Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmaceutics ; 15(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37111579

RESUMEN

Posterior segment eye diseases present a challenge in treatment due to the complex structures in the eye that serve as robust static and dynamic barriers, limiting the penetration, residence time, and bioavailability of topical and intraocular medications. This hinders effective treatment and requires frequent dosing, such as the regular use of eye drops or visits to the ophthalmologist for intravitreal injections, to manage the disease. Moreover, the drugs must be biodegradable to minimize toxicity and adverse reactions, as well as small enough to not affect the visual axis. The development of biodegradable nano-based drug delivery systems (DDSs) can be the solution to these challenges. First, they can stay in ocular tissues for longer periods of time, reducing the frequency of drug administration. Second, they can pass through ocular barriers, offering higher bioavailability to targeted tissues that are otherwise inaccessible. Third, they can be made up of polymers that are biodegradable and nanosized. Hence, therapeutic innovations in biodegradable nanosized DDS have been widely explored for ophthalmic drug delivery applications. In this review, we will present a concise overview of DDSs utilized in the treatment of ocular diseases. We will then examine the current therapeutic challenges faced in the management of posterior segment diseases and explore how various types of biodegradable nanocarriers can enhance our therapeutic arsenal. A literature review of the pre-clinical and clinical studies published between 2017 and 2023 was conducted. Through the advances in biodegradable materials, combined with a better understanding of ocular pharmacology, the nano-based DDSs have rapidly evolved, showing great promise to overcome challenges currently encountered by clinicians.

2.
Materials (Basel) ; 17(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38203940

RESUMEN

The human eye's intricate anatomical and physiological design necessitates tailored approaches for managing ocular diseases. Recent advancements in ophthalmology underscore the potential of hydrogels as a versatile therapeutic tool, owing to their biocompatibility, adaptability, and customizability. This review offers an exploration of hydrogel applications in ophthalmology over the past five years. Emphasis is placed on their role in optimized drug delivery for the posterior segment and advancements in intraocular lens technology. Hydrogels demonstrate the capacity for targeted, controlled, and sustained drug release in the posterior segment of the eye, potentially minimizing invasive interventions and enhancing patient outcomes. Furthermore, in intraocular lens domains, hydrogels showcase potential in post-operative drug delivery, disease sensing, and improved biocompatibility. However, while their promise is immense, most hydrogel-based studies remain preclinical, necessitating rigorous clinical evaluations. Patient-specific factors, potential complications, and the current nascent stage of research should inform their clinical application. In essence, the incorporation of hydrogels into ocular therapeutics represents a seminal convergence of material science and medicine, heralding advancements in patient-centric care within ophthalmology.

3.
Pharmaceutics ; 15(7)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37514137

RESUMEN

The eye's intricate anatomical barriers pose significant challenges to the penetration, residence time, and bioavailability of topically applied medications, particularly in managing uveitis and neuro-ophthalmologic conditions. Addressing this issue, polymeric nano-based drug delivery systems (DDS) have surfaced as a promising solution. These systems enhance drug bioavailability in hard-to-reach target tissues, extend residence time within ocular tissues, and utilize biodegradable and nanosized polymers to reduce undesirable side effects. Thus, they have stimulated substantial interest in crafting innovative treatments for uveitis and neuro-ophthalmologic diseases. This review provides a comprehensive exploration of polymeric nano-based DDS used for managing these conditions. We discuss the present therapeutic hurdles posed by these diseases and explore the potential role of various biopolymers in broadening our treatment repertoire. Our study incorporates a detailed literature review of preclinical and clinical studies from 2017 to 2023. Owing to advancements in polymer science, ocular DDS has made rapid strides, showing tremendous potential to revolutionize the treatment of patients with uveitis and neuro-ophthalmologic disorders.

4.
ACS Appl Mater Interfaces ; 15(1): 91-105, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36520607

RESUMEN

We exploit the electrostatic interactions between the positively charged neuroprotective peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), and negatively charged poly(lactic-co-glycolic acid) (PLGA) nanoparticles to control PACAP release from the surface of nanoparticles dispersed in a hyaluronan-methylcellulose (HAMC) hydrogel composite. PACAP is a promising therapeutic for the treatment of neurological disorders, yet it has been difficult to deliver in vivo. Herein, the PACAP release rate was tuned by manipulating peptide adsorption onto the surface of blank nanoparticles by modifying either nanoparticle loading in the hydrogel or nanoparticle surface charge. This peptide-nanoparticle interaction was controlled by the pH-responsive carboxylic acid end terminal groups of PLGA. We further validated this system with the controlled release of a novel stabilized PACAP analog: Ac-[Ala15, Ala20]PACAP-propylamide, which masks its recognition to peptidases in circulation. Both wild-type and stabilized PACAP released from the vehicle increased the production of neuroprotective Interleukin-6 from cultured primary astrocytes. Using computational fluid dynamics methods, PACAP release from the composite was predicted based on experimentally derived adsorption isotherms, which exhibited similar release profiles to experimental data. This versatile adsorption-based system was used to deliver PACAP locally to the brains of stroke-injured mice over a 10 day period in vivo, highlighting its effectiveness for the controlled release of PACAP to the central nervous system.


Asunto(s)
Hidrogeles , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratones , Animales , Sistema de Administración de Fármacos con Nanopartículas , Preparaciones de Acción Retardada , Adsorción , Electricidad Estática
5.
CNS Drugs ; 37(10): 867-881, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792265

RESUMEN

BACKGROUND: A significant proportion of adults with major depressive disorder (MDD) do not respond to treatments which are currently used in clinical practice such as first-generation monoamine-based antidepressants. OBJECTIVES: The objective of this systematic review was to assess the efficacy, safety, and mechanisms of action of AXS-05, a combination of the NMDA-receptor antagonist dextromethorphan with bupropion, in adults with MDD. METHODS: We searched PubMed, Embase, Google Scholar, and ClinicalTrials.gov for current studies reporting on efficacy and/or safety of AXS-05 in patients with MDD. The search terms included: "AXS-05" OR "dextromethorphan and bupropion" AND "depression". Studies from database inception to January 2023 were evaluated. Risk of bias was assessed using the Cochrane Risk of Bias tool. RESULTS: The search yielded 54 studies of which 5 were included. All studies had low risk of bias. Depression severity, measured with the Montgomery-Åsberg Depression Rating Scale (MADRS) significantly decreased as early as 1-week post-treatment from baseline when compared to a placebo-controlled group (LS mean difference 2.2; 95% CI 0.6-3.9; p = 0.007) and at 2 weeks compared to an active control group (LS mean difference 4.7; 95% CI 0.6-8.8; p = 0.024). Treatment efficacy could be maintained for up to 12 months with mean MADRS score reduction of 23 points from baseline. Clinical remission and response rates also improved at week 1 and were maintained for 12 months. The treatment was well-tolerated, with some transient adverse events reported. CONCLUSION: Current evidence suggests that the combination of dextromethorphan and bupropion is a well-tolerated, rapid-acting treatment option for adults with MDD. Initial success with AXS-05 supports the mechanistic role of glutamatergeric and sigma 1 signaling in the pathophysiology of MDD.


Asunto(s)
Bupropión , Trastorno Depresivo Mayor , Adulto , Humanos , Antidepresivos/efectos adversos , Bupropión/efectos adversos , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Dextrometorfano/efectos adversos , Ensayos Clínicos como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA