared to the traditional triangle waveform. The technique utilizes a holding potential of -0.2 V and a switching potential of 1.2 V that effectively etches and renews the CFME surface to simultaneously detect NPY and other monoamines with a sensitivity of 5.8 ± 0.94 nA/µM (n = 5). Furthermore, we observed adsorption-controlled, subsecond NPY measurements with CFMEs and MSW. The effective identification of exogenously applied NPY in biological fluids demonstrates the feasibility of this methodology for in vivo and ex vivo studies. These results highlight the potential of MSW voltammetry to enable fast, biocompatible NPY quantification to further elucidate its physiological roles.

2.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517164

RESUMEN

Curing effects were investigated by using the electrical response of a single carbon nanotube yarn (CNTY) embedded in an epoxy resin during the polymerization process. Two epoxy resins of different viscosities and curing temperatures were investigated, varying also the concentration of the curing agent. It is shown that the kinetics of resin curing can be followed by using the electrical response of an individual CNTY embedded in the resin. The electrical resistance of an embedded CNTY increased (~ 9%) after resin curing for an epoxy resin cured at 130 °C with viscosity of ~ 59 cP at the pouring/curing temperature ("Epon 862"), while it decreased (~ -9%) for a different epoxy cured at 60 °C, whose viscosity is about double at the corresponding curing temperature. Lowering the curing temperature from 60 °C to room temperature caused slower and smoother changes of electrical resistance over time and smaller (positive) residual resistance. Increasing the concentration of the curing agent caused a faster curing kinetics and, consequently, more abrupt changes of electrical resistance over time, with negative residual electrical resistance. Therefore, the resin viscosity and curing kinetics play a paramount role in the CNTY wicking, wetting and resin infiltration processes, which ultimately govern the electrical response of the CNTY immersed into epoxy.

3.
Sensors (Basel) ; 18(2)2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401745

RESUMEN

Carbon nanotube yarns are micron-scale fibers comprised by tens of thousands of carbon nanotubes in their cross section and exhibiting piezoresistive characteristics that can be tapped to sense strain. This paper presents the details of novel foil strain gauge sensor configurations comprising carbon nanotube yarn as the piezoresistive sensing element. The foil strain gauge sensors are designed using the results of parametric studies that maximize the sensitivity of the sensors to mechanical loading. The fabrication details of the strain gauge sensors that exhibit the highest sensitivity, based on the modeling results, are described including the materials and procedures used in the first prototypes. Details of the calibration of the foil strain gauge sensors are also provided and discussed in the context of their electromechanical characterization when bonded to metallic specimens. This characterization included studying their response under monotonic and cyclic mechanical loading. It was shown that these foil strain gauge sensors comprising carbon nanotube yarn are sensitive enough to capture strain and can replicate the loading and unloading cycles. It was also observed that the loading rate affects their piezoresistive response and that the gauge factors were all above one order of magnitude higher than those of typical metallic foil strain gauges. Based on these calibration results on the initial sensor configurations, new foil strain gauge configurations will be designed and fabricated, to increase the strain gauge factors even more.

4.
ECS Sens Plus ; 3(2): 027001, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38645638

RESUMEN

Voltammetry is a powerful electroanalytical tool that makes fast, real-time measurements of neurotransmitters and other molecules. Electroanalytical methods like cyclic, pulse, and stripping voltammetry are useful for qualitative and quantitative examination. Neurochemical sensing has been enhanced using carbon-based electrodes and waveform modification methods that improve sensitivity and stability of electrode performance. Voltammetry has revolutionized neurochemical monitoring by providing real-time information on neurotransmitter dynamics for neurochemical studies. Selectivity and electrode fouling remain issues for biomolecule detection, but recent advances promise new methods of analysis for other applications to enhance spatiotemporal resolution, sensitivity, selectivity, and other important considerations.

5.
Energies (Basel) ; 16(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37693369

RESUMEN

Developing efficient, sustainable, and high-performance energy storage systems is essential for advancing various industries, including integrated structural health monitoring. Carbon nanotube yarn (CNTY) supercapacitors have the potential to be an excellent solution for this purpose because they offer unique material properties such as high capacitance, electrical conductivity, and energy and power densities. The scope of the study included fabricating supercapacitors using various materials and characterizing them to determine the capacitive properties, energy, and power densities. Experimental studies were conducted to investigate the energy density and power density behavior of CNTYs embedded in various electrochemical-active matrices to monitor the matrices' power process and the CNTY supercapacitors' life-cyclic response. The results showed that the CNTY supercapacitors displayed excellent capacitive behavior, with nearly rectangular CV curves across a range of scan rates. The energy density and power density of the supercapacitors fluctuated between a minimum of 3.89 Wh/kg and 8 W/kg while the maximum was between 6.46 Wh/kg and 13.20 W/kg. These CNTY supercapacitors are being tailored to power CNTY sensors integrated into a variety of structures that could monitor damage, strain, temperature, and others.

6.
J Nanosci Nanotechnol ; 11(1): 115-24, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21446414

RESUMEN

The ever-growing need to dissipate larger amounts of heat from components and structures requires the development of novel materials with superior thermal conductivity. Aligned carbon nanotube arrays that are integrated in composite materials and structures may prove useful in increasing heat transfer through their thickness. Theoretical studies have shown the potential of carbon nanotubes to reach a thermal conductivity of 6600 Wm(-1)K(-1). Experimental results on the arrays however have shown much lower thermal conductivity values. A study was conducted to better understand heat conduction in mm-long carbon nanotube arrays and to experimentally determine their thermal conductivity. Emphasis was placed on the effect of various parameters including the height and density of the array and the thermal resistance at the array interface. A method was devised to measure the thermal conductivity of the array relying on Fourier's law while maintaining a steady state one-dimensional heat flow. The study reveals that the taller the array and the higher its density, the larger the thermal conductivity of the array. Quantitative data is also provided on the effect of various interface materials and their deposition technique on the thermal conductivity of the arrays.

7.
Polymers (Basel) ; 13(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806431

RESUMEN

The effect of polymerization kinetics and resin viscosity on the electrical response of a single carbon nanotube yarn (CNTY) embedded in a vinyl ester resin (VER) during polymerization was investigated. To analyze the effect of the polymerization kinetics, the concentration of initiator (methyl ethyl ketone peroxide) was varied at three levels, 0.6, 0.9, and 1.2 wt.%. Styrene monomer was added to VER, to reduce the polymer viscosity and to determine its effect on the electrical response of the CNTY upon resin wetting and infiltration. Upon wetting and wicking of the CNTY by VER, a transient decrease in the CNTY electrical resistance (ca. -8%) was observed for all initiator concentrations. For longer times, this initial decrease in electrical resistance may become a monotonic decrease (up to ca. -17%) or change its trend, depending on the initiator concentration. A higher concentration of initiator showed faster and more negative electrical resistance changes, which correlate with faster gel times and higher build-up of residual stresses. An increase in styrene monomer concentration (reduced viscosity) resulted in an upward shift of the electrical resistance to less negative values. Several mechanisms, including wetting, wicking, infiltration, electronic transfer, and shrinkage, are attributed to the complex electrical response of the CNTY upon resin wetting and infiltration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA