Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 211(5): 743-754, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466373

RESUMEN

Subset #201 is a clinically indolent subgroup of patients with chronic lymphocytic leukemia defined by the expression of stereotyped, mutated IGHV4-34/IGLV1-44 BCR Ig. Subset #201 is characterized by recurrent somatic hypermutations (SHMs) that frequently lead to the creation and/or disruption of N-glycosylation sites within the Ig H and L chain variable domains. To understand the relevance of this observation, using next-generation sequencing, we studied how SHM shapes the subclonal architecture of the BCR Ig repertoire in subset #201, particularly focusing on changes in N-glycosylation sites. Moreover, we profiled the Ag reactivity of the clonotypic BCR Ig expressed as rmAbs. We found that almost all analyzed cases from subset #201 carry SHMs potentially affecting N-glycosylation at the clonal and/or subclonal level and obtained evidence for N-glycan occupancy in SHM-induced novel N-glycosylation sites. These particular SHMs impact (auto)antigen recognition, as indicated by differences in Ag reactivity between the authentic rmAbs and germline revertants of SHMs introducing novel N-glycosylation sites in experiments entailing 1) flow cytometry for binding to viable cells, 2) immunohistochemistry against various human tissues, 3) ELISA against microbial Ags, and 4) protein microarrays testing reactivity against multiple autoantigens. On these grounds, N-glycosylation appears as relevant for the natural history of at least a fraction of Ig-mutated chronic lymphocytic leukemia. Moreover, subset #201 emerges as a paradigmatic case for the role of affinity maturation in the evolution of Ag reactivity of the clonotypic BCR Ig.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Glicosilación , Antígenos/metabolismo
2.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36044248

RESUMEN

Intraclonal diversification (ID) within the immunoglobulin (IG) genes expressed by B cell clones arises due to ongoing somatic hypermutation (SHM) in a context of continuous interactions with antigen(s). Defining the nature and order of appearance of SHMs in the IG genes can assist in improved understanding of the ID process, shedding light into the ontogeny and evolution of B cell clones in health and disease. Such endeavor is empowered thanks to the introduction of high-throughput sequencing in the study of IG gene repertoires. However, few existing tools allow the identification, quantification and characterization of SHMs related to ID, all of which have limitations in their analysis, highlighting the need for developing a purpose-built tool for the comprehensive analysis of the ID process. In this work, we present the immunoglobulin intraclonal diversification analysis (IgIDivA) tool, a novel methodology for the in-depth qualitative and quantitative analysis of the ID process from high-throughput sequencing data. IgIDivA identifies and characterizes SHMs that occur within the variable domain of the rearranged IG genes and studies in detail the connections between identified SHMs, establishing mutational pathways. Moreover, it combines established and new graph-based metrics for the objective determination of ID level, combined with statistical analysis for the comparison of ID level features for different groups of samples. Of importance, IgIDivA also provides detailed visualizations of ID through the generation of purpose-built graph networks. Beyond the method design, IgIDivA has been also implemented as an R Shiny web application. IgIDivA is freely available at https://bio.tools/igidiva.


Asunto(s)
Genes de Inmunoglobulinas , Inmunoglobulinas , Linfocitos B , Células Clonales , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoglobulinas/genética
3.
Blood ; 139(10): 1557-1563, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-34662377

RESUMEN

Chronic lymphocytic leukemia (CLL) is preceded by monoclonal B-cell lymphocytosis (MBL), a CLL precursor state with a prevalence of up to 12% in aged individuals; however, the duration of MBL and the mechanisms of its evolution to CLL remain largely unknown. In this study, we sequenced the B-cell receptor (BcR) immunoglobulin heavy chain (IGH) gene repertoire of 124 patients with CLL and 118 matched controls in blood samples taken up to 22 years prior to diagnosis. Significant skewing in the BcR IGH gene repertoire was detected in the majority of patients, even before the occurrence of lymphocytosis and irrespective of the clonotypic IGH variable gene somatic hypermutation status. Furthermore, we identified dominant clonotypes belonging to major stereotyped subsets associated with poor prognosis up to 16 years before diagnosis in 14 patients with CLL. In 22 patients with longitudinal samples, the skewing of the BcR IGH gene repertoire increased significantly over time to diagnosis or remained stable at high levels. For 14 of 16 patients with available samples at diagnosis, the CLL clonotype was already present in the prediagnostic samples. Overall, our data indicate that the preclinical phase of CLL could be longer than previously thought, even in adverse-prognostic cases.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfocitosis , Anciano , Linfocitos B , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Linfocitosis/diagnóstico , Linfocitosis/genética , Receptores de Antígenos de Linfocitos B/genética
4.
Haematologica ; 109(3): 824-834, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37439337

RESUMEN

Clonal expansion of CD5-expressing B cells, commonly designated as monoclonal B lymphocytosis (MBL), is a precursor condition for chronic lymphocytic leukemia (CLL). The mechanisms driving subclinical MBL B-cell expansion and progression to CLL, occurring in approximately 1% of affected individuals, are unknown. An autonomously signaling B-cell receptor (BCR) is essential for the pathogenesis of CLL. The objectives of this study were functional characterization of the BCR of MBL in siblings of CLL patients and a comparison of genetic variants in MBL-CLL sibling pairs. Screening of peripheral blood by flow cytometry detected 0.2-480 clonal CLL-phenotype cells per microliter (median: 37/µL) in 34 of 191 (17.8%) siblings of CLL patients. Clonal BCR isolated from highly purified CLL-phenotype cells induced robust calcium mobilization in BCR-deficient murine pre-B cells in the absence of external antigen and without experimental crosslinking. This autonomous BCR signal was less intense than the signal originating from the CLL BCR of their CLL siblings. According to genotyping by single nucleotide polymorphism array, whole exome, and targeted panel sequencing, CLL risk alleles were found with high and similar prevalence in CLL patients and MBL siblings, respectively. Likewise, the prevalence of recurrent CLL-associated genetic variants was similar between CLL and matched MBL samples. However, copy number variations and small variants were frequently subclonal in MBL cells, suggesting their acquisition during subclinical clonal expansion. These findings support a stepwise model of CLL pathogenesis, in which autonomous BCR signaling leads to a non-malignant (oligo)clonal expansion of CD5+ B cells, followed by malignant progression to CLL after acquisition of pathogenic genetic variants.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia , Linfocitosis , Humanos , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/genética , Hermanos , Variaciones en el Número de Copia de ADN , Linfocitosis/genética , Receptores de Antígenos de Linfocitos B/genética , Fenotipo
5.
Semin Cancer Biol ; 84: 80-88, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34757183

RESUMEN

Cancer is characterized by an extremely complex biological background, which hinders personalized therapeutic interventions. Precision medicine promises to overcome this obstacle through integrating information from different 'subsystems', including the host, the external environment, the tumor itself and the tumor micro-environment. Immunogenetics is an essential tool that allows dissecting both lymphoid cancer ontogeny at both a cell-intrinsic and a cell-extrinsic level, i.e. through characterizing micro-environmental interactions, with a view to precision medicine. This is particularly thanks to the introduction of powerful, high-throughput approaches i.e. next generation sequencing, which allow the comprehensive characterization of immune repertoires. Indeed, NGS immunogenetic analysis (Immune-seq) has emerged as key to both understanding cancer pathogenesis and improving the accuracy of clinical decision making in oncology. Immune-seq has applications in lymphoid malignancies, assisting in the diagnosis e.g. through differentiating from reactive conditions, as well as in disease monitoring through accurate assessment of minimal residual disease. Moreover, Immune-seq facilitates the study of T cell receptor clonal dynamics in critical clinical contexts, including transplantation as well as innovative immunotherapy for solid cancers. The clinical utility of Immune-seq represents the focus of the present contribution, where we highlight what can be achieved but also what must be addressed in order to maximally realize the promise of Immune-seq in precision medicine in cancer.


Asunto(s)
Neoplasias , Medicina de Precisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenética , Inmunoterapia , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
6.
Curr Issues Mol Biol ; 45(5): 4135-4150, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232732

RESUMEN

(1) Background: Myelodysplastic neoplasms (MDSs) consist of a group of blood malignancies with a complex biological background. In this context, we investigated the role of autophagy and apoptosis in the pathogenesis and progression of MDSs. (2) Methods: To address this issue, we performed a systematic expression analysis on a total of 84 genes in patients with different types of MDSs (low/high risk of malignancy) versus healthy individuals. Furthermore, real-time quantitative PCR (qRT-PCR) was used to validate significantly upregulated or downregulated genes in a separate cohort of MDS patients and healthy controls. (3) Results: MDS patients were characterized by lower expression levels for a large series of genes involved in both processes compared to healthy individuals. Of importance, deregulation was more pronounced in patients with higher-risk MDS. Results from the qRT-PCR experiments displayed a high level of concordance with the PCR array, strengthening the relevance of our findings. (4) Conclusions: Our results indicate a clear effect of autophagy and apoptosis on MDS development, which becomes more pronounced as the disease progresses. The results from the present study are expected to assist in our understanding of the biological background of MDSs as well as in the identification of novel therapeutic targets.

7.
Blood ; 137(10): 1365-1376, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32992344

RESUMEN

Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/genética , Frecuencia de los Genes , Reordenamiento Génico , Humanos , Hipermutación Somática de Inmunoglobulina
8.
BMC Bioinformatics ; 21(1): 422, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993478

RESUMEN

BACKGROUND: Antigen receptors are characterized by an extreme diversity of specificities, which poses major computational and analytical challenges, particularly in the era of high-throughput immunoprofiling by next generation sequencing (NGS). The T cell Receptor/Immunoglobulin Profiler (TRIP) tool offers the opportunity for an in-depth analysis based on the processing of the output files of the IMGT/HighV-Quest tool, a standard in NGS immunoprofiling, through a number of interoperable modules. These provide detailed information about antigen receptor gene rearrangements, including variable (V), diversity (D) and joining (J) gene usage, CDR3 amino acid and nucleotide composition and clonality of both T cell receptors (TR) and B cell receptor immunoglobulins (BcR IG), and characteristics of the somatic hypermutation within the BcR IG genes. TRIP is a web application implemented in R shiny. RESULTS: Two sets of experiments have been performed in order to evaluate the efficiency and performance of the TRIP tool. The first used a number of synthetic datasets, ranging from 250k to 1M sequences, and established the linear response time of the tool (about 6 h for 1M sequences processed through the entire BcR IG data pipeline). The reproducibility of the tool was tested comparing the results produced by the main TRIP workflow with the results from a previous pipeline used on the Galaxy platform. As expected, no significant differences were noted between the two tools; although the preselection process seems to be stricter within the TRIP pipeline, about 0.1% more rearrangements were filtered out, with no impact on the final results. CONCLUSIONS: TRIP is a software framework that provides analytical services on antigen receptor gene sequence data. It is accurate and contains functions for data wrangling, cleaning, analysis and visualization, enabling the user to build a pipeline tailored to their needs. TRIP is publicly available at https://bio.tools/TRIP_-_T-cell_Receptor_Immunoglobulin_Profiler .


Asunto(s)
Inmunoglobulinas/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Interfaz Usuario-Computador , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulinas/química , Inmunoglobulinas/genética , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética
9.
Mol Med ; 26(1): 25, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156260

RESUMEN

BACKGROUND: B cell receptor Immunoglobulin (BcR IG) repertoire of Chronic Lymphocytic Leukemia (CLL) is characterized by the expression of quasi-identical BcR IG. These are observed in approximately 30% of patients, defined as stereotyped receptors and subdivided into subsets based on specific VH CDR3 aa motifs and phylogenetically related IGHV genes. Although relevant to CLL ontogeny, the distribution of CLL-biased stereotyped immunoglobulin rearrangements (CBS-IG) in normal B cells has not been so far specifically addressed using modern sequencing technologies. Here, we have investigated the presence of CBS-IG in splenic B cell subpopulations (s-BCS) and in CD5+ and CD5- B cells from the spleen and peripheral blood (PB). METHODS: Fractionation of splenic B cells into 9 different B cell subsets and that of spleen and PB into CD5+ and CD5- cells were carried out by FACS sorting. cDNA sequences of BcR IG gene rearrangements were obtained by NGS. Identification of amino acidic motifs typical of CLL stereotyped subsets was carried out on IGHV1-carrying gene sequences and statistical evaluation has been subsequently performed to assess stereotypes distribution. RESULTS: CBS-IG represented the 0.26% average of IGHV1 genes expressing sequences, were detected in all of the BCS investigated. CBS-IG were more abundant in splenic and circulating CD5+ B (0.57%) cells compared to CD5- B cells (0.17%). In all instances, most CBS IG did not exhibit somatic hypermutation similar to CLL stereotyped receptors. However, compared to CLL, they exhibited a different CLL subset distribution and a broader utilization of the genes of the IGHV1 family. CONCLUSIONS: CBS-IG receptors appear to represent a part of the "public" BcR repertoire in normal B cells. This repertoire is observed in all BCS excluding the hypothesis that CLL stereotyped BcR accumulate in a specific B cell subset, potentially capable of originating a leukemic clone. The different relative representation of CBS-IG in normal B cell subgroups suggests the requirement for additional selective processes before a full transformation into CLL is achieved.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Reordenamiento Génico de Linfocito B , Receptores de Antígenos de Linfocitos B/genética , Análisis de Secuencia de ADN/métodos , Bazo/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD5/metabolismo , Separación Celular , Citometría de Flujo , Voluntarios Sanos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Fenómenos Inmunogenéticos , Masculino , Receptores de Antígenos de Linfocitos B/metabolismo , Hipermutación Somática de Inmunoglobulina , Adulto Joven
10.
Haematologica ; 105(11): 2598-2607, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131249

RESUMEN

Almost one-third of all patients with chronic lymphocytic leukemia (CLL) express stereotyped B cell receptor immunoglobulins (BcR IG) and can be assigned to distinct subsets, each with a particular BcR IG. The largest stereotyped subsets are #1, #2, #4 and #8, associated with specific clinicobiological characteristics and outcomes in retrospective studies. We assessed the associations and prognostic value of these BcR IG in prospective multicenter clinical trials reflective of two different clinical situations: i) early-stage patients (watch-and-wait arm of the CLL1 trial) (n=592); ii) patients in need of treatment, enrolled in 3 phase III trials (CLL8, CLL10, CLL11), treated with different chemo-immunotherapies (n=1861). Subset #1 was associated with del(11q), higher CLL international prognostic index (CLL-IPI) scores and similar clinical course to CLL with unmutated immunoglobulin heavy variable (IGHV) genes (U-CLL) in both early and advanced stage groups. IGHV-mutated (M-CLL) subset #2 cases had shorter time-to-first-treatment (TTFT) versus other M-CLL cases in the early-stage cohort (HR: 4.2, CI: 2-8.6, p<0.001), and shorter time-to-next-treatment (TTNT) in the advanced-stage cohort (HR: 2, CI: 1.2-3.3, p=0.005). M-CLL subset #4 was associated with lower CLL-IPI scores and younger age at diagnosis; in both cohorts, these patients showed a trend towards better outcomes versus other M-CLL. U-CLL subset #8 was associated with trisomy 12. Overall, this study shows that major stereotyped subsets have distinctive characteristics. For the first time in prospective multicenter clinical trials, subset # 2 appeared as an independent prognostic factor for earlier TTFT and TTNT and should be proposed for risk stratification of patients.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/epidemiología , Mutación , Pronóstico , Estudios Prospectivos , Estudios Retrospectivos
11.
J Pathol ; 247(4): 416-421, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30484876

RESUMEN

The B cell receptor immunoglobulin (Ig) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n = 488), i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL), as well as provisional entities (n = 76), according to the WHO classification. The most striking Ig gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different Ig gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ Ig sequence dataset with a large dataset of Ig sequences (MZ-related or not; n = 65 837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia, but also rheumatoid factors and non-malignant splenic MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Genes de Inmunoglobulinas/genética , Linfoma de Células B de la Zona Marginal/genética , Regiones Determinantes de Complementariedad/genética , Reordenamiento Génico de Linfocito B/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Humanos , Región Variable de Inmunoglobulina/genética , Mutación/genética , Receptores de Antígenos de Linfocitos B/genética , Microambiente Tumoral
13.
Haematologica ; 104(2): 360-369, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30262567

RESUMEN

Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.


Asunto(s)
Biomarcadores de Tumor , Susceptibilidad a Enfermedades , Leucemia Linfocítica Crónica de Células B/etiología , Leucemia Linfocítica Crónica de Células B/mortalidad , Anciano , Anciano de 80 o más Años , Aberraciones Cromosómicas , Femenino , Humanos , Inmunogenética , Estimación de Kaplan-Meier , Leucemia Linfocítica Crónica de Células B/patología , Leucemia Linfocítica Crónica de Células B/terapia , Masculino , Mutación , Estadificación de Neoplasias , Pronóstico , Tiempo de Tratamiento
14.
BMC Bioinformatics ; 19(Suppl 14): 414, 2018 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-30453883

RESUMEN

BACKGROUND: Although the etiology of chronic lymphocytic leukemia (CLL), the most common type of adult leukemia, is still unclear, strong evidence implicates antigen involvement in disease ontogeny and evolution. Primary and 3D structure analysis has been utilised in order to discover indications of antigenic pressure. The latter has been mostly based on the 3D models of the clonotypic B cell receptor immunoglobulin (BcR IG) amino acid sequences. Therefore, their accuracy is directly dependent on the quality of the model construction algorithms and the specific methods used to compare the ensuing models. Thus far, reliable and robust methods that can group the IG 3D models based on their structural characteristics are missing. RESULTS: Here we propose a novel method for clustering a set of proteins based on their 3D structure focusing on 3D structures of BcR IG from a large series of patients with CLL. The method combines techniques from the areas of bioinformatics, 3D object recognition and machine learning. The clustering procedure is based on the extraction of 3D descriptors, encoding various properties of the local and global geometrical structure of the proteins. The descriptors are extracted from aligned pairs of proteins. A combination of individual 3D descriptors is also used as an additional method. The comparison of the automatically generated clusters to manual annotation by experts shows an increased accuracy when using the 3D descriptors compared to plain bioinformatics-based comparison. The accuracy is increased even more when using the combination of 3D descriptors. CONCLUSIONS: The experimental results verify that the use of 3D descriptors commonly used for 3D object recognition can be effectively applied to distinguishing structural differences of proteins. The proposed approach can be applied to provide hints for the existence of structural groups in a large set of unannotated BcR IG protein files in both CLL and, by logical extension, other contexts where it is relevant to characterize BcR IG structural similarity. The method does not present any limitations in application and can be extended to other types of proteins.


Asunto(s)
Imagenología Tridimensional , Inmunoglobulinas/química , Leucemia Linfocítica Crónica de Células B/metabolismo , Secuencia de Aminoácidos , Automatización , Bases de Datos de Proteínas , Humanos , Anotación de Secuencia Molecular
15.
Am J Pathol ; 187(7): 1454-1458, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28457696

RESUMEN

To obtain insight into the ontogeny of mantle cell lymphoma (MCL), we assessed 206 patients from a morphological, immunohistochemical, and immunogenetic perspective. Our series included nodal (n = 151), extranodal (n = 28), and primary splenic (n = 27) MCL cases. Skewing of the immunoglobulin heavy variable (IGHV) gene repertoire was noted, with only four IGHV genes accounting for 46% of cases and approximately 70% of cases (107/154) bearing an imprint of somatic hypermutation (SHM) ranging from minimal to pronounced. Interestingly, a distinctive immunophenotypic and immunogenetic profile was identified for primary splenic MCL, which was enriched for DBA.44-positive cases (P < 0.001) and used the IGHV1-8 gene more frequently (P = 0.02) compared to nodal or extranodal cases, alluding to distinct immunopathogenetic and antigen selection processes. Expression of CD27 (considered a marker of activated B cells) was generally dissociated from SHM and was more prevalent in cases with no or minimal/borderline SHM. These findings support the idea that antigen drive is relevant for most MCL cases, although the specific antigens and the precise location of affinity maturation remain to be elucidated. Moreover, they raise the intriguing hypothesis of multiple cellular origins for MCL.


Asunto(s)
Biomarcadores de Tumor/genética , Inmunogenética , Inmunoglobulinas/genética , Linfoma de Células del Manto/genética , Antígenos/genética , Antígenos/metabolismo , Biomarcadores de Tumor/metabolismo , Médula Ósea/metabolismo , Médula Ósea/patología , Estudios de Cohortes , Europa (Continente) , Humanos , Inmunoglobulinas/metabolismo , Inmunohistoquímica , Inmunofenotipificación , Linfoma de Células del Manto/inmunología , Linfoma de Células del Manto/patología , Bazo/metabolismo , Bazo/patología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo
16.
Blood ; 127(8): 1007-16, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26675346

RESUMEN

Fludarabine, cyclophosphamide, and rituximab (FCR) is first-line treatment of medically fit chronic lymphocytic leukemia (CLL) patients; however, despite good response rates, many patients eventually relapse. Although recent high-throughput studies have identified novel recurrent genetic lesions in adverse prognostic CLL, the mechanisms leading to relapse after FCR therapy are not completely understood. To gain insight into this issue, we performed whole-exome sequencing of sequential samples from 41 CLL patients who were uniformly treated with FCR but relapsed after a median of 2 years. In addition to mutations with known adverse-prognostic impact (TP53, NOTCH1, ATM, SF3B1, NFKBIE, and BIRC3), a large proportion of cases (19.5%) harbored mutations in RPS15, a gene encoding a component of the 40S ribosomal subunit. Extended screening, totaling 1119 patients, supported a role for RPS15 mutations in aggressive CLL, with one-third of RPS15-mutant cases also carrying TP53 aberrations. In most cases, selection of dominant, relapse-specific subclones was observed over time. However, RPS15 mutations were clonal before treatment and remained stable at relapse. Notably, all RPS15 mutations represented somatic missense variants and resided within a 7 amino-acid, evolutionarily conserved region. We confirmed the recently postulated direct interaction between RPS15 and MDM2/MDMX and transient expression of mutant RPS15 revealed defective regulation of endogenous p53 compared with wild-type RPS15. In summary, we provide novel insights into the heterogeneous genetic landscape of CLL relapsing after FCR treatment and highlight a novel mechanism underlying clinical aggressiveness involving a mutated ribosomal protein, potentially representing an early genetic lesion in CLL pathobiology.


Asunto(s)
Resistencia a Antineoplásicos/genética , Leucemia Linfocítica Crónica de Células B/genética , Mutación Missense , Recurrencia Local de Neoplasia/genética , Proteínas Ribosómicas/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Western Blotting , Separación Celular , Ciclofosfamida/administración & dosificación , Análisis Mutacional de ADN , Exoma , Humanos , Inmunoprecipitación , Estimación de Kaplan-Meier , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/mortalidad , Leucemia Linfocítica Crónica de Células B/patología , Recurrencia Local de Neoplasia/patología , Rituximab/administración & dosificación , Transfección , Proteína p53 Supresora de Tumor/genética , Vidarabina/administración & dosificación , Vidarabina/análogos & derivados
17.
Haematologica ; 103(5): 865-873, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29449433

RESUMEN

Despite the recent discovery of recurrent driver mutations in chronic lymphocytic leukemia, the genetic factors involved in disease onset remain largely unknown. To address this issue, we performed whole-genome sequencing in 11 individuals with monoclonal B- cell lymphocytosis, both of the low-count and high-count subtypes, and 5 patients with ultra-stable chronic lymphocytic leukemia (>10 years without progression from initial diagnosis). All three entities were indistinguishable at the genomic level exhibiting low genomic complexity and similar types of somatic mutations. Exonic mutations were not frequently identified in putative chronic lymphocytic leukemia driver genes in all settings, including low-count monoclonal B-cell lymphocytosis. To corroborate these findings, we also performed deep sequencing in 11 known frequently mutated genes in an extended cohort of 28 monoclonal B-cell lymphocytosis/chronic lymphocytic leukemia cases. Interestingly, shared mutations were detected between clonal B cells and paired polymorphonuclear cells, strengthening the notion that at least a fraction of somatic mutations may occur before disease onset, likely at the hematopoietic stem cell level. Finally, we identified previously unreported non-coding variants targeting pathways relevant to B-cell and chronic lymphocytic leukemia development, likely associated with the acquisition of the characteristic neoplastic phenotype typical of both monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia.


Asunto(s)
Linfocitos B/patología , Biomarcadores de Tumor/genética , Genómica/métodos , Leucemia Linfocítica Crónica de Células B/genética , Linfocitosis/genética , Mutación , Estudios de Cohortes , Progresión de la Enfermedad , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Linfocitosis/patología , Fenotipo , Pronóstico , Secuenciación Completa del Genoma
18.
J Pathol ; 243(4): 403-406, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28892161

RESUMEN

Associations between immunoglobulin (IG) receptors with distinctive immunogenetic features and particular gene mutations are a recurring theme in mature B-cell lymphomas. Relevant observations have been made in chronic lymphocytic leukemia (CLL), where gene mutations are distributed asymmetrically in cases bearing or not somatic hypermutations within the clonotypic immunoglobulin heavy chain variable region (IGHV) genes (e.g. TP53 mutations predominate in IG-unmutated CLL, whereas the opposite is seen for MYD88 mutations, enriched in IG-mutated CLL) and in subsets of cases with stereotyped IG (enrichment for SF3B1 mutations in CLL subset #2). Moreover, similar findings have been reported in splenic marginal-zone lymphoma, where KLF2 mutations are biased to cases expressing IGHV1-2*04 IG receptors, and in hairy cell leukemia, where IGHV4-34-expressing cases display a low frequency of BRAF mutations but a high frequency of MAP2K1 mutations. The list is now growing with the report of increased frequency of inactivating mutations in the TNFAIP3 gene in MALT lymphomas expressing IG receptors encoded by the IGHV4-34 gene, particularly of the ocular adnexa. Considering that TNFAIP3 encodes a negative regulator of NF-κB, this finding further highlights the importance of NF-κB pathway activation in the natural history of MALT lymphomas. Altogether, these findings allude to selection of genomic aberrations in lymphoma cases with distinctive immune signaling profiles linked to the expression of particular IG receptors. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Región Variable de Inmunoglobulina/genética , Linfoma de Células B de la Zona Marginal/genética , Adulto , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Receptores de Antígenos/genética , Reino Unido
19.
Blood ; 125(5): 856-9, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25634617

RESUMEN

An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.


Asunto(s)
Regulación Leucémica de la Expresión Génica , Reordenamiento Génico de Cadena Pesada de Linfocito B/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Anciano , Antineoplásicos/uso terapéutico , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/patología , Femenino , Heterogeneidad Genética , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Hipermutación Somática de Inmunoglobulina , Análisis de Supervivencia , Tiempo de Tratamiento , Resultado del Tratamiento
20.
Haematologica ; 102(6): 1085-1090, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28255015

RESUMEN

Differences in chronic lymphocytic leukemia between the Asian and the Western population are widely known. To further clarify these ethnic differences, we profiled the molecular genetics in a cohort of 83 newly diagnosed patients from Taiwan. In detail, we assessed: (i) the usage and the mutational status of the clonotypic immunoglobulin heavy-chain variable region (IgHV) genes, (ii) the presence of VH CDR3 stereotypes, and (iii) TP53, NOTCH1, SF3B1, BIRC3, and MYD88 mutations. The IgHV gene repertoire was biased and distinct from that observed in the West with the most common IgHV genes being IgHV3-23, IgHV3-7, and IgHV3-48 In terms of IgHV gene mutational status, 63.8% of patients carried mutated rearrangements, whereas 22.4% of patients were assigned to stereotyped subsets (6.9% to major subsets and 15.5% to minor ones). The frequencies of NOTCH1, SF3B1, BIRC3 and MYD88 mutations were 9.6%, 7.2%, 1.2%, and 2.4%, respectively; however, the frequency of TP53 mutations was significantly higher (20.5%). Patients with TP53 mutations or del(17p), SF3B1 mutations and unmutated IgHV had a worse outcome compared to the other patients. In conclusion, the differences observed in IgHV properties suggest different pathogenetic factors implicated in the development of chronic lymphocytic leukemia, while the high frequency of TP53 mutations could in part explain the dismal outcome of these patients in Taiwan.


Asunto(s)
Regiones Determinantes de Complementariedad/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Leucemia Linfocítica Crónica de Células B/etnología , Leucemia Linfocítica Crónica de Células B/genética , Proteína p53 Supresora de Tumor/genética , Pueblo Asiatico/genética , Humanos , Mutación , Tasa de Mutación , Pronóstico , Taiwán/etnología , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA