Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970019

RESUMEN

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Asunto(s)
Avena , Sequías , Homeostasis , Filogenia , Proteínas de Plantas , Especies Reactivas de Oxígeno , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Avena/genética , Avena/metabolismo , Regulación de la Expresión Génica de las Plantas , Polietilenglicoles/farmacología , Familia de Multigenes , Estrés Fisiológico/genética , Estudio de Asociación del Genoma Completo , Genoma de Planta
2.
J Exp Bot ; 73(3): 998-1015, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34606587

RESUMEN

Oryza coarctata is the only wild rice species with significant salinity tolerance. The present work examines the role of the substantial rhizomatous tissues of O. coarctata in conferring salinity tolerance. Transition to an erect phenotype (shoot emergence) from prostrate growth of rhizome tissues is characterized by marked lignification and suberization of supporting sclerenchymatous tissue, epidermis, and bundle sheath cells in aerial shoot-proximal nodes and internodes in O. coarctata. With salinity, however, aerial shoot-proximal internodal tissues show reductions in lignification and suberization, most probably related to re-direction of carbon flux towards synthesis of the osmporotectant proline. Concurrent with hypolignification and reduced suberization, the aerial rhizomatous biomass of O. coarctata appears to have evolved mechanisms to store Na+ in these specific tissues under salinity. This was confirmed by histochemical staining, quantitative real-time reverse transcription-PCR expression patterns of genes involved in lignification/suberization, Na+ and K+ contents of internodal tissues, as well as non-invasive microelectrode ion flux measurements of NaCl-induced net Na+, K+, and H+ flux profiles of aerial nodes were determined. In O. coarctata, aerial proximal internodes appear to act as 'traffic controllers', sending required amounts of Na+ and K+ into developing leaves for osmotic adjustment and turgor-driven growth, while more deeply positioned internodes assume a Na+ buffering/storage role.


Asunto(s)
Oryza , Oryza/metabolismo , Hojas de la Planta/metabolismo , Rizoma/metabolismo , Salinidad , Tolerancia a la Sal , Sodio/metabolismo
3.
Physiol Plant ; 172(4): 1997-2010, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33826749

RESUMEN

Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl- contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl- sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl- accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.


Asunto(s)
Salinidad , Suelo , Fotosíntesis , Hojas de la Planta , Tolerancia a la Sal , Plantas Tolerantes a la Sal
4.
Plant Physiol Biochem ; 166: 1022-1031, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274889

RESUMEN

The ability of halophytes to thrive under saline conditions implies efficient ROS detoxification and signalling. In this work, the causal relationship between key membrane transport processes involved in maintaining plant ionic homeostasis and oxidative stress tolerance was investigated in a succulent perennial halophyte Sarcocornia quinqueflora. The flux responses to oxidative stresses induced by either hydroxyl radicals (OH•) or hydrogen peroxide (H2O2) were governed largely by (1) the type of ROS applied; (2) the tissue-specific origin and function (parenchymatic or chlorenchymatic); and (3) the tissue location in respect to the suberized endodermal barrier. The latter implied significant differences in responses between outer (water storage-WS; palisade tissue-Pa) and inner (internal photosynthetic layer-IP; stele parenchyma-SP) stem tissues. The ability of the cell to retain K+ under OH• stress varied between different tissues and was ranked in the following descending order: WS>Pa>IP>SP. OH• always led to Ca2+ influx in all stem tissues, while treatment with H2O2 induced tissue-specific Ca2+ "signatures". The inner/outer K+ ratio was the highest (~2.6) under the optimum NaCl dosage (200 mM) in comparison to non-saline (~0.4) and severe (800 mM; ~0.7) conditions, implying that a higher K+ concentration in the inner tissues is important for optimum growth. The overall results demonstrate a clear link between plant anatomical structure and ability of its tissues to maintain ionic homeostasis, via modulating their ROS sensitivity.


Asunto(s)
Peróxido de Hidrógeno , Plantas Tolerantes a la Sal , Especies Reactivas de Oxígeno , Salinidad , Tolerancia a la Sal
5.
Plants (Basel) ; 10(3)2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33668813

RESUMEN

Drought stress is a major environmental constraint for plant growth. Climate-change-driven increases in ambient temperatures resulted in reduced or unevenly distributed rainfalls, leading to increased soil drought. Carex duriuscula C. A. Mey is a typical drought-tolerant sedge, but few reports have examined the mechanisms conferring its tolerant traits. In the present study, the drought responses of C. duriuscula were assessed by quantifying activity of antioxidant enzymes in its leaf and root tissues and evaluating the relative contribution of organic and inorganic osmolyte in plant osmotic adjustment, linking it with the patterns of the ion acquisition by roots. Two levels of stress-mild (MD) and severe (SD) drought treatments-were used, followed by re-watering. Drought stress caused reduction in a relative water content and chlorophyll content of leaves; this was accompanied by an increase in the hydrogen peroxide (H2O2) and superoxide (O2-) contents in leaves and roots. Under MD stress, the activities of catalase (CAT), peroxidase (POD), and glutathione peroxidase (GPX) increased in leaves, whereas, in roots, only CAT and POD activities increased. SD stress led to an increase in the activities of CAT, POD, superoxide dismutase (SOD), and GPX in both tissues. The levels of proline, soluble sugars, and soluble proteins in the leaves also increased. Under both MD and SD stress conditions, C. duriuscula increased K+, Na+, and Cl- uptake by plant roots, which resulted in an increased K+, Na+, and Cl- concentrations in leaves and roots. This reliance on inorganic osmolytes enables a cost-efficient osmotic adjustment in C. duriuscula. Overall, this study revealed that C. duriuscula was able to survive arid environments due to an efficient operation of its ROS-scavenging systems and osmotic adjustment mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA