Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 149(3): 227-250, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-37961903

RESUMEN

BACKGROUND: Cardiac metabolic dysfunction is a hallmark of heart failure (HF). Estrogen-related receptors ERRα and ERRγ are essential regulators of cardiac metabolism. Therefore, activation of ERR could be a potential therapeutic intervention for HF. However, in vivo studies demonstrating the potential usefulness of ERR agonist for HF treatment are lacking, because compounds with pharmacokinetics appropriate for in vivo use have not been available. METHODS: Using a structure-based design approach, we designed and synthesized 2 structurally distinct pan-ERR agonists, SLU-PP-332 and SLU-PP-915. We investigated the effect of ERR agonist on cardiac function in a pressure overload-induced HF model in vivo. We conducted comprehensive functional, multi-omics (RNA sequencing and metabolomics studies), and genetic dependency studies both in vivo and in vitro to dissect the molecular mechanism, ERR isoform dependency, and target specificity. RESULTS: Both SLU-PP-332 and SLU-PP-915 significantly improved ejection fraction, ameliorated fibrosis, and increased survival associated with pressure overload-induced HF without affecting cardiac hypertrophy. A broad spectrum of metabolic genes was transcriptionally activated by ERR agonists, particularly genes involved in fatty acid metabolism and mitochondrial function. Metabolomics analysis showed substantial normalization of metabolic profiles in fatty acid/lipid and tricarboxylic acid/oxidative phosphorylation metabolites in the mouse heart with 6-week pressure overload. ERR agonists increase mitochondria oxidative capacity and fatty acid use in vitro and in vivo. Using both in vitro and in vivo genetic dependency experiments, we show that ERRγ is the main mediator of ERR agonism-induced transcriptional regulation and cardioprotection and definitively demonstrated target specificity. ERR agonism also led to downregulation of cell cycle and development pathways, which was partially mediated by E2F1 in cardiomyocytes. CONCLUSIONS: ERR agonists maintain oxidative metabolism, which confers cardiac protection against pressure overload-induced HF in vivo. Our results provide direct pharmacologic evidence supporting the further development of ERR agonists as novel HF therapeutics.


Asunto(s)
Insuficiencia Cardíaca , Ratones , Animales , Cardiomegalia/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Ácidos Grasos/metabolismo
2.
Bioorg Chem ; 105: 104280, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33152647

RESUMEN

A series of N-benzylated phosphoramidate esters, containing a 3,4-dihydroxyphenyl Mg2+-chelating group, has been synthesised in five steps as analogues of fosmidomycin, a Plasmodium falciparum 1-deoxy-1-d-xylulose-5-phosphate reductoisomerase (PfDXR) inhibitor. The 3,4-dihydroxyphenyl group effectively replaces the Mg2+-chelating hydroxamic acid group in fosmidomycin. The compounds showed very encouraging anti-parasitic activity with IC50 values of 5.6-16.4 µM against Plasmodium falciparum parasites and IC50 values of 5.2 - 10.2 µM against Trypanosoma brucei brucei (T.b.brucei). Data obtained from in silico docking of the ligands in the PfDXR receptor cavity (3AU9)5 support their potential as PfDXR inhibitors.


Asunto(s)
Amidas/síntesis química , Antimaláricos/síntesis química , Complejos de Coordinación/síntesis química , Magnesio/química , Ácidos Fosfóricos/síntesis química , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/farmacología , Complejos de Coordinación/farmacología , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Células HeLa , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Trypanosoma brucei brucei/efectos de los fármacos
3.
Bioorg Chem ; 101: 103947, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32559578

RESUMEN

Synthetic pathways have been developed to access a series of N-benzylated phosphoramidic acid derivatives as novel, achiral analogues of the established Plasmodium falciparum 1-deoxy-d-xylulose-5-phosphate reductase (PfDXR) enzyme inhibitor, FR900098. Bioassays of the targeted compounds and their synthetic precursors have revealed minimal antimalarial activity but encouraging anti-trypanosomal activity - in one case with an IC50 value of 5.4 µM against Trypanosoma brucei, the parasite responsible for Nagana (African cattle sleeping sickness). The results of relevant in silico modelling and docking studies undertaken in the design and evaluation of these compounds are discussed.


Asunto(s)
Amidas/síntesis química , Amidas/farmacología , Antimaláricos/síntesis química , Antimaláricos/farmacología , Ácidos Fosfóricos/síntesis química , Ácidos Fosfóricos/farmacología , Tripanocidas/síntesis química , Tripanocidas/farmacología , Amidas/química , Animales , Antimaláricos/química , Bovinos , Ácidos Fosfóricos/química , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
4.
Bioorg Med Chem ; 24(23): 6131-6138, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773366

RESUMEN

A series of novel and readily accessible N-benzylated (N-arylcarbamoyl)alkylphosphonate esters and related compounds have been prepared as potential antimalarial agents. Bioassays reveal that some of these compounds exhibit promising activity against Plasmodium falciparum, and exhibit no significant growth inhibition of HeLa cells.


Asunto(s)
Amidas/farmacología , Antimaláricos/farmacología , Organofosfonatos/farmacología , Isomerasas Aldosa-Cetosa/antagonistas & inhibidores , Amidas/síntesis química , Amidas/toxicidad , Antimaláricos/síntesis química , Antimaláricos/toxicidad , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Células HeLa , Humanos , Organofosfonatos/síntesis química , Organofosfonatos/toxicidad , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
5.
Eur J Med Chem ; 258: 115582, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37421886

RESUMEN

Estrogen-related receptors (ERR) are an orphan nuclear receptor sub-family that play a critical role in regulating gene transcription for several physiological processes including mitochondrial function, cellular energy utilization and homeostasis. They have also been implicated to play a role in several pathological conditions. Herein, we report the identification, synthesis, structure-activity relationships and pharmacological evaluation of a new chemical series of potent pan-ERR agonists. This template was designed for ERRγ starting from the known acyl hydrazide template and compounds such as agonist GSK-4716 employing a structure-based drug design approach. This led to the preparation of a series of 2,5-disubstituted thiophenes from which several were found to be potent agonists of ERRγ in cell-based co-transfection assays. Additionally, direct binding to ERRγ was established through 1H NMR protein-ligand binding experiments. Compound optimization revealed that the phenolic or aniline groups could be replaced with a boronic acid moiety, which was able to maintain activity and demonstrated improved metabolic stability in microsomal in vitro assays. Further pharmacological evaluation of these compounds showed that they had roughly equivalent agonist activity on ERR isoforms α and ß representing an ERR pan-agonist profile. One potent agonist, SLU-PP-915 (10s), which contained a boronic acid moiety was profiled in gene expression assays and found to significantly upregulate the expression of ERR target genes such as peroxisome-proliferator activated receptor γ co-activators-1α, lactate dehydrogenase A, DNA damage inducible transcript 4 and pyruvate dehydrogenase kinase 4 both in vitro and in vivo.


Asunto(s)
Estrógenos , Isoformas de Proteínas
6.
bioRxiv ; 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33851160

RESUMEN

Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding by <90%, measured the EC 50 of binding inhibition, and computationally modeled the docking of the best inhibitors to both Spike and ACE2. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction as well as identifying several potential inhibitors that could serve as templates for future drug discovery efforts.

7.
Front Pharmacol ; 12: 685308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194331

RESUMEN

Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2,701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding in a concentration-dependent manner, measured the IC50 of binding inhibition, and computationally modeled the docking of the best inhibitors to the Spike-ACE2 binding interface. The best candidates were Thiostrepton, Oxytocin, Nilotinib, and Hydroxycamptothecin with IC50's in the 4-9 µM range. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction, as well as identify several potential inhibitors of the Spike-ACE2 interaction.

8.
ACS Chem Biol ; 15(9): 2338-2345, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32897058

RESUMEN

The estrogen related receptors (ERRs) are a subgroup of nuclear receptors that play a role in regulation of cellular metabolism. Prostate cancer (PCa) cells display altered metabolic signatures, such as the Warburg effect, and the ERRs have been implicated in driving this phenotype. Despite the lack of a known endogenous ligand, synthetic ligands that target the ERRs have been discovered. For example, the ERRα inverse agonist XCT790 modulates metabolic pathways in PCa cells, but it also functions as a mitochondrial uncoupler independent of targeting ERRα. Here, we describe a novel dual ERRα/γ inverse agonist, SLU-PP-1072, derived from the GSK4716 ERRγ agonist scaffold that is distinct from the XCT790 scaffold. SLU-PP-1072 alters PCa cell metabolism and gene expression, resulting in cell cycle dysregulation and increased apoptosis without acute mitochondrial uncoupling activity. Our data suggest that inhibition of ERRα/γ may be beneficial in treatment of PCa, and SLU-PP-1072 provides a unique chemical tool to evaluate the pharmacology of ERRα and ERRγ.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzotiazoles/farmacología , Furanos/farmacología , Receptores de Estrógenos/antagonistas & inhibidores , Efecto Warburg en Oncología/efectos de los fármacos , Antineoplásicos/síntesis química , Benzotiazoles/síntesis química , Agonismo Inverso de Drogas , Furanos/síntesis química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Células PC-3 , Receptor Relacionado con Estrógeno ERRalfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA