RESUMEN
Understanding the degree to which human facial expressions co-vary with specific social contexts across cultures is central to the theory that emotions enable adaptive responses to important challenges and opportunities1-6. Concrete evidence linking social context to specific facial expressions is sparse and is largely based on survey-based approaches, which are often constrained by language and small sample sizes7-13. Here, by applying machine-learning methods to real-world, dynamic behaviour, we ascertain whether naturalistic social contexts (for example, weddings or sporting competitions) are associated with specific facial expressions14 across different cultures. In two experiments using deep neural networks, we examined the extent to which 16 types of facial expression occurred systematically in thousands of contexts in 6 million videos from 144 countries. We found that each kind of facial expression had distinct associations with a set of contexts that were 70% preserved across 12 world regions. Consistent with these associations, regions varied in how frequently different facial expressions were produced as a function of which contexts were most salient. Our results reveal fine-grained patterns in human facial expressions that are preserved across the modern world.
Asunto(s)
Cultura , Emociones , Expresión Facial , Internacionalidad , Conducta Ceremonial , Aprendizaje Profundo , Mapeo Geográfico , Humanos , Cultura Popular , TraduccionesRESUMEN
Core to understanding emotion are subjective experiences and their expression in facial behavior. Past studies have largely focused on six emotions and prototypical facial poses, reflecting limitations in scale and narrow assumptions about the variety of emotions and their patterns of expression. We examine 45,231 facial reactions to 2,185 evocative videos, largely in North America, Europe, and Japan, collecting participants' self-reported experiences in English or Japanese and manual and automated annotations of facial movement. Guided by Semantic Space Theory, we uncover 21 dimensions of emotion in the self-reported experiences of participants in Japan, the United States, and Western Europe, and considerable cross-cultural similarities in experience. Facial expressions predict at least 12 dimensions of experience, despite massive individual differences in experience. We find considerable cross-cultural convergence in the facial actions involved in the expression of emotion, and culture-specific display tendencies-many facial movements differ in intensity in Japan compared to the U.S./Canada and Europe but represent similar experiences. These results quantitatively detail that people in dramatically different cultures experience and express emotion in a high-dimensional, categorical, and similar but complex fashion.