RESUMEN
Breast cancer (BC) metastasis remains a leading cause of female mortality. Neuropilin-1 (NRP-1) is a glycoprotein receptor that plays ligand-dependent roles in BC. Clinical studies indicate its correlation with metastatic disease; however, its functional role in BC metastasis remains uncertain. CRISPR-Cas9 was used to knockout the NRP-1 gene in MDA-MB-231 BC cells, and the effects on metastasis were determined using an orthotopic mouse engraftment model. NRP-1 expression in knockout cells was rescued using a recombinant cDNA with a silent mutation in the sgRNA target-adjacent PAM sequence. Differentially expressed genes between NRP-1 knockout and control cells were determined using whole-transcriptome sequencing and validated using real-time PCR. NRP-1KO cells showed a pronounced reduction in the metastasis to the lungs. KEGG pathway analysis of the transcriptome data revealed that PI3K and ECM receptor interactions were among the top altered pathways in the NRP-1KO cells. In addition, reduction in metastasis enhancers proteins, Integrin-ß3 and Tenascin-C, and genes CCL20 and FN1 and upregulation of metastasis suppressor genes, ACVRL and GPX3 in NRP-1KO were detected. These findings provide evidence for a functional role for NRP-1 in BC metastasis, supporting further exploration of NRP-1 and the identified genes as targets in treating metastatic BC.
Asunto(s)
Neoplasias , Transducción de Señal , Animales , Femenino , Ratones , Células MDA-MB-231 , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neuropilina-2 , Transducción de Señal/genética , HumanosRESUMEN
A novel series of 2-(aryldiazenyl)-3-methyl-1H-benzo[g]indole derivatives (3a-f) were prepared through the cyclization of the corresponding arylamidrazones, employing polyphosphoric acid (PPA) as a cyclizing agent. All of the compounds (3a-f) were characterized using 1H NMR, 13C NMR, MS, elemental analysis, and melting point techniques. The synthesized compounds were evaluated for cytotoxic activity against diverse human cancer cell lines by the National Cancer Institute. While all of the screened compounds were found to be cytotoxic at a 10 µM concentration, two of them (2c) and (3c) were subjected to five dose screens and showed a significant cytotoxicity and selectivity.
Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Indoles/síntesis química , Indoles/farmacología , Células A549 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Células HL-60 , Humanos , Células K562 , Células MCF-7 , Células PC-3 , Relación Estructura-ActividadRESUMEN
BACKGROUND/AIMS: SGLT-2 inhibitors have been shown to be nephroprotective in diabetes. Here, we examined if one of these drugs (canagliflozin) could also ameliorate non-diabetic chronic kidney disease (CKD). METHODS: CKD was induced in rats by feeding them adenine (0.25%w/w for 35 days) and canagliflozin (10 or 25 mg/kg, by gavage) was given with or without adenine. Several conventional and novel plasma and urine biomarkers and tissues morphology were used to investigate the canagliflozin effect on kidney structure and function. RESULTS: Rats fed adenine showed the typical features of CKD that included elevation of blood pressure, decreased food intake and growth, increased water intake and urine output, decrease in creatinine clearance, and increase in urinary albumin/creatinine ratio, liver-type fatty acid binding protein, N-acetyl-beta-D-glucosaminidase, and plasma urea, creatinine, uric acid, calcium, indoxyl sulfate and phosphorus concentrations. Adenine also increased concentrations of several biomarkers of inflammation such as neutrophil gelatinase-associated lipocalin, interleukin-6, tumor necrosis factor alpha, clusterin, cystatin C and interleukin-1ß, and decreased some oxidative biomarkers in kidney homogenate, such as superoxide dismutase, catalase, glutathione reductase, total antioxidant activity, and also urinary 8-isoprostane and urinary 8-hydroxy-2-deoxy guanosine. Adenine significantly increased the renal protein content of Nrf2, caused renal tubular necrosis and fibrosis. Given alone, canagliflozin at the two doses used did not significantly alter any of the parameters mentioned above. When canagliflozin was given concomitantly with adenine, it significantly and dose - dependently ameliorated all the measured adenine - induced actions. CONCLUSION: Canagliflozin ameliorated adenine - induced CKD in rats, through reduction of several inflammatory and oxidative stress parameters, and other indices such as uremic toxins, and by antagonizing the increase in the renal content of the transcription factor Nrf2. The drug caused no overt or significant untoward effects, and its trial in patients with CKD may be warranted.
Asunto(s)
Adenina/efectos adversos , Canagliflozina/farmacología , Insuficiencia Renal Crónica , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Adenina/farmacología , Animales , Biomarcadores/orina , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/prevención & control , Insuficiencia Renal Crónica/orinaRESUMEN
BACKGROUND: Neuropilin-1 (NRP-1), a non-tyrosine kinase glycoprotein receptor, is associated with poor prognosis breast cancer, however transcriptomic changes triggered by NRP-1 overexpression and its association with chemoresistance in breast cancer have not yet been explored. METHODS: BT-474 NRP-1 variant cells were generated by stable overexpression of NRP-1 in the BT-474 breast cancer cell line. RNA sequencing and qRT-PCR were conducted to identify differentially expressed genes. The role of an upregulated oncogene, Tenascin C (TNC) and its associated pathway was investigated by siRNA-mediated knockdown. Resistant variants of the control and BT-474 NRP-1 cells were generated by sequential treatment with four cycles of Adriamycin/Cyclophosphamide (4xAC) followed by four cycles of Paclitaxel (4xAC + 4xPAC). RESULTS: NRP-1 overexpression increased cellular tumorigenic behavior. RNA sequencing identified upregulation of an oncogene, Tenascin-C (TNC) and downregulation of several tumor suppressors in BT-474 NRP-1 cells. Additionally, protein analysis indicated activation of the TNC-associated integrin ß3 (ITGB3) pathway via focal adhesion kinase (FAK), Akt (Ser473) and nuclear factor kappa B (NF-kB) p65. siRNA-mediated TNC knockdown ablated the migratory capacity of BT-474 NRP-1 cells and inactivated FAK/Akt473 signaling. NRP-1 overexpressing cells downregulated breast cancer resistance protein (BCRP/ABCG2). Consequently, sequential treatment with Adriamycin/Cyclophosphamide (AC) cytotoxic drugs to generate resistant cells indicated that BT-474 NRP-1 cells increased sensitivity to treatment by inactivating NRP-1/ITGB3/FAK/Akt/NF-kB p65 signaling compared to wild-type BT-474 resistant cells. CONCLUSIONS: We thus report a novel mechanism correlating high baseline NRP-1 with upregulated TNC/ITGB3 signaling, but decreased ABCG2 expression, which sensitizes BT-474 NRP-1 cells to Adriamycin/Cyclophosphamide. The study emphasizes on the targetability of the NRP-1/ITGB3 axis and its potential as a predictive biomarker for chemotherapy response.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neuropilina-1/metabolismo , Transducción de Señal/genética , Tenascina/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Integrina beta3/metabolismo , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Neuropilina-1/genética , Oncogenes , ARN Interferente Pequeño , Regulación hacia ArribaRESUMEN
BACKGROUND/AIMS: To study the therapeutic effect of chrysin, a flavonoid with strong antioxidant and anti-inflammatory activities, on adenine-induced chronic kidney diseases (CKD) in rats. METHODS: Chrysin, in three graded oral doses (10, 50 and 250 mg/kg), was given for 10 consecutive days to rats after the induction of CKD by feeding them adenine (0.25%(w/w) for 35 days). Several plasma and urine biomarkers and tissues morphology were used the investigate chrysin effect on kidney structure and function. RESULTS: Adenine lowered creatinine clearance and elevated the concentrations of urea, creatinine, plasma neutrophil gelatinase-associated lipocalin and urinary N-Acetyl-beta-D-glucosaminidase activity, and increased the concentrations of the uremic toxin indoxyl sulfate, in addition to some inflammatory cytokines. Renal histopathological markers of inflammation and fibrosis were significantly increased. Renal catalase and superoxide dismutase activities, total antioxidant capacity and reduced glutathione were all adversely affected. Most of these adenine - induced actions were moderately mitigated by chrysin, especially at the highest dose. Compared to control, chrysin did not cause any overt adverse effects on the treated rats. CONCLUSION: Different doses of chrysin produce variable therapeutic salutary effects in rats with CKD, and that, pending further studies, its usability as a possible therapeutic agent in human CKD should be considered.
Asunto(s)
Antioxidantes/uso terapéutico , Flavonoides/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Proteínas de Fase Aguda/orina , Adenina/toxicidad , Administración Oral , Animales , Antioxidantes/química , Biomarcadores/sangre , Biomarcadores/orina , Catalasa/metabolismo , Creatinina/sangre , Citocinas/sangre , Modelos Animales de Enfermedad , Flavonoides/química , Glutatión/metabolismo , Riñón/patología , Lipocalina 2 , Lipocalinas/orina , Proteínas Proto-Oncogénicas/orina , Ratas , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología , Superóxido Dismutasa/metabolismo , Urea/sangreRESUMEN
BACKGROUND: Previous reports showed that the Steroidal Glycoalkaloid Solamargine inhibited proliferation of non-melanoma skin cancer cells. However, Solamargine was not tested systematically on different types of melanoma cells and was not simultaneously tested on normal cells either. In this study we aimed to investigate the effect of Solamargine and the mechanism involved in inhibiting the growth of different types of melanoma cells. METHODS: Solamargine effect was tested on normal cells and on another three melanoma cell lines. Vertical growth phase metastatic and primary melanoma cell lines WM239 and WM115, respectively and the radial growth phase benign melanoma cells WM35 were used. The half inhibitory concentration IC50 of Solamargine was determined using Alamarblue assay. The cellular and subcellular changes were assessed using light and Transmission Electron Microscope, respectively. The percentage of cells undergoing apoptosis and necrosis were measured using Flow cytometry. The different protein expression was detected and measured using western blotting. The efficacy of Solamargine was determined by performing the clonogenic assay. The data collected was analyzed statistically on the means of the triplicate of at least three independent repeated experiments using one-way ANOVA test for parametric data and Kruskal-Wallis for non-parametric data. Differences were considered significant when the P values were less than 0.05. RESULTS: Hereby, we demonstrate that Solamargine rapidly, selectively and effectively inhibited the growth of metastatic and primary melanoma cells WM239 and WM115 respectively, with minimum effect on normal and benign WM35 cells. Solamargine caused cellular necrosis to the two malignant melanoma cell lines (WM115, WM239), by rapid induction of lysosomal membrane permeabilization as confirmed by cathepsin B upregulation which triggered the extrinsic mitochondrial death pathway represented by the release of cytochrome c and upregulation of TNFR1. Solamargine disrupted the intrinsic apoptosis pathway as revealed by the down regulation of hILP/XIAP, resulting in caspase-3 cleavage, upregulation of Bcl-xL, and Bcl2, and down regulation of Apaf-1 and Bax in WM115 and WM239 cells only. Solamargine showed high efficacy in vitro particularly against the vertical growth phase melanoma cells. CONCLUSION: Our findings suggest that Solamargine is a promising anti-malignant melanoma drug which warrants further attention.
RESUMEN
BACKGROUND/AIMS: Water-pipe smoking (WPS) is popular in the Middle East and is starting to gain popularity in several Western countries as well. It is widely and erroneously perceived to be less harmful than other forms of tobacco use. The reproductive adverse effects of cigarette smoking have been studied before with conflicting results, but data on the possible adverse reproductive effects of WPS are lacking. Here, we assessed the effects of nose-only exposure to mainstream WPS generated by commercially available honey-flavored "moasel" tobacco in mice. METHODS: The duration of the session was 30 min/day for one month. Control mice were exposed to air. Twenty-four h after the last exposure, mice were killed and the testes and plasma removed for analysis. In testicular homogenates total protein, alkaline phosphatase activity, several indices of oxidative damage and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) were quantified. The plasma concentrations of leptin, testosterone, estrogen and luteinizing hormone (LH) were also measured. Histological analysis of testes and lungs was also conducted. RESULTS: WPS caused statistically significant decreases in the plasma concentrations of leptin, testosterone, and LH, and in the concentrations of total protein and the antioxidant indices measured. A statistically non-significant decrease in VEGFR2 protein in the WPS--exposed mice compared to the control mice was also found. The body and testicular weights of mice exposed to WPS, as well as their testicular alkaline phosphatase activity and light microscopic histology, and plasma estrogen concentration were all not significantly affected by WPS. CONCLUSION: Further studies on the functional implications of these findings in mice exposed to WPS for longer durations are warranted.
Asunto(s)
Fumar , Fosfatasa Alcalina/metabolismo , Animales , Antioxidantes/metabolismo , Estrógenos/sangre , Leptina/sangre , Pulmón/patología , Hormona Luteinizante/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Nariz/fisiología , Testículo/enzimología , Testículo/metabolismo , Testículo/patología , Testosterona/sangre , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Agua/químicaRESUMEN
This work aimed to investigate whether treatment with the antidiabetic drug metformin would affect adenine-induced chronic kidney disease (CKD) in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Rats were randomly divided into eight groups, and given either normal feed, or feed mixed with adenine (0.25% w/w, for five weeks) to induce CKD. Some of these groups were also simultaneously treated orally with metformin (200 mg/kg/day). Rats given adenine showed the typical signs of CKD that included detrimental changes in several physiological and traditional and novel biochemical biomarkers in plasma urine and kidney homogenates such as albumin/creatinine ratio, N-acetyl-beta-D-glucosaminidase, neutrophil gelatinase-associated lipocalin, 8-isoprostane, adiponectin, cystatin C, as well as plasma urea, creatinine, uric acid, indoxyl sulfate, calcium, and phosphorus. Several indices of inflammation and oxidative stress, and renal nuclear factor-κB and nuclear factor erythroid 2-related factor 2 levels were also measured. Histopathologically, adenine caused renal tubular necrosis and fibrosis. The activation of the intracellular mitogen-activated protein kinase signaling pathway was inhibited in the groups that received metformin and STZ together, with or without adenine induced-CKD. Induction of diabetes worsened most of the actions induced by adenine. Metformin significantly ameliorated the renal actions induced by adenine and STZ when these were given singly, and more so when given together. The results suggest that metformin can be a useful drug in attenuating the progression of CKD in both diabetic and non-diabetic rats.
Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Riñón/metabolismo , Metformina/farmacología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Adenina/efectos adversos , Adenina/farmacología , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Riñón/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patologíaRESUMEN
Human epithelial ovarian cancer (EOC) is the most lethal neoplasm affecting the female genital tract, and is characterized by overexpression of vascular endothelial growth factor (VEGF) and growth as ascites. Anti-VEGF strategies are currently used in EOC therapy with promising results; however, molecular targeting of specific VEGF receptors on the cancer cells themselves has not been explored to date. We previously showed that activation of a VEGF/VEGFR2 signaling loop in EOC cells supports their survival in suspension, and short-term pharmacological inhibition of this loop increased EOC cell apoptosis in vitro. In this study, we stably knocked down VEGFR2 in OVCAR-3 and SKOV-3 EOC cells using short hairpin RNA (shRNA), an RNA interference strategy that could potentially overcome chemoresistance arising with angiogenic inhibitors. Unexpectedly, we observed an induction of more aggressive cellular behavior in transfected cells, leading to increased growth in mouse xenografts, enhanced accumulation of ascites, increased VEGF and neuropilin-1 (NRP-1) expression, and decreased expression of adhesion proteins, notably cadherins and integrins. Sonic hedgehog (SHH) pathways do not seem to be involved in the upregulation of NRP-1 message in VEGFR2 knockdown cells. Supporting our mouse model, we also found a significant increase in the ratio between NRP-1 and VEGFR2 with increasing tumor grade in 80 cases of human EOC. The change in EOC behavior that we report in this study occurred independent of the angiogenic response and shows the direct effect of VEGF blockade on the cancer cells themselves. Our findings highlight the possible confounding events that may affect the usefulness of RNAi in a therapeutic setting for disrupting EOC cell survival in ascites.
Asunto(s)
Neoplasias Ováricas/genética , Interferencia de ARN , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Células Epiteliales/patología , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Trasplante de Neoplasias , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neoplasias Ováricas/patología , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares , Transfección , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Dysregulation or mislocalization of cell adhesion molecules and their regulators, such as E-cadherin, beta-catenin, and alpha-catenin, usually correlates with loss of polarity, dedifferentiation, invasive tumor growth, and metastasis. A subpopulation of alpha-catenin-negative cells within the DLD-1 colorectal carcinoma cell line causes it to display a heterogeneous morphological makeup, thus providing an excellent model system in which to investigate the role of alpha-catenin in tumorigenesis. We re-established expression of alpha-catenin protein in an alpha-catenin-deficient subpopulation of the DLD-1 cell line and used it to demonstrate that loss of alpha-catenin resulted in increased in vitro tumorigenic characteristics (increased soft agarose colony formation, clonogenic survival after suspension, and survival in suspension). When the cells were used to form tumor xenografts, those lacking alpha-catenin showed faster growth rates because of increased cellular cycling but not increased tumor microvascular recruitment. alpha-Catenin-expressing cells were preferentially located in well perfused areas of xenografts when tumors were formed from mixed alpha-catenin-positive and -negative cells. We therefore evaluated the role of the ischemic tumor microenvironment on alpha-catenin expression and demonstrated that cells lose expression of alpha-catenin after prolonged exposure in vitro to hypoglycemic conditions. Our findings illustrate that the tumor microenvironment is a potent modulator of tumor suppressor expression, which has implications for localized nutrient deficiency and ischemia-induced cancer progression.
Asunto(s)
Isquemia/metabolismo , Proteínas Supresoras de Tumor/metabolismo , alfa Catenina/metabolismo , Animales , Secuencia de Bases , Cadherinas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Forma de la Célula , Células Clonales , Técnica del Anticuerpo Fluorescente , Isquemia/patología , Ratones , Datos de Secuencia Molecular , Mutación/genética , Ensayos Antitumor por Modelo de Xenoinjerto , alfa Catenina/genética , beta Catenina/metabolismoRESUMEN
BACKGROUND AND PURPOSE: Patients with locally advanced breast cancer usually receive third-generation neoadjuvant chemotherapy (NAC). Although NAC treatment improved the overall survival, patients' response varies, some acquire resistance and others exhibit a conversion in their breast cancer molecular subtype. We aimed to identify the molecular changes involved in NAC resistance attempting to find new therapeutic targets in different breast cancer subtypes. EXPERIMENTAL APPROACH: We modelled NAC treatments used in clinical practice and generated resistant cell lines in vitro. The resistant cells were generated by consecutive treatment with four cycles of doxorubicin (adriamycin)/cyclophosphamide (4xAC) followed by an additional four cycles of paclitaxel (4xAC + 4xPAC). KEY RESULTS: Our data revealed distinct mechanisms of resistance depending on breast cancer subtype and drugs used. MDA-MB-231 cells resistant to 4xAC + 4xPAC activated neuropilin-1/TNC/integrin ß3/FAK/NF-κBp65 axis and displayed a decrease in breast cancer resistance protein (BCRP/ABCB2). However, MCF7 cells resistant to 4xAC treatments induced HER2 expression, which converted MCF7 subtype from luminal A to luminal B HER2 type, up-regulated neuropilin-1, oestrogen receptor-α, and EGFR, and activated PI3K/Akt/NF-κBp65 axis. However, MCF7 cells resistant to 4xAC + 4xPAC exhibited down-regulation of the survival axis and up-regulated BCRP/ABCG2. Co-immunoprecipitation demonstrated a novel interaction between HER2 and neuropilin-1 driving the resistance features. CONCLUSIONS AND IMPLICATIONS: The concurrent increase in neuropilin-1 and HER2 upon resistance and the inverse relationship between neuropilin-1 and BCRP/ABCG2 suggest that, in addition to HER2, neuropilin-1 status should be assessed in patients undergoing NAC, and as a potential drug target for refractory breast cancer.
Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Células MCF-7 , Proteínas de Neoplasias/metabolismo , Neuropilina-1/uso terapéutico , Fosfatidilinositol 3-Quinasas , Receptor ErbB-2/metabolismoRESUMEN
We investigated some reproductive actions of hookah smoke (HS) exposure (30 min/day, for 30 days) in male mice, and the possible mitigative effect of the prebiotic agent gum acacia (GA) thereon. Control mice were air-exposed (AE). Twenty-four hours after the last exposure, the levels of some plasma reproductive hormones, biochemical markers of inflammation, oxidative and nitrosative stress and testicular histopathology were assessed. The urinary level of cotinine, a major nicotine metabolite, was also measured. HS exposure induced significant decreases in testosterone, estradiol, luteinizing hormone, and androgen binding protein, as well as glutathione reductase activity and levels of nitrite and total nitrite. Plasma inhibin B, alkaline phosphatase, lipopolysaccharide binding protein, uric acid, lactate dehydrogenase, lipid peroxidation, 8-oxo-2'-deoxyguanosine, and cytochrome C were significantly increased following HS exposure. In testicular homogenate, nuclear factor-κB (NF-ĸB), nuclear factor erythroid 2-related factor 2 (Nrf2), interleukin- 6 (IL-6), interleukin-1ß (IL-1ß), transforming growth factor-ß1(TGF- ß1), and tumor necrosis factor-α (TNF- α) were all significantly elevated, and the steroidogenic acute regulatory protein (StAR) significantly decreased. Histopathologically, there was slight impairment and disorganization of spermatogenesis. Urinary cotinine concentration was elevated significantly in the HS-exposed group compared with the air-exposed group. GA co-administration mitigated the adverse actions of HS measured. In conclusion, daily exposure to HS at the above dose induced adverse actions on the reproductive system of male mice. GA co-administration significantly mitigated these effects by reducing the inflammation, oxidative and nitrosative stress, via a mechanism involving Nrf2, and reduction of StAR expression.
Asunto(s)
Goma Arábiga/farmacología , Enfermedades Testiculares/prevención & control , Testículo/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Tabaco para Pipas de Agua/efectos adversos , Animales , Hormonas Gonadales/sangre , Goma Arábiga/uso terapéutico , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Fosfoproteínas/metabolismo , Espermatogénesis , Enfermedades Testiculares/etiología , Testículo/metabolismo , Testículo/patología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Epithelial ovarian carcinoma (EOC) patients are usually diagnosed at an advanced stage, characterized by interperitoneal carcinomatosis and production of large volumes of ascites. Vascular endothelial growth factor-A (VEGF-A) and its main signaling receptor VEGFR2 (KDR) are coexpressed in primary ovarian tumors, ascitic cells and metastases, suggesting the existence of an autocrine VEGF-A/KDR loop in EOC cells. In the present study, we examined this possibility and explored the role of this autocrine loop in protecting EOC cells from apoptosis under anchorage free growth conditions (anoikis). We found that 3 different EOC cell lines (Caov3, OVCAR3, SKOV3) express both VEGF-A and its receptors, including KDR. In these cells, KDR is constitutively phosphorylated and is detected both in the cell plasma membrane and in the nucleus. Treating EOC cells with specific internal inhibitors of KDR kinase activity or a VEGF-A neutralizing antibody abolished KDR autophosphorylation and resulted in significant increase in apoptosis when cells were grown in single-cell, anchorage-free conditions. By contrast, these blocking reagents had no effect on cell viability when EOC cells were grown in adhesive monolayers. In summary, our results indicate that an autocrine VEGF-A/KDR loop exists in EOC cells and that it plays a role in protecting the cells from anoikis. Our results imply that treating EOC patients with VEGF blocking agents may potentially reduce peritoneal dissemination by decreasing vascular permeability as well as inducing apoptosis of shed ovarian cancer cells in ascites.
Asunto(s)
Anoicis/fisiología , Comunicación Autocrina/fisiología , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Ováricas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Comunicación Autocrina/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Inhibidores Enzimáticos/farmacología , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/patología , ARN Mensajero/análisis , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/efectos de los fármacosRESUMEN
Epithelial ovarian cancer (EOC) is a serious gynecological cancer and there may be an increased risk of developing EOC in women with metabolic disruptions such as diabetes-related hyperglycemia, obesity or high glycemic load. Upregulation of vascular endothelial growth factor (VEGF) in ischemic conditions (e.g. hypoxia, hypoglycemia) induces tumor angiogenesis. We previously showed that EOC cells employ an autocrine VEGF/VEGFR2 signaling loop. Here we demonstrate the influence of glucose levels on VEGF and its receptors in the human EOC lines OVCAR-3 and CAOV-3. Glucose (but not pyruvate) deprivation induced significant increase in VEGF transcription and secretion, but a rapid reduction in VEGFR2 protein synthesis and glycosylation, combined with a reduction in co-receptor neuropilin-1 (NRP-1) protein levels. In contrast, mRNA for KDR and NRP-1 was increased upon glucose depletion suggesting a mechanism of feed back upon protein reduction. The addition of the proteosome inhibitor epoxomycin restored VEGFR2 under glucose free conditions, suggesting degradation as the main mechanism of VEGFR2 reduction and transcriptional activation through the unfolded protein response (UPR) which was activated in glucose-starved cells through the upregulation of the Endoplasmic reticulum chaperon GRP-78. Our finding that glucose can regulate VEGF/VEGFR2 levels suggests that initiation and/or progression of ovarian surface epithelial cells towards a neoplastic phenotype might be modulated by dietary conditions, and that a patient's metabolic status may alter the effectiveness of the known anti-angiogenic therapies. This information provides opportunities to explore the biology of EOC progression and improve our understanding of the mechanistic insight of this interesting regulatory effect.
Asunto(s)
Carcinoma/enzimología , Glucosa/metabolismo , Neoplasias Ováricas/enzimología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Carcinoma/etiología , Carcinoma/patología , Línea Celular Tumoral , Femenino , Glucosa/farmacología , Glicosilación , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Neoplasias Ováricas/etiología , Neoplasias Ováricas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
There is a worldwide increase in the popularity of water pipe (shisha) tobacco smoking including in Europe and North America. However, little is known about the effects of water pipe smoke (WPS) exposure on male reproductivity. We have recently demonstrated that WPS exposure in mice induces testicular toxicity including inflammation and oxidative stress. Nootkatone, a sesquiterpenoid found in grapefruit, has antioxidant and anti-inflammatory effects. However, the possible protective effect of nootkatone on WPS-induced testicular toxicity has not been reported before. Here, we tested the effects of treatment of mice with nootkatone on WPS-induced testicular toxicity. Mice were exposed to normal air or WPS (30 minutes/day, for 30 days). Nootkatone (90 mg/kg) was given orally to mice by gavage, 1 h before WPS or air exposure. Nootkatone treatment significantly ameliorated the WPS-induced increase in plasma levels of inhibin, uric acid, and lactate dehydrogenase activity. Nootkatone also significantly mitigated the decrease in testosterone, androgen-binding protein, and estradiol concentrations in the plasma induced by WPS. In testicular homogenates, WPS exposure caused a decrease in the total nitric oxide level and an increase in the proinflammatory cytokine interleukin-1ß level and oxidative stress markers including malondialdehyde, cytochrome C, and 8-Oxo-2'-deoxyguanosine. All the latter effects were significantly alleviated by nootkatone treatment. Moreover, in testicular homogenate, nootkatone inhibited the expression of nuclear factor-kappaB induced by WPS. Likewise, histological examination of mouse testes showed that nootkatone treatment ameliorated the deterioration of spermatogenesis induced by WPS exposure. We conclude that nootkatone ameliorated the WPS-induced testicular inflammation and oxidative stress and hormonal and spermatogenesis alterations.
Asunto(s)
Sesquiterpenos Policíclicos/uso terapéutico , Testículo/patología , Fumar en Pipa de Agua/efectos adversos , Animales , Masculino , Ratones , Sesquiterpenos Policíclicos/farmacologíaRESUMEN
Circulating proteins hold a potential benefit as biomarkers for precision medicine. Previously, we showed that systemic levels of neuropilin-1 (NRP-1) and its associated molecules correlated with poor-prognosis breast cancer. To further identify the role of NRP-1 and its interacting molecules in correspondence with patients' response to neoadjuvant chemotherapy (NAC), we conducted a comparative study on blood and tissue samples collected from a cohort of locally advanced breast cancer patients, before and after neoadjuvant chemotherapy (NAC). From a panel of tested proteins and genes, we found that the levels of plasma NRP-1, placenta growth factor (PlGF) and immune cell expression of the transcription factor SNAI1 before and after NAC were significantly different. Paired t-test analysis of 22 locally advanced breast cancer patients showed that plasma NRP-1 levels were increased significantly (p = 0.018) post-NAC in patients with pathological partial response (pPR). Kaplan-Meier analysis indicated that patients who received NAC cycles and their excised tumors remained with high levels of NRP-1 had a lower overall survival compared with patients whose tissue NRP-1 decreased post-NAC (log-rank p = 0.049). In vitro validation of the former result showed an increase in the secreted and cellular NRP-1 levels in resistant MDA-MB-231 cells to the most common NAC regimen Adriyamicin/cyclophosphamide+Paclitaxel (AC+PAC). In addition, NRP-1 knockdown in MDA-MB-231 cells sensitized the cells to AC and more profoundly to PAC treatment and the cells sensitivity was proportional to the expressed levels of NRP-1. Unlike NRP-1, circulating PlGF was significantly increased (p = 0.014) in patients with a pathological complete response (pCR). SNAI1 expression in immune cells showed a significant increase (p = 0.018) in patients with pCR, consistent with its posited protective role. We conclude that increased plasma and tissue NRP-1 post-NAC correlate with pPR and shorter overall survival, respectively. These observations support the need to consider anti-NRP-1 as a potential targeted therapy for breast cancer patients who are identified with high NRP-1 levels. Meanwhile, the increase in both PlGF and SNAI1 in pCR patients potentially suggests their antitumorigenic role in breast cancer that paves the way for further mechanistic investigation to validate their role as potential predictive markers for pCR in breast cancer.
RESUMEN
The short-chain dehydrogenase/reductase (SDR) family is one of the largest and most ubiquitous protein families in bacterial genomes. Despite there being a few well-characterized examples, the substrate specificities or functions of most members of the family are unknown. In this study, we carried out a large-scale mutagenesis of the SDR gene family in the alfalfa root nodule symbiont Sinorhizobium meliloti. Subsequent phenotypic analysis revealed phenotypes for mutants of 21 of the SDR-encoding genes. This brings the total number of S. meliloti SDR-encoding genes with known function or associated phenotype to 25. Several of the mutants were deficient in the utilization of specific carbon sources, while others exhibited symbiotic deficiencies on alfalfa (Medicago sativa), ranging from partial ineffectiveness to complete inability to form root nodules. Five of the mutants had both symbiotic and carbon utilization phenotypes. These results clearly demonstrate the importance of the SDR family in both symbiosis and saprotrophy, and reinforce the complex nature of the interaction of S. meliloti with its plant hosts. Further analysis of the genes identified in this study will contribute to the overall understanding of the biology and metabolism of S. meliloti in relation to its interaction with alfalfa.
Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/fisiología , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Carbono/metabolismo , Genes Bacterianos , Genoma Bacteriano , Medicago sativa/microbiología , Mutagénesis , Fenotipo , Simbiosis/genética , Simbiosis/fisiologíaRESUMEN
The erectile dysfunction drug sildenafil has cardiopulmonary protective actions, and a nephroprotective action in cisplatin and ischemia-reperfusion-induced acute kidney injury. Here, we assessed its possible ameliorative action in a model of chronic kidney disease (CKD) using adenine feeding. Eight groups of rats were treated with saline (controls), adenine (0.25% w/w in feed daily for 5 weeks), and oral sildenafil (0.1, 0.5 or 2.5 mg/kg), either alone, or concomitantly with adenine. Urine was collected 24 h after the end of the treatments from all rats and blood pressure measured, followed by collection of blood and kidneys for the measurement of several functional, biochemical and histopathological parameters. Adenine treatment reduced body weight, creatinine renal clearance, and increased water intake and urine output, as well as the plasma concentrations of urea and creatinine, neutrophil gelatinase-associated lipocalin, and N-acetyl-ß-D-glucosaminidase activity, and albumin in urine. Adenine also increased the concentrations of the uremic toxins indoxyl sulfate, uric acid and phosphate, and a number of proteins and inflammatory cytokines, and decreased that of several anti - oxidant indices. Renal histopathological markers of damage (inflammation and fibrosis) were significantly increased by adenine. Sildenafil, given simultaneously with adenine, induced a dose - dependent improvements in most of the above parameters, suggesting its possible use as adjunct treatment for CKD in humans.
Asunto(s)
Adenina/farmacología , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Citrato de Sildenafil/farmacología , Animales , Biomarcadores/orina , Presión Sanguínea/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Creatinina/orina , Citocinas/metabolismo , Fibrosis/sangre , Fibrosis/orina , Inflamación/sangre , Inflamación/orina , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/orina , Urea/sangreRESUMEN
Circulating plasma and peripheral blood mononuclear (PBMCs) cells provide an informative snapshot of the systemic physiological state. Moreover, they provide a non-invasively accessible compartment to identify biomarkers for personalized medicine in advanced breast cancer. The role of Neuropilin-1 (NRP-1) and its interacting molecules in breast tumor tissue was correlated with cancer progression; however, the clinical impact of their systemic levels was not extensively evaluated. In this cross-sectional study, we found that circulating and tumor tissue expression of NRP-1 and circulating placental growth factor (PlGF) increase in advanced nodal and metastatic breast cancer compared with locally advanced disease. Tumor tissue expression of NRP-1 and PlGF is also upregulated in triple negative breast cancer (TNBC) compared to other subtypes. Conversely, in PBMCs, NRP-1 and its interacting molecules SEMA4A and SNAI1 are significantly downregulated in breast cancer patients compared to healthy controls, indicating a protective role. Moreover, we report differential PBMC expression profiles that correlate inversely with disease stage (SEMA4A, SNAI1, PLXNA1 and VEGFR3) and can differentiate between the TNBC and non-TNBC tumor subtypes (VEGFR3 and PLXNA1). This work supports the importance of NRP-1-associated molecules in circulation to characterize poor prognosis breast cancer and emphasizes on their role as favorable drug targets.