Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Conserv Biol ; 35(6): 1833-1849, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34289517

RESUMEN

Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard.


RESUMEN: Reconociendo que era imperativo evaluar la recuperación de especies y el impacto de la conservación, la Unión Internacional para la Conservación de la Naturaleza (UICN) convocó en 2012 al desarrollo de una "Lista Verde de Especies" (ahora el Estatus Verde de las Especies de la UICN). Un marco de referencia preliminar de una Lista Verde de Especies para evaluar el progreso de las especies hacia la recuperación, publicado en 2018, proponía 2 componentes separados pero interconectados: un método estandarizado (i.e., medición en relación con puntos de referencia de la viabilidad de especies, funcionalidad y distribución antes del impacto) para determinar el estatus de recuperación actual (puntuación de recuperación de la especie) y la aplicación de ese método para estimar impactos en el pasado y potenciales de conservación basados en 4 medidas (legado de conservación, dependencia de conservación, ganancia de conservación y potencial de recuperación). Probamos el marco de referencia con 181 especies representantes de diversos taxa, historias de vida, biomas, y categorías (riesgo de extinción) en la Lista Roja de la IUCN. Con base en la distribución observada de la puntuación de recuperación de las especies, proponemos las siguientes categorías de recuperación de la especie: totalmente recuperada, ligeramente mermada, moderadamente mermada, mayormente mermada, gravemente mermada, extinta en estado silvestre, e inderterminada. Cincuenta y nueve por ciento de las especies se consideraron mayormente o gravemente mermada. Aunque hubo una relación negativa entre el riesgo de extinción y la puntuación de recuperación de la especie, la variación fue considerable. Algunas especies en las categorías de riesgo bajas fueron evaluadas como más lejos de recuperarse que aquellas con alto riesgo. Esto enfatiza que la recuperación de especies es diferente conceptualmente al riesgo de extinción y refuerza la utilidad del Estado Verde de las Especies de la UICN para comprender integralmente el estatus de conservación de especies. Aunque el riesgo de extinción no predijo el legado de conservación, la dependencia de conservación o la ganancia de conservación, se correlacionó positivamente con la potencial de recuperación. Solo 1.7% de las especies probadas fue categorizado como cero en los 4 indicadores de impacto de la conservación, lo que indica que la conservación ha jugado, o jugará, un papel en la mejoría o mantenimiento del estatus de la especie la gran mayoría de ellas. Con base en nuestros resultados, diseñamos una versión actualizada del marco de referencia para la evaluación que introduce la opción de utilizar una línea de base dinámica para evaluar los impactos futuros de la conservación en el corto plazo y redefine corto plazo como 10 años.


Asunto(s)
Especies en Peligro de Extinción , Extinción Biológica , Animales , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Riesgo
2.
Environ Manage ; 59(4): 635-651, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28091740

RESUMEN

Increased nutrient enrichment in Mediterranean standing waters has enhanced the risk of being affected by cyanobacterial blooms. Because phosphorus abatement is shaped as a crucial strategy for controlling eutrophication, this study introduces a structural thinking, experiential learning laboratory with animation dynamic model elaborated for Cazalegas Reservoir (Spain) to assess the feasibility of implementing a set of internal and external control measures and hydromorphological adjustments to meet the goal of oligotrophication. This shallow reservoir is another case where recurrent eutrophication has led to reach annual mean total phosphorus concentrations (0.16 ± 0.08 mg total phosphorus/L) over the threshold of current water policies, triggering cyanobacterial growth up to undesirable levels in summer time (approximately 50,000 cells/mL). Modeling results showed that (i) after upgrading water treatment in the main tributary, (ii) applying a lanthanum-modified bentonite into the water column and sediment, and (iii) increasing reservoir water level, in-lake P concentrations and cyanobacterial abundance decreased in an 88% (below 0.01 mg total phosphorus/L) and 84% (below 6000 cells/mL), respectively in the most critical periods. However, the constraints of the proposed management strategies are associated with their costs of implementation and the time span for a stable trophic recovery of the reservoir. In that end, integrated management approaches are aimed to be adopted by water managers to reach adequate ecological status of freshwater bodies.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Eutrofización , Agua Dulce/química , Modelos Teóricos , Nitrógeno/análisis , Fósforo/análisis , Cianobacterias/crecimiento & desarrollo , Estaciones del Año , España
3.
Transbound Emerg Dis ; 69(5): e1201-e1212, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35157357

RESUMEN

Sarcoptic mange is considered an emerging disease-causing countless epizootics and significantly affecting wild mammals worldwide. The vicuña (Vicugna vicugna) is a medium-sized South American wild camelid inhabiting Andean ecosystems, where several populations are live-sheared by Andean peasant communities as a way of providing an economic income to the people while promoting vicuña conservation. Institutions and scientists have shown concern for the impact and extent of sarcoptic mange in several vicuña populations across their range, as well as the lack of consistent knowledge about this disease in the species. Here, we perform a review about sarcoptic mange distribution throughout the vicuña's native range, evidence of effects of age and sex, the modes of transmission and the veterinary treatments employed. The review retrieved a few scientific papers, but found several reports and academic studies mostly considered as 'grey literature'. Mange was recorded across the entire native vicuña range (Argentina, Bolivia, Chile and Peru). Mange prevalence varied across vicuña studies (up to 60% prevalence in some populations) and severely affected a number of populations, being an important source of mortality. Mange was reported as more frequent in adults than in offspring. The modes of mange transmission remain unclear, although direct transmission between infected and healthy animals seems to be the most likely, including the transmission between domestic camelids and vicuñas. Regarding the treatments employed, ivermectin was the most frequently used. We further identified several gaps in knowledge and point to future research lines, which seek to promote both species conservation and the maintenance of live-shearing vicuñas under sustainable approaches in low-income Andean peasant communities.


Asunto(s)
Camélidos del Nuevo Mundo , Escabiosis , Animales , Camelidae , Brotes de Enfermedades , Ecosistema , Humanos , Ivermectina , Escabiosis/epidemiología , Escabiosis/veterinaria
4.
Insects ; 12(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34442287

RESUMEN

Seed predation is an antagonistic interaction that negatively affects the performance of individual plants and can limit plant population dynamics. In animal-dispersed plants, crop size is an important determinant of plant reproductive success through its effect on seed dispersers and predators. Seed traits, such as size or chemical composition, can also increase the tolerance to seed predators or reduce their performance. We investigated the interaction between Quercus faginea and two specialized pre-dispersal insect seed predators (weevils and moths) during two years of contrasting crop size to determine the consequences of oak reproductive investment on seed production and insect performance. Crop size was 44% lower and acorns were 32% smaller in the second year, although acorn predation by insects was proportionally similar between both years at the population level. Individual trees producing larger crops showed a lower incidence of insect predators during the year of abundant acorn production, whereas trees producing bigger acorns experienced higher seed predation rates by insects, and acorns held more insect larvae in the low crop year. Competition between insects increased when acorn production was low, and higher tannin content in acorns further constrained the number of weevil larvae developing together in the same acorn. However, the abundance and size of insect larvae produced per tree were similar between the two crop years, and this was due to larvae often depleting acorn reserves when resources were low. Oak reproductive output increased nearly two-fold during the large crop year. Crop size variation, acorn production in a given year and acorn size and chemical composition seem to be important traits for reducing damage by insect predators in Quercus faginea and improve oak reproductive success.

5.
PLoS One ; 12(8): e0182451, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28771566

RESUMEN

LiDAR technology has firmly contributed to strengthen the knowledge of habitat structure-wildlife relationships, though there is an evident bias towards flying vertebrates. To bridge this gap, we investigated and compared the performance of LiDAR and field data to model habitat preferences of wood mouse (Apodemus sylvaticus) in a Mediterranean high mountain pine forest (Pinus sylvestris). We recorded nine field and 13 LiDAR variables that were summarized by means of Principal Component Analyses (PCA). We then analyzed wood mouse's habitat preferences using three different models based on: (i) field PCs predictors, (ii) LiDAR PCs predictors; and (iii) both set of predictors in a combined model, including a variance partitioning analysis. Elevation was also included as a predictor in the three models. Our results indicate that LiDAR derived variables were better predictors than field-based variables. The model combining both data sets slightly improved the predictive power of the model. Field derived variables indicated that wood mouse was positively influenced by the gradient of increasing shrub cover and negatively affected by elevation. Regarding LiDAR data, two LiDAR PCs, i.e. gradients in canopy openness and complexity in forest vertical structure positively influenced wood mouse, although elevation interacted negatively with the complexity in vertical structure, indicating wood mouse's preferences for plots with lower elevations but with complex forest vertical structure. The combined model was similar to the LiDAR-based model and included the gradient of shrub cover measured in the field. Variance partitioning showed that LiDAR-based variables, together with elevation, were the most important predictors and that part of the variation explained by shrub cover was shared. LiDAR derived variables were good surrogates of environmental characteristics explaining habitat preferences by the wood mouse. Our LiDAR metrics represented structural features of the forest patch, such as the presence and cover of shrubs, as well as other characteristics likely including time since perturbation, food availability and predation risk. Our results suggest that LiDAR is a promising technology for further exploring habitat preferences by small mammal communities.


Asunto(s)
Distribución Animal/fisiología , Ecosistema , Pinus/química , Tecnología de Sensores Remotos/métodos , Madera/química , Animales , Bosques , Ratones
6.
PLoS One ; 8(3): e59326, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23555656

RESUMEN

Competition arises when two co-occuring species share a limiting resource. Potential for competition is higher when species have coexisted for a short time, as it is the case for herbivores and livestock introduced in natural systems. Sheep, introduced in the late 19(th) century in Patagonia, bear a great resemblance in size and diet to the guanaco, the main native herbivore in Patagonia. In such circumstances, it could be expected that the two species compete and one of them could be displaced. We investigated spatial overlap and habitat selection by coexisting sheep and guanaco in winter and in summer. Additionally, we studied habitat selection of the guanaco in a control situation free from sheep, both in summer and winter. We also determined overlap between species in areas with different intensity of use (named preferred and marginal areas) in order to further detect the potential level of competition in the case of overlapping. Guanaco and sheep showed significantly different habitat preferences through all seasons, in spite of their spatial overlap at landscape scale. Additionally, the habitat used by guanaco was similar regardless of the presence or absence of livestock, which further indicates that sheep is not displacing guanaco where they coexist. These results suggest that habitat segregation between guanaco and sheep is due to a differential habitat selection and not to a competitive displacement process. Therefore, the potential for competition is considered low, contrary to what has been previously observed, although this could be a density-dependent result.


Asunto(s)
Camélidos del Nuevo Mundo/fisiología , Herbivoria/fisiología , Oveja Doméstica/fisiología , Animales , Chile , Ecosistema , Densidad de Población , Dinámica Poblacional , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA