RESUMEN
Dengue and yellow fever are prevalent in Côte d'Ivoire and Aedes (Stegomyia) aegypti (Linnaeus), (Diptera: Culicidae), is known as the main vector. We aimed to assess seasonal variation and spatial heterogeneity in the transmission of both arbovirus diseases in Abidjan. Entomological surveys targeting larvae of A. aegypti, were carried out between November 2015 and August 2016 covering the four climatic seasons including a cohort of 100 houses randomly selected in three neighbourhoods. A. aegypti was the predominant species (96.6%) of mosquitoes resulting from the rearing of harvested larvae, and the only vector of dengue and yellow fever recorded during the study period. The highest proportion of water storage containers (45.5%) which represented the major breeding sites infested by the larvae of A. aegypti, was observed in Anoumabo. The house indices >5% and/or Breteau indices >20 recorded in each neighbourhood, during the different climatic seasons, indicated that there was, a high and permanent, heterogeneity in the transmission risk of dengue and yellow fever between the three neighbourhoods. In terms of transmission risk, Anoumabo was the neighbourhood with the highest risk compared to the two others, then, particular attention should be paid to this site in terms of surveillance by vector control programme in Abidjan.
Asunto(s)
Aedes , Dengue , Fiebre Amarilla , Animales , Côte d'Ivoire/epidemiología , Dengue/epidemiología , Dengue/veterinaria , Humanos , Larva , Mosquitos Vectores , Estaciones del Año , Fiebre Amarilla/epidemiología , Fiebre Amarilla/veterinariaRESUMEN
BACKGROUND: Anarchic and poorly controlled urbanization led to an increased risk of mosquito-borne diseases (MBD) in many African cities. Here, we evaluate the spatial heterogeneity of human exposure to malaria and arboviral disease vectors in an urban area of northern Senegal, using antibody-based biomarkers of exposure to Anopheles and Aedes mosquito bites. METHODS: A cross-sectional study was undertaken during the rainy season of 2014 in 4 neighborhoods of Saint-Louis, a city in northern Senegal. Among children aged 6-59 months in each neighborhood, the dried blood spot technique was used to evaluate immunoglobulin G (IgG) responses to both gSG6-P1 (Anopheles) and Nterm-34-kDa (Aedes) salivary peptides as validated biomarkers of respective mosquito bite exposure. RESULTS: IgG response levels to gSG6-P1 and Nterm-34-kDa salivary peptides varied significantly between the 4 neighborhoods (P < .0001). The level of exposure to Aedes bites also varied according to household access to sanitation services (P = .027), whereas that of exposure to Anopheles bites varied according to insecticide-treated bed net use (P = .006). In addition, spatial clusters of high contact between humans and mosquitoes were identified inside 3 neighborhoods. CONCLUSIONS: Antibody-based biomarkers of exposure to Anopheles and Aedes mosquito bites could be helpful tools for evaluating the heterogeneity of exposure to malaria and arboviral disease vectors by national control programs.
Asunto(s)
Aedes/inmunología , Anopheles/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Proteínas de Insectos/inmunología , Malaria/epidemiología , Mosquitos Vectores/inmunología , Proteínas y Péptidos Salivales/inmunología , Animales , Biomarcadores/sangre , Preescolar , Ciudades , Estudios Transversales , Países en Desarrollo , Pruebas con Sangre Seca , Femenino , Humanos , Inmunoglobulina G/sangre , Incidencia , Lactante , Malaria/transmisión , Masculino , Plasmodium , Senegal/epidemiologíaRESUMEN
Malaria is still a leading cause mortality in Côte d'Ivoire despite extensive LLINs coverage. We present the results of an entomological survey conducted in a coastal and in an inland village with the aim to estimate Anopheles gambiae sensu lato (s.l.) female's abundance indoor/outdoor and Plasmodium falciparum infection rate and analyze the occurrence of blood-feeding in relation to LLINs use. Pyrethrum spray (PSC) and window exit traps (WT) collections were carried out to target endophagic/endophilic and endophagic/exophilic females, respectively. Data on LLINs use in sampled houses were collected. (1) high levels of malaria transmission despite LLINs coverage >70% (~1 An. gambiae s.l. predicted mean/person/night and ~5% Plasmodium falciparum infection rate); (2) 46% of females in the PSC sample were blood-fed, suggesting that they fed on an unprotected host inside the house; (3) 81% of females in WT were unfed, suggesting that they were leaving the house to find an available host. Model estimates that if everyone sleeps under LLINs the probability for a mosquito to bite decreases of 48% and 95% in the coastal and inland village, respectively. The results show a high proportion of mosquito biting and resting indoors despite extensive LLINs. The biological/epidemiological determinants of accounting for these results merit deeper investigations.
RESUMEN
Although the urban areas of Abidjan, Côte d'Ivoire have faced recurrent outbreaks of Aedes-borne arboviruses, the seasonal dynamics of local populations of the key vector Aedes aegypti remained still underexplored for an effective vector control. The current study thus assessed the seasonal dynamics and the spatial distribution of Ae. aegypti in three neighborhoods of Abidjan city. Aedes eggs were collected using ovitraps in three different neighborhoods (Anoumambo, Bromakoté, and Petit-Bassam) during the four climatic seasons of Abidjan. Aedes egg samples were immersed into distilled water, and emerged larvae were reared until the adult stage for species morphological identification. Spatial autocorrelation was measured with the Moran's Index, and areas with high egg abundance were identified. In total, 3837 eggs were collected providing 1882 adult mosquitoes in the 3 neighborhoods. All the specimens belonged to only one Aedes species, Ae. aegypti. The average of 15.89 eggs per ovitrap, 13.67 eggs per ovitrap, and 19.87 eggs per ovitrap were obtained in Anoumambo, Bromakoté, and Petit-Bassam, respectively, with no statistical difference between the three sites. A higher abundance of Ae. aegypti was observed during the long rainy season and the short dry season. The Moran analysis showed a clustered distribution of Ae. aegypti eggs during the long rainy season in the three sites and a random spatial distribution during the short dry season. Ovitraps with high number of eggs were aggregated in the peripheral part (near to the lagoon) of Anoumambo and Petit-Bassam in central Bromakoté and extending along the railway during the long rainy season. This study revealed a heterogeneous potential risk of transmission of arbovirus according to neighborhood. It provided data to better understand Ae. aegypti ecology to select appropriate periods and places for Aedes vector control actions and surveillance of arboviruses in Abidjan.
Asunto(s)
Aedes , Arbovirus , Animales , Côte d'Ivoire , Mosquitos Vectores , Estaciones del AñoRESUMEN
BACKGROUND: Several studies were carried out in experimental hut station in areas surrounding the city of Bouaké, after the crisis in Côte d'Ivoire. They reported increasing resistance levels to insecticide for malaria transmiting mosquitoes. The present work aims to evaluate the current resistance level of An. gambiae (s.l.) in rural and urban areas in the city of Bouaké. METHODS: Larvae of Anopheles gambiae (s.l.) were collected from five different study sites and reared to adult stages. The resistance status was assessed using the WHO bioassay test kits for adult mosquitoes, with eight insecticides belonging to pyrethroids, organochlorines, carbamates and organophosphates classes. Molecular assays were performed to identify the molecular forms of An. gambiae (s.l.), the L1014F kdr and the ace-1R alleles in individual mosquitoes. The synergist PBO was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed function oxidase (MFO) levels, non-specific esterases (NSE) and glutathione S-transferases (GST). RESULTS: High resistance levels to pyrethroids, organochlorines, and carbamates were observed in Anopheles gambiae (s.l.) from Bouaké. Mortalities ranged between 0 and 73% for the eight tested insecticides. The pre-exposure to PBO restored full or partial susceptibility to pyrethroids in the different sites. The same trend was observed with the carbamates in five sites, but to a lesser extent. With DDT, pre-exposure to PBO did not increase the mortality rate of An. gambiae (s.l.) from the same sites. Tolerance to organophosphates was observed. An increased activity of NSE and higher level of MFO were found compared to the Kisumu susceptible reference strain. Two molecular forms, S form [(An. gambiae (s.s)] and M form (An. coluzzi) were identified. The kdr allele frequencies vary from 85.9 to 99.8% for An. gambiae (s.s.) and from 81.7 to 99.6% for An. coluzzii. The ace-1R frequencies vary between 25.6 and 38.8% for An. gambiae (s.s.) and from 28.6 to 36.7% for An. coluzzii. CONCLUSION: Resistance to insecticides is widespread within both An. gambiae (s.s.) and An. coluzzii. Two mechanisms of resistance, i.e. metabolic and target-site mutation seemed to largely explain the high resistance level of mosquitoes in Bouaké. Pyrethroid resistance was found exclusively due to the metabolic mechanism.