Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37220746

RESUMEN

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Asunto(s)
Antifúngicos , Candidiasis , Animales , Ratones , Complemento C5/metabolismo , Fagocitos/metabolismo
2.
Nat Immunol ; 24(8): 1331-1344, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37443284

RESUMEN

CD4+ T helper 17 (TH17) cells protect barrier tissues but also trigger autoimmunity. The mechanisms behind these opposing processes remain unclear. Here, we found that the transcription factor EGR2 controlled the transcriptional program of pathogenic TH17 cells in the central nervous system (CNS) but not that of protective TH17 cells at barrier sites. EGR2 was significantly elevated in myelin-reactive CD4+ T cells from patients with multiple sclerosis and mice with autoimmune neuroinflammation. The EGR2 transcriptional program was intricately woven within the TH17 cell transcriptional regulatory network and showed high interconnectivity with core TH17 cell-specific transcription factors. Mechanistically, EGR2 enhanced TH17 cell differentiation and myeloid cell recruitment to the CNS by upregulating pathogenesis-associated genes and myelomonocytic chemokines. T cell-specific deletion of Egr2 attenuated neuroinflammation without compromising the host's ability to control infections. Our study shows that EGR2 regulates tissue-specific and disease-specific functions in pathogenic TH17 cells in the CNS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Diferenciación Celular , Sistema Nervioso Central , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias , Células TH1 , Células Th17 , Factores de Transcripción , Virulencia , Humanos
3.
Nat Immunol ; 23(1): 62-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764490

RESUMEN

The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.


Asunto(s)
Interferón gamma/inmunología , Interleucina-10/inmunología , SARS-CoV-2/inmunología , Células TH1/inmunología , Vitamina D/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Líquido del Lavado Bronquioalveolar/citología , COVID-19/inmunología , COVID-19/patología , Complemento C3a/inmunología , Complemento C3b/inmunología , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Activación de Linfocitos/inmunología , Receptores de Calcitriol/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/virología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/inmunología , Transcripción Genética/genética
4.
Nat Immunol ; 22(3): 370-380, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33574619

RESUMEN

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Asunto(s)
Infecciones por Arenaviridae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Epigénesis Genética , Células Precursoras de Linfocitos T/metabolismo , Transcripción Genética , Animales , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Linaje de la Célula , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Células Precursoras de Linfocitos T/inmunología , Células Precursoras de Linfocitos T/virología , Transducción de Señal
5.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572656

RESUMEN

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Asunto(s)
Arginasa , Gripe Humana , Animales , Humanos , Ratones , Arginasa/genética , Arginasa/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmón/metabolismo , Mamíferos
6.
Nat Immunol ; 19(12): 1403-1414, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30397350

RESUMEN

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161+ regulatory T (Treg) cells as a distinct, highly suppressive population of Treg cells that mediate wound healing. These Treg cells were enriched in intestinal lamina propria, particularly in Crohn's disease. CD161+ Treg cells had an all-trans retinoic acid (ATRA)-regulated gene signature, and CD161 expression on Treg cells was induced by ATRA, which directly regulated the CD161 gene. CD161 was co-stimulatory, and ligation with the T cell antigen receptor induced cytokines that accelerated the wound healing of intestinal epithelial cells. We identified a transcription-factor network, including BACH2, RORγt, FOSL2, AP-1 and RUNX1, that controlled expression of the wound-healing program, and found a CD161+ Treg cell signature in Crohn's disease mucosa associated with reduced inflammation. These findings identify CD161+ Treg cells as a population involved in controlling the balance between inflammation and epithelial barrier healing in the gut.


Asunto(s)
Mucosa Intestinal/inmunología , Subfamilia B de Receptores Similares a Lectina de Células NK/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Tretinoina/inmunología , Cicatrización de Heridas/inmunología , Enfermedad de Crohn/inmunología , Humanos
7.
Immunity ; 54(5): 847-850, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979581

RESUMEN

The molecular mechanisms explaining why relapses of inflammatory arthritis occur at previously affected sites are unknown. In this issue of Immunity, Friscic et al. propose that local fibroblasts perpetuate inflammation after priming through cell-intrinsic complement C3, which reprograms their bioenergetics and activates the inflammasome.


Asunto(s)
Artritis , Fibroblastos , Humanos , Inflamasomas , Inflamación
8.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33657395

RESUMEN

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Asunto(s)
Inflamación/inmunología , Interleucina-23/metabolismo , Mucosa Intestinal/inmunología , MicroARNs/genética , Células Th17/inmunología , Animales , Retroalimentación Fisiológica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-maf/metabolismo , Receptores de Interleucina/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
9.
Nat Immunol ; 18(7): 813-823, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28530713

RESUMEN

The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.


Asunto(s)
Enfermedades Autoinmunes/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Síndromes de Inmunodeficiencia/genética , Corticoesteroides/uso terapéutico , Adulto , Enfermedades Autoinmunes/complicaciones , Colitis/complicaciones , Colitis/genética , Colitis/patología , Femenino , Fiebre/complicaciones , Fiebre/tratamiento farmacológico , Fiebre/genética , Haploinsuficiencia , Heterocigoto , Humanos , Síndromes de Inmunodeficiencia/complicaciones , Linfopenia/complicaciones , Linfopenia/genética , Masculino , Persona de Mediana Edad , Mutación , Pancitopenia/complicaciones , Pancitopenia/tratamiento farmacológico , Pancitopenia/genética , Linaje , Polimorfismo de Nucleótido Simple , Recurrencia , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/diagnóstico por imagen , Infecciones del Sistema Respiratorio/genética , Esplenomegalia/complicaciones , Esplenomegalia/genética , Síndrome , Tomografía Computarizada por Rayos X , Adulto Joven
10.
Immunity ; 52(3): 513-527.e8, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32187519

RESUMEN

Intrinsic complement C3 activity is integral to human T helper type 1 (Th1) and cytotoxic T cell responses. Increased or decreased intracellular C3 results in autoimmunity and infections, respectively. The mechanisms regulating intracellular C3 expression remain undefined. We identified complement, including C3, as among the most significantly enriched biological pathway in tissue-occupying cells. We generated C3-reporter mice and confirmed that C3 expression was a defining feature of tissue-immune cells, including T cells and monocytes, occurred during transendothelial diapedesis, and depended on integrin lymphocyte-function-associated antigen 1 (LFA-1) signals. Immune cells from patients with leukocyte adhesion deficiency type 1 (LAD-1) had reduced C3 transcripts and diminished effector activities, which could be rescued proportionally by intracellular C3 provision. Conversely, increased C3 expression by T cells from arthritis patients correlated with disease severity. Our study defines integrins as key controllers of intracellular complement, demonstrates that perturbations in the LFA-1-C3-axis contribute to primary immunodeficiency, and identifies intracellular C3 as biomarker of severity in autoimmunity.


Asunto(s)
Complemento C3/inmunología , Integrinas/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Linfocitos/inmunología , Monocitos/inmunología , Migración Transendotelial y Transepitelial/inmunología , Adulto , Anciano , Animales , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Niño , Preescolar , Complemento C3/genética , Complemento C3/metabolismo , Femenino , Humanos , Integrinas/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Linfocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Monocitos/metabolismo , Transducción de Señal/inmunología
12.
Immunity ; 42(6): 1033-47, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26084023

RESUMEN

Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-γ production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4(+) T cell effector function.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Síndrome Hemolítico-Urémico/inmunología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Proteína Cofactora de Membrana/metabolismo , Células TH1/fisiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/inmunología , Células Cultivadas , Reprogramación Celular/inmunología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Proteínas de Homeodominio/metabolismo , Humanos , Inmunidad Celular/genética , Interferón gamma/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína Cofactora de Membrana/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Neuropéptidos/metabolismo , Fosforilación Oxidativa , ARN Interferente Pequeño/genética , Proteína Homóloga de Ras Enriquecida en el Cerebro , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba
13.
Clin Infect Dis ; 77(6): 816-826, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37207367

RESUMEN

BACKGROUND: Identifying individuals with a higher risk of developing severe coronavirus disease 2019 (COVID-19) outcomes will inform targeted and more intensive clinical monitoring and management. To date, there is mixed evidence regarding the impact of preexisting autoimmune disease (AID) diagnosis and/or immunosuppressant (IS) exposure on developing severe COVID-19 outcomes. METHODS: A retrospective cohort of adults diagnosed with COVID-19 was created in the National COVID Cohort Collaborative enclave. Two outcomes, life-threatening disease and hospitalization, were evaluated by using logistic regression models with and without adjustment for demographics and comorbidities. RESULTS: Of the 2 453 799 adults diagnosed with COVID-19, 191 520 (7.81%) had a preexisting AID diagnosis and 278 095 (11.33%) had a preexisting IS exposure. Logistic regression models adjusted for demographics and comorbidities demonstrated that individuals with a preexisting AID (odds ratio [OR], 1.13; 95% confidence interval [CI]: 1.09-1.17; P < .001), IS exposure (OR, 1.27; 95% CI: 1.24-1.30; P < .001), or both (OR, 1.35; 95% CI: 1.29-1.40; P < .001) were more likely to have a life-threatening disease. These results were consistent when hospitalization was evaluated. A sensitivity analysis evaluating specific IS revealed that tumor necrosis factor inhibitors were protective against life-threatening disease (OR, 0.80; 95% CI: .66-.96; P = .017) and hospitalization (OR, 0.80; 95% CI: .73-.89; P < .001). CONCLUSIONS: Patients with preexisting AID, IS exposure, or both are more likely to have a life-threatening disease or hospitalization. These patients may thus require tailored monitoring and preventative measures to minimize negative consequences of COVID-19.


Asunto(s)
Autoinmunidad , COVID-19 , Adulto , Humanos , COVID-19/epidemiología , Estudios Retrospectivos , Hospitalización , Inmunosupresores/uso terapéutico
14.
J Autoimmun ; 134: 102982, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592512

RESUMEN

Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Esclerosis Múltiple , Humanos , Autoinmunidad/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/genética
15.
J Med Virol ; 95(1): e28362, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453088

RESUMEN

We probed the lifecycle of Epstein-Barr virus (EBV) on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCLs). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350- LMP1hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350+ LMP1hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350+ LMP1hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV-associated heterogeneity among LCLs that may have functional consequence on host and viral biology.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Análisis de la Célula Individual , Humanos , Línea Celular , Análisis de Datos , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Latencia del Virus , Linfocitos/metabolismo , Linfocitos/virología
16.
Immunology ; 166(3): 299-309, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35322416

RESUMEN

In CD4+ T helper cells, the active form of vitamin D3 , 1,25-dihydroxyvitamin D3 (1,25D) suppresses production of inflammatory cytokines, including interferon-gamma (IFN-γ), but the mechanisms for this are not yet fully defined. In innate immune cells, response to 1,25D has been linked to metabolic reprogramming. It is unclear whether 1,25D has similar effects on CD4+ T cells, although it is known that antigen stimulation of these cells promotes an anabolic metabolic phenotype, characterized by high rates of aerobic glycolysis to support clonal expansion and effector cytokine expression. Here, we performed in-depth analysis of metabolic capacity and pathway usage, employing extracellular flux and stable isotope-based tracing approaches, in CD4+ T cells treated with 1,25D. We report that 1,25D significantly decreases rates of aerobic glycolysis in activated CD4+ T cells, whilst exerting a lesser effect on mitochondrial glucose oxidation. This is associated with transcriptional repression of Myc, but not repression of mTOR activity under these conditions. Consistent with the modest effect of 1,25D on mitochondrial activity, it also did not impact CD4+ T-cell mitochondrial mass or membrane potential. Finally, we demonstrate that inhibition of aerobic glycolysis by 1,25D substantially contributes to its immune-regulatory capacity in CD4+ T cells, since the suppression of IFN-γ expression was significantly blunted in the absence of aerobic glycolysis. 1,25-Dihydroxyvitamin D3 (1,25D) suppresses the production of inflammatory cytokines such as interferon-gamma (IFN-γ) by CD4+ T cells, but the underpinning mechanisms are not yet fully defined. Here, we identify that 1,25D inhibits aerobic glycolysis in activated CD4+ T cells, associated with decreased c-Myc expression. This mechanism appears to substantially contribute to the suppression of IFN-γ by 1,25D, since this is significantly blunted in the absence of aerobic glycolysis.


Asunto(s)
Calcitriol , Interferón gamma , Calcitriol/metabolismo , Calcitriol/farmacología , Glucólisis , Interferón gamma/metabolismo , Linfocitos T Colaboradores-Inductores/metabolismo , Vitamina D
17.
Am J Physiol Renal Physiol ; 322(6): F597-F610, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35379003

RESUMEN

We have previously reported that increased expression and activation of kidney cell complement components play an important role in the pathogenesis of renal scarring. Here, we used floxed green fluorescent protein (GFP)-C5a receptor 1 (C5aR1) knockin mice (GFP-C5ar1fl/fl) and the model of folic acid (FA)-induced kidney injury to define the cell types and potential mechanisms by which increased C5aR1 activation leads to fibrosis. Using flow cytometry and confocal microscopy, we identified macrophages as the major interstitial cell type showing increased expression of C5aR1 in FA-treated mice. C5ar1fl/fl.Lyz2Cre+/- mice, in which C5aR1 has been specifically deleted in lysozyme M-expressing myeloid cells, experienced reduced fibrosis compared with control C5ar1fl/fl mice. Examination of C5aR1-expressing macrophage transcriptomes by gene set enrichment analysis demonstrated that these cells were enriched in pathways corresponding to the complement cascade, collagen formation, and the NABA matrisome, strongly pointing to their critical roles in tissue repair/scarring. Since C5aR1 was also detected in a small population of platelet-derived growth factor receptor-ß+ GFP+ cells, we developed C5ar1fl/fl.Foxd1Cre+/- mice, in which C5aR1 is deleted specifically in pericytes, and found reduced FA-induced fibrosis. Primary cell cultures of platelet-derived growth factor receptor-ß+ pericytes isolated from FA-treated C5ar1fl/fl.Foxd1Cre+/- mice showed reduced secretion of several cytokines, including IL-6 and macrophage inflammatory protein-2, compared with pericytes isolated from FA-treated control GFP-C5ar1fl/fl mice. Collectively, these data imply that C5a/C5aR1 axis activation primarily in interstitial cells contributes to the development of renal fibrosis.NEW & NOTEWORTHY This study used novel green fluorescent protein C5a receptor 1 floxed mice and the model of folic acid-mediated kidney fibrosis to demonstrate the pathogenic role of increased expression of this complement receptor on macrophages.


Asunto(s)
Ácido Fólico , Receptor de Anafilatoxina C5a , Animales , Cicatriz , Fibrosis , Ácido Fólico/farmacología , Proteínas Fluorescentes Verdes , Riñón/patología , Ratones , Ratones Noqueados , Células Mieloides/patología , Receptor de Anafilatoxina C5a/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas
18.
J Virol ; 95(15): e0029421, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980601

RESUMEN

The pathogenic mechanisms underlying severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection remain largely unelucidated. High-throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen- and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in transcriptome sequencing (RNA-seq) data from SARS-CoV-2-infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV-2 is a positive-sense RNA virus that replicates in the cytoplasm, it does not have a nuclear phase in its life cycle. Thus, it is biologically unlikely to be in a location where splicing events could result in genome integration. Therefore, we investigated the biological authenticity of HVC events. In contrast to true biological events like mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with coronavirus disease 2019 (COVID-19) and infected cell lines were highly irreproducible. RNA-seq library preparation is inherently error prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spiked-in RNA from an unrelated species, such as the fruit fly, we estimated that ∼1% of RNA-seq reads are artifactually chimeric. In SARS-CoV-2 RNA-seq, we found that the frequency of HVC events was, in fact, not greater than this background "noise." Finally, we developed a novel experimental approach to enrich SARS-CoV-2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV-2-infected cells are extremely rare and are likely artifacts arising from random template switching of reverse transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV-2 fusion to cellular genes and/or integration into human genomes. IMPORTANCE The pathogenic mechanisms underlying SARS-CoV-2, the virus responsible for COVID-19, are not fully understood. In particular, relatively little is known about the reasons some individuals develop life-threatening or persistent COVID-19. Recent studies identified host-virus chimeric (HVC) reads in RNA-sequencing data from SARS-CoV-2-infected cells and suggested that HVC events support potential "human genome invasion" and "integration" by SARS-CoV-2. This suggestion has fueled concerns about the long-term effects of current mRNA vaccines that incorporate elements of the viral genome. SARS-CoV-2 is a positive-sense, single-stranded RNA virus that does not encode a reverse transcriptase and does not include a nuclear phase in its life cycle, so some doubts have rightfully been expressed regarding the authenticity of HVCs and the role played by endogenous retrotransposons in this phenomenon. Thus, it is important to independently authenticate these HVC events. Here, we provide several lines of evidence suggesting that the observed HVC events are likely artifactual.


Asunto(s)
COVID-19/metabolismo , Interacciones Huésped-Patógeno , ARN Viral/metabolismo , RNA-Seq , SARS-CoV-2/fisiología , Replicación Viral , COVID-19/genética , COVID-19/patología , Línea Celular Tumoral , Humanos , ARN Viral/genética
19.
Immunity ; 39(6): 1143-57, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24315997

RESUMEN

Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.


Asunto(s)
Subgrupos de Linfocitos B/citología , Linfocitos T CD4-Positivos/inmunología , Catepsina L/metabolismo , Diferenciación Celular , Activación de Complemento/fisiología , Complemento C3/metabolismo , Homeostasis/fisiología , Adulto , Artritis Reumatoide/inmunología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Supervivencia Celular/inmunología , Niño , Complemento C3/inmunología , Complemento C3a/metabolismo , Complemento C3b/metabolismo , Regulación de la Expresión Génica/inmunología , Humanos
20.
BMC Genomics ; 22(1): 497, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34215186

RESUMEN

BACKGROUND: During eye lens development the embryonic vasculature regresses leaving the lens without a direct oxygen source. Both embryonically and throughout adult life, the lens contains a decreasing oxygen gradient from the surface to the core that parallels the natural differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 (HIF1), in the regulation of genes required for lens fiber cell differentiation, structure and transparency. Here, we employed a multiomics approach combining CUT&RUN, RNA-seq and ATACseq analysis to establish the genomic complement of lens HIF1α binding sites, genes activated or repressed by HIF1α and the chromatin states of HIF1α-regulated genes. RESULTS: CUT&RUN analysis revealed 8375 HIF1α-DNA binding complexes in the chick lens genome. One thousand one hundred ninety HIF1α-DNA binding complexes were significantly clustered within chromatin accessible regions (χ2 test p < 1 × 10- 55) identified by ATACseq. Formation of the identified HIF1α-DNA complexes paralleled the activation or repression of 526 genes, 116 of which contained HIF1α binding sites within 10kB of the transcription start sites. Some of the identified HIF1α genes have previously established lens functions while others have novel functions never before examined in the lens. GO and pathway analysis of these genes implicate HIF1α in the control of a wide-variety of cellular pathways potentially critical for lens fiber cell formation, structure and function including glycolysis, cell cycle regulation, chromatin remodeling, Notch and Wnt signaling, differentiation, development, and transparency. CONCLUSIONS: These data establish the first functional map of genomic HIF1α-DNA complexes in the eye lens. They identify HIF1α as an important regulator of a wide-variety of genes previously shown to be critical for lens formation and function and they reveal a requirement for HIF1α in the regulation of a wide-variety of genes not yet examined for lens function. They support a requirement for HIF1α in lens fiber cell formation, structure and function and they provide a basis for understanding the potential roles and requirements for HIF1α in the development, structure and function of more complex tissues.


Asunto(s)
Cristalino , Diferenciación Celular , Cromatina , ADN , Genómica , Subunidad alfa del Factor 1 Inducible por Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA