Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Lipid Res ; 65(6): 100561, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38762123

RESUMEN

Cholesterol is a major lipid of the animal realm with many biological roles. It is an important component of cellular membranes and a precursor of steroid hormones and bile acids. It is particularly abundant in nervous tissues, and dysregulation of cholesterol metabolism has been associated with neurodegenerative diseases such as Alzheimer's and Huntington's diseases. Deciphering the pathophysiological mechanisms of these disorders often involves animal models such as mice and Drosophila. Accurate quantification of cholesterol levels in the chosen models is a critical point of these studies. In the present work, we compare two common methods, gas chromatography coupled to flame-ionization detection (GC/FID) and a cholesterol oxidase-based fluorometric assay to measure cholesterol in mouse brains and Drosophila heads. Cholesterol levels measured by the two methods were similar for the mouse brain, which presents a huge majority of cholesterol in its sterol profile. On the contrary, depending on the method, measured cholesterol levels were very different for Drosophila heads, which present a complex sterol profile with a minority of cholesterol. We showed that the enzyme-based assay is not specific for cholesterol and detects other sterols as well. This method is therefore not suited for cholesterol measurement in models such as Drosophila. Alternatively, chromatographic methods, such as GC/FID, offer the required specificity for cholesterol quantification. Understanding the limitations of the quantification techniques is essential for reliable interpretation of the results in cholesterol-related research.


Asunto(s)
Colesterol , Animales , Colesterol/metabolismo , Colesterol/análisis , Colesterol/sangre , Cromatografía de Gases/métodos , Ratones , Pruebas de Enzimas/métodos , Drosophila melanogaster , Drosophila , Encéfalo/metabolismo , Colesterol Oxidasa/metabolismo , Masculino
2.
J Lipid Res ; 64(3): 100343, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36773847

RESUMEN

Evaluating lipid profiles in human tissues and biofluids is critical in identifying lipid metabolites in dysregulated metabolic pathways. Due to various chemical characteristics, single-run lipid analysis has not yet been documented. Such approach is essential for analyzing pathology-related lipid metabolites. Age-related macular degeneration, the leading cause of vision loss in western countries, is emblematic of this limitation. Several studies have identified alterations in individual lipids but the majority are based on targeted approaches. In this study, we analyzed and identified approximately 500 lipid species in human biofluids (plasma and erythrocytes) and ocular tissues (retina and retinal pigment epithelium) using the complementarity of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase chromatography (RPC), coupled to high-resolution mass spectrometry. For that, lipids were extracted from human eye globes and blood from 10 subjects and lipidomic analysis was carried out through analysis in HILIC and RPC, alternately. Furthermore, we illustrate the advantages and disadvantages of both techniques for lipid characterization. RPC showed greater sensitivity in hydrophobicity-based lipid separation, detecting diglycerides, triglycerides, cholesterol, and cholesteryl esters, whereas no signal of these molecules was obtained in HILIC. However, due to coelution, RPC was less effective in separating polar lipids like phospholipids, which were separated effectively in HILIC in both ionization modes. The complementary nature of these analytical approaches was essential for the detection and identification of lipid classes/subclasses, which can then provide distinct insights into lipid metabolism, a determinant of the pathophysiology of several diseases involving lipids, notably age-related macular degeneration.


Asunto(s)
Lipidómica , Degeneración Macular , Humanos , Lipidómica/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Fosfolípidos
3.
Nutr Neurosci ; 26(8): 706-719, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35694841

RESUMEN

BACKGROUND AND OBJECTIVE: We recently showed that perinatal exposure to diets with unbalanced n-6:n-3 polyunsaturated fatty acid (PUFA) ratios affects the olfactory mucosa (OM) fatty acid composition. To assess the repercussions of these modifications, we investigated the impact of diets unbalanced in n-3 PUFAs on the molecular composition and functionality of the OM in young mice. METHODS: After mating, female mice were fed diets either deficient in α-linolenic acid (LOW diet) or supplemented with n-3 long-chain PUFAs (HIGH diet) during the perinatal period. Weaned male offspring were then fed ad libitum with the same experimental diets for 5 weeks. At 8 weeks of age, olfactory behavior tests were performed in young mice. The fatty acid composition of OM and olfactory cilia, as well as the expression of genes involved in different cellular pathways, were analyzed. The electroolfactograms induced by odorant stimuli were recorded to assess the impact of diets on OM functionality. RESULTS AND CONCLUSION: Both diets significantly modified the fatty acid profiles of OM and olfactory cilia in young mice. They also induced changes in the expression of genes involved in olfactory signaling and in olfactory neuron maturation. The electroolfactogram amplitudes were reduced in mice fed the LOW diet. Nevertheless, the LOW diet and the HIGH diet did not affect mouse olfactory behavior. Our study demonstrated that consumption of diets deficient in or supplemented with n-3 PUFAs during the perinatal and postweaning periods caused significant changes in young mouse OM. However, these modifications did not impair their olfactory capacities.


Asunto(s)
Ácidos Grasos Omega-3 , Embarazo , Ratones , Animales , Masculino , Femenino , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos/metabolismo , Dieta , Suplementos Dietéticos , Mucosa Olfatoria/metabolismo
4.
BMC Ophthalmol ; 23(1): 404, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803473

RESUMEN

BACKGROUND: Incomplete vascularization of the retina in preterm infants carries a risk of retinopathy of prematurity (ROP). Progress in neonatal resuscitation in developing countries has led to the survival of an increasing number of premature infants, resulting in an increased rate of ROP and consequently in visual disability. Strategies to reduce ROP involve optimizing oxygen saturation, nutrition, and normalizing factors such as insulin-like growth factor 1 and n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Our previous study, OmegaROP, showed that there is an accumulation or retention of docosahexaenoic acid (DHA) in mothers of infants developing ROP, suggesting abnormalities in the LC-PUFA placental transfer via fatty acid transporting proteins. The present study aims to better understand the LC-PUFA transport dysfunction in the fetoplacental unit during pregnancy and to find a novel target for the prevention of ROP development. METHODS: The study protocol is designed to evaluate the correlation between the expression level of placental fatty acid receptors and ROP occurrence. This ongoing study will include 100 mother-infant dyads: mother-infant dyads born before 29 weeks of gestational age (GA) and mother-infant dyads with full-term pregnancies. Recruitment is planned over a period of 46 months. Maternal and cord blood samples as well as placental tissue samples will be taken following delivery. ROP screening will be performed using wide-field camera imaging according to the International Classification of ROP consensus statement. DISCUSSION: The results of this study will have a tangible impact on public health. Indeed, if we show a correlation between the expression level of placental omega-3 receptors and the occurrence of ROP, it would be an essential step in discovering novel pathophysiological mechanisms involved in this retinopathy. TRIAL REGISTRATION: NCT04819893.


Asunto(s)
Recien Nacido Prematuro , Retinopatía de la Prematuridad , Lactante , Recién Nacido , Humanos , Femenino , Embarazo , Retinopatía de la Prematuridad/epidemiología , Ácidos Grasos , Placenta , Resucitación , Edad Gestacional , Factores de Riesgo
5.
Glia ; 70(1): 50-70, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519378

RESUMEN

Westernization of dietary habits has led to a progressive reduction in dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs). Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental disorders, conditions in which myelination processes are abnormal, leading to defects in brain functional connectivity. Only little is known about the role of n-3 PUFAs in oligodendrocyte physiology and white matter development. Here, we show that lifelong n-3 PUFA deficiency disrupts oligodendrocytes maturation and myelination processes during the postnatal period in mice. This has long-term deleterious consequences on white matter organization and hippocampus-prefrontal functional connectivity in adults, associated with cognitive and emotional disorders. Promoting developmental myelination with clemastine, a first-generation histamine antagonist and enhancer of oligodendrocyte precursor cell differentiation, rescues memory deficits in n-3 PUFA deficient animals. Our findings identify a novel mechanism through which n-3 PUFA deficiency alters brain functions by disrupting oligodendrocyte maturation and brain myelination during the neurodevelopmental period.


Asunto(s)
Ácidos Grasos Omega-3 , Animales , Encéfalo , Ratones , Vaina de Mielina , Neurogénesis , Oligodendroglía
6.
Exp Eye Res ; 214: 108867, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34856206

RESUMEN

The gut microbiota is a complex ecosystem that inhabits the gastrointestinal tract and consists of archaea, fungi, viruses, and bacteria, with bacteria being dominant. From birth onwards, it coevolves dynamically together with the host. The composition of the gut microbiota is under the influence of a complex interplay between both host and environmental factors. Scientific advances in the past few decades have shown that it is essential in maintaining homeostasis and tipping the balance between health and disease. In addition to its role in food digestion, the gut microbiota is implicated in regulating multiple physiological processes in the host gut mucosa and in distant organs such as the brain. Persistent imbalance between gut microbial communities, termed "dysbiosis," has been associated with several inflammatory and metabolic diseases as well as with central nervous system disorders. In this review, we present the state of the art of current knowledge on an emerging concept, the microbiota-retina axis, and the potential role of its disturbance in the development of retinopathies. We also describe several microbiota-targeting strategies that could constitute preventive and therapeutic tools for retinopathies.


Asunto(s)
Disbiosis/metabolismo , Microbioma Gastrointestinal/fisiología , Enfermedades de la Retina/metabolismo , Homeostasis , Humanos
7.
Graefes Arch Clin Exp Ophthalmol ; 260(10): 3131-3148, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35524799

RESUMEN

PURPOSE: In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS: Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS: Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS: Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.


Asunto(s)
Fosfatidiletanolaminas , Degeneración Retiniana , Animales , Ácidos Docosahexaenoicos/metabolismo , Murinae/genética , Murinae/metabolismo , Fosfatidiletanolaminas/metabolismo , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/metabolismo , Retinaldehído/análogos & derivados , Porcinos
8.
Glia ; 69(7): 1679-1693, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33683746

RESUMEN

Muller glial cells (MGCs) are responsible for the homeostatic and metabolic support of the retina. Despite the importance of MGCs in retinal disorders, reliable and accessible human cell sources to be used to model MGC-associated diseases are lacking. Although primary human MGCs (pMGCs) can be purified from post-mortem retinal tissues, the donor scarcity limits their use. To overcome this problem, we developed a protocol to generate and bank human induced pluripotent stem cell-derived MGCs (hiMGCs). Using a transcriptome analysis, we showed that the three genetically independent hiMGCs generated were homogeneous and showed phenotypic characteristics and transcriptomic profile of pMGCs. These cells expressed key MGC markers, including Vimentin, CLU, DKK3, SOX9, SOX2, S100A16, ITGB1, and CD44 and could be cultured up to passage 8. Under our culture conditions, hiMGCs and pMGCs expressed low transcript levels of RLPB1, AQP4, KCNJ1, KCJN10, and SLC1A3. Using a disease modeling approach, we showed that hiMGCs could be used to model the features of diabetic retinopathy (DR)-associated dyslipidemia. Indeed, palmitate, a major free fatty acid with elevated plasma levels in diabetic patients, induced the expression of inflammatory cytokines found in the ocular fluid of DR patients such as CXCL8 (IL-8) and ANGPTL4. Moreover, the analysis of palmitate-treated hiMGC secretome showed an upregulation of proangiogenic factors strongly related to DR, including ANG2, Endoglin, IL-1ß, CXCL8, MMP-9, PDGF-AA, and VEGF. Thus, hiMGCs could be an alternative to pMGCs and an extremely valuable tool to help to understand and model glial cell involvement in retinal disorders, including DR.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Células Madre Pluripotentes Inducidas , Diabetes Mellitus/metabolismo , Células Ependimogliales/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Neuroglía/metabolismo , Retina
9.
BMC Ophthalmol ; 21(1): 146, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757477

RESUMEN

BACKGROUND: To compare plasma fatty acids (FAs) between participants with primary open-angle glaucoma (POAG) and participants without neuropathy in an elderly population and to investigate specific FAs pattern in POAG. METHODS: We conducted a population-based study in participants older than 75 years. Participants underwent a comprehensive eye examination with optic nerve photographs, visual field test and optic nerve OCT with RNFL thickness measurement. Glaucomatous status was defined according to the International Society for Epidemiologic and Geographical Ophthalmology classification. Lipids were extracted from plasma and FAs methylesters prepared and analyzed by gas chromatography-mass spectrometry. RESULTS: Among the 1153 participants of the Montrachet study 810 were retained for analysis and 68 had POAG. The mean age was 82.11 ± 3.67. In multivariable analysis FAs levels were not different between POAG participants and controls (P = 0.078). A FAs pattern characterized by high negative weight of gamma-linoleic acid, eicosapentaenoic acid polyunsaturated FAs (PUFAs), Cis-7 hexadecenoic acid monounsaturated FAs (MUFAs) and high positive weight of eicosadienoic acid, docosatetraenoic acid, docosapentaenoic n-6, alpha linoleic acid PUFAs, eicosenoic acid MUFAs, margaric acid and behenic acid saturated FAs was positively associated with POAG. After adjustment for major confounders, individuals in the upper tertile of FAs pattern scores compared with those in the lower tertile were more likely to present POAG (OR = 3.09 [95% CI 1.29-7.40] P = 0.013). CONCLUSIONS: We found no significant difference regarding isolated plasma FAs between participants with POAG and participants without neuropathy in elderly but specific FAs pattern might be associated with POAG.


Asunto(s)
Glaucoma de Ángulo Abierto , Campos Visuales , Anciano , Anciano de 80 o más Años , Estudios Transversales , Ácidos Grasos , Glaucoma de Ángulo Abierto/diagnóstico , Glaucoma de Ángulo Abierto/epidemiología , Humanos , Presión Intraocular , Pruebas del Campo Visual
10.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681683

RESUMEN

Age-related macular degeneration (AMD) is an eye disease that is characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. At an advanced stage, a blind spot grows in the center of vision, severely handicapping patients with this degenerative condition. Despite therapeutic advances thanks to the use of anti-VEGF, many resistance mechanisms have been found to accentuate the visual deficit. In the present study, we explored whether supplementation with Resvega®, a nutraceutical formulation composed of omega-3 fatty acids and resveratrol, a well-known polyphenol in grapes, was able to counteract laser-induced choroidal neovascularization (CNV) in mice. We highlight that Resvega® significantly reduced CNV in mice compared with supplementations containing omega-3 or resveratrol alone. Moreover, a proteomic approach confirmed that Resvega® could counteract the progression of AMD through a pleiotropic effect targeting key regulators of neoangiogenesis in retina cells in vivo. These events were associated with an accumulation of resveratrol metabolites within the retina. Therefore, a supplementation of omega-3/resveratrol could improve the management or slow the progression of AMD in patients with this condition.


Asunto(s)
Neovascularización Coroidal/prevención & control , Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Degeneración Macular/prevención & control , Resveratrol/farmacología , Animales , Neovascularización Coroidal/dietoterapia , Modelos Animales de Enfermedad , Ácidos Grasos Omega-3/uso terapéutico , Femenino , Degeneración Macular/dietoterapia , Degeneración Macular/patología , Ratones , Proteómica , Resveratrol/uso terapéutico
11.
J Lipid Res ; 61(12): 1733-1746, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33127836

RESUMEN

Spatial changes of FAs in the retina in response to different dietary n-3 formulations have never been explored, although a diet rich in EPA and DHA is recommended to protect the retina against the effects of aging. In this study, Wistar rats were fed for 8 weeks with balanced diet including either EPA-containing phospholipids (PLs), EPA-containing TGs, DHA-containing PLs, or DHA-containing TGs. Qualitative changes in FA composition of plasma, erythrocytes, and retina were evaluated by gas chromatography-flame ionization detector. Following the different dietary intakes, changes to the quantity and spatial organization of PC and PE species in retina were determined by LC coupled to MS/MS and MALDI coupled to MS imaging. The omega-3 content in the lipids of plasma and erythrocytes suggests that PLs as well as TGs are good omega-3 carriers for retina. However, a significant increase in DHA content in retina was observed, especially molecular species as di-DHA-containing PC and PE, as well as an increase in very long chain PUFAs (more than 28 carbons) following PL-EPA and TG-DHA diets only. All supplemented diets triggered spatial organization changes of DHA in the photoreceptor layer around the optic nerve. Taken together, these findings suggest that dietary omega-3 supplementation can modify the content of FAs in the rat retina.


Asunto(s)
Ácidos Grasos Omega-3/farmacocinética , Retina/metabolismo , Animales , Disponibilidad Biológica , Ácidos Grasos Omega-3/metabolismo , Masculino , Ratas
12.
Bioinformatics ; 35(19): 3628-3634, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30931473

RESUMEN

MOTIVATION: In some prediction analyses, predictors have a natural grouping structure and selecting predictors accounting for this additional information could be more effective for predicting the outcome accurately. Moreover, in a high dimension low sample size framework, obtaining a good predictive model becomes very challenging. The objective of this work was to investigate the benefits of dimension reduction in penalized regression methods, in terms of prediction performance and variable selection consistency, in high dimension low sample size data. Using two real datasets, we compared the performances of lasso, elastic net, group lasso, sparse group lasso, sparse partial least squares (PLS), group PLS and sparse group PLS. RESULTS: Considering dimension reduction in penalized regression methods improved the prediction accuracy. The sparse group PLS reached the lowest prediction error while consistently selecting a few predictors from a single group. AVAILABILITY AND IMPLEMENTATION: R codes for the prediction methods are freely available at https://github.com/SoufianeAjana/Blisar. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Tamaño de la Muestra , Análisis de los Mínimos Cuadrados
13.
Exp Eye Res ; 196: 108059, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32387380

RESUMEN

Structure and function of the retina mainly rely on its fatty acid (FA) composition. Evidence from epidemiological studies and from animal experiments indicates that FA composition of the retina is influenced by the diet. Mice under chronic high-fat diet (HFD) develop metabolic syndrome, a risk factor for diabetes that is associated with structural and functional alterations of the retina. Here, we studied the impact of chronic exposure of mice to HFD on retinal FA composition. C57BL/6 J male mice were fed either a chow diet or a HFD for 11 weeks. As expected, HFD induced weight gain, adiposity, hyperglycemia and dyslipidemia. The retinal FA composition was determined by gas chromatography coupled to flame ionization detection. No significant change in the relative abundance of total saturated FAs (SFAs), total monounsaturated FAs (MUFAs) or total polyunsaturated FAs (PUFAs) was observed. However, retinas of HFD-fed mice displayed decreased amounts of C24:0 (p = 0.0231), C16:1n-7 (p < 0.0001), C18:1n-7 (p < 0.0001), C20:3n-9 (p = 0.0425) and C20:3n-6 (p = 0.0008), and an increased amount of C20:2n-6 (p < 0.0001). In addition, the ratio of linoleic acid (C18:2n-6) to alpha-linolenic acid (C18:3n-3) was increased in the retinas of HFD-fed mice (15.0 ± 0.8 versus 11.8 ± 0.6 in HFD and CD, respectively, p = 0.0045). No modification in the contents of arachidonic acid (C20:4n-6, AA) and docosahexaenoic acid (C22:6n-3, DHA) were observed. Analysis of dimethylacetals (DMA), which are residues of plasmalogens (Pls), revealed that the amount of Pls containing octadecanal-aldehydes (DMA C18:0) was significantly increased in HFD-fed mice (p = 0.0447). This increase was, at least in part, balanced by a decrease in Pls containing 7-octadecanal-aldehydes (DMA C18:1n-7) (p = 0.0007). In conclusion, HFD had an impact on the relative proportion of essential dietary fatty acids linoleic acid and alpha-linolenic acid that are incorporated in the retina. However, this imbalance in PUFA precursors did not alter the content of the two major retinal long-chain PUFAs, AA and DHA. HFD consumption also led to alterations in the retinal SFAs, MUFAs and Pls profiles.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Ácidos Linoleicos/metabolismo , Síndrome Metabólico/etiología , Retina/metabolismo , Ácido alfa-Linolénico/metabolismo , Adiposidad/efectos de los fármacos , Animales , Glucemia/metabolismo , Cromatografía de Gases , Dislipidemias/etiología , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Ácidos Grasos Insaturados/metabolismo , Hiperglucemia/etiología , Hígado/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Plasmalógenos/metabolismo , Aumento de Peso/efectos de los fármacos
14.
Ophthalmic Res ; 59(4): 228-234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28746942

RESUMEN

PURPOSE: To determine the factors influencing the time from preterm birth and retinopathy of prematurity (ROP) detection to optimize the timing of the initial screening. METHODS: This multicenter retrospective study enrolled preterm infants born before 32 weeks of gestational age (GA) and/or weighing less than 1,500 g between January 1, 2011, and December 31, 2015. ROP screening was performed using fundus photography with a wide-field camera. Population and follow-up characteristics were recorded. RESULTS: Among the 1,266 preterm infants observed, 795 were retained for analysis. One hundred seventy-four (21.6%) cases of ROP were detected with the first examination performed at 32.3 ± 1.6 weeks of postmenstrual age (PMA) and 5.4 ± 1.0 weeks of postnatal age (PNA). The first signs of ROP were detected at 34.0 ± 1.9 weeks of PMA and 7.2 ± 1.8 weeks of PNA, respectively. In the multivariate analysis, an older GA, a longer duration of mechanical ventilation, and a lower birth weight were correlated with a longer time between preterm birth and ROP detection (p < 0.0001, p < 0.0001, and p = 0.0359, respectively). CONCLUSION: The first examination for ROP screening should be individualized to fit the first screening examination as closely as possible to the first signs of ROP in order to avoid unnecessary examinations without missing ROP.


Asunto(s)
Técnicas de Diagnóstico Oftalmológico/normas , Tamizaje Masivo/normas , Retinopatía de la Prematuridad/diagnóstico , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Análisis Multivariante , Respiración Artificial/estadística & datos numéricos , Estudios Retrospectivos
15.
FASEB J ; 30(11): 3690-3701, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27440795

RESUMEN

The circadian clock is thought to adjust retinal sensitivity to ambient light levels, yet the involvement of specific clock genes is poorly understood. We explored the potential role of the nuclear receptor subfamily 1, group D, member 1 (REV-ERBα; or NR1D1) in this respect. In light-evoked behavioral tests, compared with wild-type littermates, Rev-Erbα-/- mice showed enhanced negative masking at low light levels (0.1 lx). Rev-Erbα-/- mouse retinas displayed significantly higher numbers of intrinsically photosensitive retinal ganglion cells (ipRGCs; 62% more compared with wild-type) and more intense melanopsin immunostaining of individual ipRGCs. In agreement with a pivotal role for melanopsin, negative masking at low light intensities was abolished in Rev-Erbα-/- Opn4-/- (melanopsin gene) double-null mice. Rev-Erbα-/- mice showed shortened latencies of both a and b electroretinogram waves, modified scotopic and photopic b-wave and scotopic threshold responses, and increased pupillary constriction, all of which suggested increased light sensitivity. However, wild-type and Rev-Erbα-/- mice displayed no detectable differences by in vivo fundus imaging, retinal histology, or expression of cell type-specific markers for major retinal cell populations. We conclude that REV-ERBα plays a major role in retinal information processing, and we speculate that REV-ERBα and melanopsin set sensitivity levels of the rod-mediated ipRGC pathway to coordinate activity with ambient light.-Ait-Hmyed Hakkari, O., Acar, N., Savier, E., Spinnhirny, P., Bennis, M., Felder-Schmittbuhl, M.-P., Mendoza, J., Hicks, D. Rev-Erbα modulates retinal visual processing and behavioral responses to light.


Asunto(s)
Conducta Animal/fisiología , Luz , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Retina/fisiología , Opsinas de Bastones/metabolismo , Animales , Relojes Circadianos/genética , Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Estimulación Luminosa/métodos , Células Ganglionares de la Retina/fisiología , Opsinas de Bastones/genética
16.
J Cell Physiol ; 230(10): 2415-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25728249

RESUMEN

Pantethine, a natural low-molecular-weight thiol, shows a broad activity in a large range of essential cellular pathways. It has been long known as a hypolipidemic and hypocholesterolemic agent. We have recently shown that it exerts a neuroprotective action in mouse models of cerebral malaria and Parkinson's disease through multiple mechanisms. In the present study, we looked at its effects on membrane lipid rafts that serve as platforms for molecules engaged in cell activity, therefore providing a target against inappropriate cell response leading to a chronic inflammation. We found that pantethine-treated cells showed a significant change in raft fatty acid composition and cholesterol content, with ultimate downregulation of cell adhesion, CXCL12-driven chemotaxis, and transendothelial migration of various T cell types, including human Jurkat cell line and circulating effector T cells. The mechanisms involved include the alteration of the following: (i) CXCL12 binding to its target cells; (ii) membrane dynamics of CXCR4 and CXCR7, the two CXCL12 receptors; and (iii) cell redox status, a crucial determinant in the regulation of the chemokine system. In addition, we considered the linker for activation of T cells molecule to show that pantethine effects were associated with the displacement from the rafts of the acylated signaling molecules which had their palmitoylation level reduced.. In conclusion, the results presented here, together with previously published findings, indicate that due to its pleiotropic action, pantethine can downregulate the multifaceted process leading to pathogenic T cell activation and migration.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Colesterol/metabolismo , Lípidos/biosíntesis , Activación de Linfocitos/efectos de los fármacos , Panteteína/análogos & derivados , Linfocitos T/efectos de los fármacos , Animales , Quimiocina CXCL12/metabolismo , Regulación hacia Abajo , Humanos , Células Jurkat , Panteteína/farmacología , Ratas , Transducción de Señal/efectos de los fármacos , Linfocitos T/metabolismo
17.
Exp Eye Res ; 135: 37-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25912194

RESUMEN

The lack of plasticity of neurons to respond to dietary changes, such as high fat and high fructose diets, by modulating gene and protein expression has been associated with functional and behavioral impairments that can have detrimental consequences. The inhibition of high fat-induced rewiring of hypothalamic neurons induced obesity. Feeding rodents with high fructose is a recognized and widely used model to trigger obesity and metabolic syndrome. However the adaptive response of the retina to short term feeding with high fructose is poorly documented. We therefore aimed to characterize both the functional and gene expression changes in the neurosensory retina of Brown Norway rats fed during 3 and 8 days with a 60%-rich fructose diet (n = 16 per diet and per time point). Glucose, insulin, leptin, triacylglycerols, total cholesterol, HDL-cholesterol, LDL-cholesterol and fructosamine were quantified in plasma (n = 8 in each group). Functionality of the inner retina was studied using scotopic single flash electroretinography (n = 8 in each group) and the individual response of rod and cone photoreceptors was determined using 8.02 Hz Flicker electroretinography (n = 8 in each group). Analysis of gene expression in the neurosensory retina was performed by Affymetrix genechips, and confirmed by RT-qPCR (n = 6 in each group). Elevated glycemia (+13%), insulinemia (+83%), and leptinemia (+172%) was observed after 8 days of fructose feeding. The cone photoreceptor response was altered at day 8 in high fructose fed rats (Δ = 0.5 log unit of light stimulus intensity). Affymetrix analysis of gene expression highlighted significant modulation of the pathways of eIF2 signaling and endoplasmic reticulum stress, regulation of eIF4 and p70S6K signaling, as well as mTOR signaling and mitochondrial dysfunction. RT-qPCR analysis confirmed the down regulation of Crystallins, Npy, Nid1 and Optc genes after 3 days of fructose feeding, and up regulation of End2. Meanwhile, a trend towards an increased expression of αA- and αB-crystallin proteins was observed at day 8. Our results are consistent with early alterations of the functioning and gene expression in the retina in a pro diabetogenic environment.


Asunto(s)
Diabetes Mellitus Experimental , Dieta , Carbohidratos de la Dieta/administración & dosificación , Fructosa/administración & dosificación , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Animales , Glucemia/análisis , Colesterol/sangre , Cristalinas/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Electrorretinografía , Estrés del Retículo Endoplásmico/fisiología , Factor 2 Eucariótico de Iniciación/fisiología , Fructosamina/sangre , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Insulina/sangre , Leptina/sangre , Masculino , Ratas
18.
Int J Food Sci Nutr ; 66(2): 222-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25657100

RESUMEN

Lutein and docosahexaenoic acid (DHA) are associated with the prevention of age-related macular degeneration (AMD). Since microalgae are potent natural sources of these nutrients, their nutritional value should be evaluated based on the bioavailability of lutein and DHA for the retina via the plasmatic compartment. In this study, quail were fed for 5 months either with a diet supplemented or deprived with microalgae rich in lutein and DHA. In the microalgae-fed group, the retinal concentrations of lutein and zeaxanthin gradually increased whereas in plasma, these compounds started to increase from the first month of supplementation. We also observed a significant increase in retinal and plasmatic levels of DHA in the microalgae-fed group. In conclusion, the plasmatic and retinal contents of lutein and DHA were significantly increased in quail fed with lutein- and DHA-rich microalgae. Food fortification with microalgae may be an innovative way to increase lutein and DHA consumption in humans.


Asunto(s)
Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Luteína/metabolismo , Degeneración Macular , Microalgas/química , Retina/metabolismo , Animales , Disponibilidad Biológica , Dieta , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/farmacocinética , Humanos , Luteína/sangre , Luteína/farmacocinética , Degeneración Macular/metabolismo , Degeneración Macular/prevención & control , Modelos Animales , Codorniz , Zeaxantinas/metabolismo
19.
Biochem Biophys Res Commun ; 446(3): 775-81, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24491555

RESUMEN

Cholesterol 24S-hydroxylase (CYP46A1) converts cholesterol into 24S-hydroxycholesterol in neurons and participates in cholesterol homeostasis in the central nervous system, including the retina. We aimed to evaluate the consequences of CYP46A1 inhibition by voriconazole on cholesterol homeostasis and function in the retina. Rats received daily intraperitoneal injections of voriconazole (60mg/kg), minocycline (22mg/kg), voriconazole plus minocycline, or vehicle during five consecutive days. The rats were submitted to electroretinography to monitor retinal functionality. Cholesterol and 24S-hydroxycholesterol were measured in plasma, brain and retina by gas chromatography-mass spectrometry. The expression of CYP46A1, and GFAP as a marker for glial activation was analyzed in the retina and brain. Cytokines and chemokines were measured in plasma, vitreous, retina and brain. Voriconazole significantly impaired the functioning of the retina as exemplified by the reduced amplitude and increased latency of the b-wave of the electroretinogram, and altered oscillary potentials. Voriconazole decreased 24S-hydroxycholesterol levels in the retina. Unexpectedly, CYP46A1 and GFAP expression was increased in the retina of voriconazole-treated rats. ICAM-1 and MCP-1 showed significant increases in the retina and vitreous body. Minocycline did not reverse the effects of voriconazole. Our data highlighted the cross talk between retinal ganglion cells and glial cells in the retina, suggesting that reduced 24S-hydroxycholesterol concentration in the retina may be detected by glial cells, which were consequently activated.


Asunto(s)
Colesterol/metabolismo , Pirimidinas/farmacología , Retina/efectos de los fármacos , Esteroide Hidroxilasas/antagonistas & inhibidores , Triazoles/farmacología , Animales , Colesterol/sangre , Colesterol 24-Hidroxilasa , Citocinas/sangre , Citocinas/metabolismo , Electrorretinografía , Inhibidores Enzimáticos/farmacología , Homeostasis/efectos de los fármacos , Hidroxicolesteroles/metabolismo , Masculino , Microglía/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Ratas , Ratas Wistar , Retina/citología , Retina/metabolismo , Esteroide Hidroxilasas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Voriconazol
20.
NPJ Biofilms Microbiomes ; 10(1): 4, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238339

RESUMEN

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), are required for the structure and function of the retina. Several observational studies indicate that consumption of a diet with relatively high levels of n-3 PUFAs, such as those provided by fish oils, has a protective effect against the development of age-related macular degeneration. Given the accumulating evidence showing the role of gut microbiota in regulating retinal physiology and host lipid metabolism, we evaluated the potential of long-term dietary supplementation with the Gram-positive bacterium Lactobacillus helveticus strain VEL12193 to modulate the retinal n-3 PUFA content. A set of complementary approaches was used to study the impact of such a supplementation on the gut microbiota and host lipid/fatty acid (FA) metabolism. L. helveticus-supplementation was associated with a decrease in retinal saturated FAs (SFAs) and monounsaturated FAs (MUFAs) as well as an increase in retinal n-3 and omega-6 (n-6) PUFAs. Interestingly, supplementation with L. helveticus enriched the retina in C22:5n-3 (docosapentaenoic acid, DPA), C22:6n-3 (DHA), C18:2n-6 (linoleic acid, LA) and C20:3n-6 (dihomo gamma-linolenic acid, DGLA). Long-term consumption of L. helveticus also modulated gut microbiota composition and some changes in OTUs abundance correlated with the retinal FA content. This study provides a proof of concept that targeting the gut microbiota could be an effective strategy to modulate the retinal FA content, including that of protective n-3 PUFAs, thus opening paths for the design of novel preventive and/or therapeutical strategies for retinopathies.


Asunto(s)
Ácidos Grasos Omega-3 , Lactobacillus helveticus , Animales , Ratones , Ácidos Grasos Omega-3/análisis , Ácidos Grasos Omega-3/metabolismo , Lactobacillus helveticus/metabolismo , Disponibilidad Biológica , Dieta , Retina/química , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA