Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 93(1)2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30333170

RESUMEN

Rotavirus is the leading global cause of diarrheal mortality for unvaccinated children under 5 years of age. The outer capsid of rotavirus virions consists of VP7 and VP4 proteins, which determine viral G and P types, respectively, and are primary targets of neutralizing antibodies. Successful vaccination depends upon generating broadly protective immune responses following exposure to rotaviruses presenting a limited number of G- and P-type antigens. Vaccine introduction resulted in decreased rotavirus disease burden but also coincided with the emergence of uncommon G and P genotypes, including G12. To gain insight into the recent predominance of G12P[8] rotaviruses in the United States, we evaluated 142 complete rotavirus genome sequences and metadata from 151 clinical specimens collected in Nashville, TN, from 2011 to 2013 through the New Vaccine Surveillance Network. Circulating G12P[8] strains were found to share many segments with other locally circulating strains but to have distinct constellations. Phylogenetic analyses of G12 sequences and their geographic sources provided evidence for multiple separate introductions of G12 segments into Nashville, TN. Antigenic epitopes of VP7 proteins of G12P[8] strains circulating in Nashville, TN, differ markedly from those of vaccine strains. Fully vaccinated children were found to be infected with G12P[8] strains more frequently than with other rotavirus genotypes. Multiple introductions and significant antigenic mismatch may in part explain the recent predominance of G12P[8] strains in the United States and emphasize the need for continued monitoring of rotavirus vaccine efficacy against emerging rotavirus genotypes.IMPORTANCE Rotavirus is an important cause of childhood diarrheal disease worldwide. Two immunodominant proteins of rotavirus, VP7 and VP4, determine G and P genotypes, respectively. Recently, G12P[8] rotaviruses have become increasingly predominant. By analyzing rotavirus genome sequences from stool specimens obtained in Nashville, TN, from 2011 to 2013 and globally circulating rotaviruses, we found evidence of multiple introductions of G12 genes into the area. Based on sequence polymorphisms, VP7 proteins of these viruses are predicted to present themselves to the immune system very differently than those of vaccine strains. Many of the sick children with G12P[8] rotavirus in their diarrheal stools also were fully vaccinated. Our findings emphasize the need for continued monitoring of circulating rotaviruses and the effectiveness of the vaccines against strains with emerging G and P genotypes.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/inmunología , Rotavirus/clasificación , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Preescolar , Técnicas de Genotipaje , Humanos , Lactante , Filogenia , Vigilancia de la Población , Rotavirus/genética , Rotavirus/inmunología , Infecciones por Rotavirus/prevención & control , Análisis de Secuencia de ARN , Estados Unidos
2.
J Virol ; 89(17): 8871-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085170

RESUMEN

UNLABELLED: Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia. IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.


Asunto(s)
Enterovirus Humano A/genética , Genoma Viral/genética , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/genética , Secuencia de Bases , Niño , Brotes de Enfermedades , Enterovirus Humano A/clasificación , Epidemias , Flujo Génico/genética , Enfermedad de Boca, Mano y Pie/virología , Humanos , Datos de Secuencia Molecular , Filogeografía , Análisis de Secuencia de ARN , Vietnam/epidemiología , Replicación Viral/fisiología
3.
Microb Ecol ; 71(1): 233-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26370110

RESUMEN

To date, there is a limited understanding of the role of the airway microbiome in the early life development of respiratory diseases such as asthma, partly due to a lack of simple and minimally invasive sample collection methods. In order to characterize the baseline microbiome of the upper respiratory tract (URT) in infants, a comparatively non-invasive method for sampling the URT microbiome suitable for use in infants was developed. Microbiome samples were collected by placing filter paper in the nostrils of 33 healthy, term infants enrolled as part of the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure (INSPIRE) study. After bacterial genomic DNA was extracted from the filters, amplicons were generated with universal primers targeting the V1-V3 region of the 16S rRNA gene. This method was capable of capturing a wide variety of taxa expected to inhabit the nasal cavity. Analyses stratifying subjects by demographic and environmental factors previously observed or predicted to influence microbial communities were performed. Microbial community richness was found to be higher in infants who had been delivered via Cesarean section and in those who had been formula-fed; an association was observed between diet and delivery, which confounds this analysis. We have established a baseline URT microbiome using a non-invasive filter paper nasal sampling for this population, and future studies will be performed in this large observational cohort of infants to investigate the relationship between viral infections, the URT microbiota, and the development of childhood wheezing illnesses.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas/métodos , Parto Obstétrico , Microbiota , Nariz/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Técnicas Bacteriológicas/instrumentación , Estudios de Cohortes , Métodos de Alimentación , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Filogenia , Embarazo , Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/microbiología
4.
J Virol ; 88(17): 9842-63, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942570

RESUMEN

UNLABELLED: Rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses that cause severe gastroenteritis in children. In addition to an error-prone genome replication mechanism, RVs can increase their genetic diversity by reassorting genes during host coinfection. Such exchanges allow RVs to acquire advantageous genes and adapt in the face of selective pressures. However, reassortment may also impose fitness costs if it unlinks genes/proteins that have accumulated compensatory, coadaptive mutations and that operate best when kept together. To better understand human RV evolutionary dynamics, we analyzed the genome sequences of 135 strains (genotype G1/G3/G4-P[8]-I1-C1-R1-A1-N1-T1-E1-H1) that were collected at a single location in Washington, DC, during the years 1974 to 1991. Intragenotypic phylogenetic trees were constructed for each viral gene using the nucleotide sequences, thereby defining novel allele level gene constellations (GCs) and illuminating putative reassortment events. The results showed that RVs with distinct GCs cocirculated during the vast majority of the collection years and that some of these GCs persisted in the community unchanged by reassortment. To investigate the influence of protein coadaptation on GC maintenance, we performed a mutual information-based analysis of the concatenated amino acid sequences and identified an extensive covariance network. Unexpectedly, amino acid covariation was highest between VP4 and VP2, which are structural components of the RV virion that are not thought to directly interact. These results suggest that GCs may be influenced by the selective constraints placed on functionally coadapted, albeit noninteracting, viral proteins. This work raises important questions about mutation-reassortment interplay and its impact on human RV evolution. IMPORTANCE: Rotaviruses are devastating human pathogens that cause severe diarrhea and kill >450,000 children each year. The virus can evolve by accumulating mutations and by acquiring new genes from other strains via a process called reassortment. However, little is known about the relationship between mutation accumulation and gene reassortment for rotaviruses and how it impacts viral evolution. In this study, we analyzed the genome sequences of human strains found in clinical fecal specimens that were collected at a single hospital over an 18-year time span. We found that many rotaviruses did not reassort their genes but instead maintained them as specific sets (i.e., constellations). By analyzing the encoded proteins, we discovered concurrent amino acid changes among them, which suggests that they are functionally coadapted to operate best when kept together. This study increases our understanding of how rotaviruses evolve over time in the human population.


Asunto(s)
Evolución Molecular , Rotavirus/genética , Rotavirus/aislamiento & purificación , Proteínas Virales/genética , Adaptación Biológica , Preescolar , Análisis por Conglomerados , District of Columbia , Genoma Viral , Humanos , Lactante , Datos de Secuencia Molecular , Filogenia , Rotavirus/clasificación , Análisis de Secuencia de ADN
5.
J Virol ; 88(16): 9060-71, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24899175

RESUMEN

UNLABELLED: Rotaviruses (RVs) are leading causes of severe diarrhea and vomiting in infants and young children. RVs with G10P[11] genotype specificity have been associated with symptomatic and asymptomatic neonatal infections in Vellore, India. To identify possible viral genetic determinants responsible for differences in symptomology, the genome sequences of G10P[11] RVs in stool samples of 19 neonates with symptomatic infections and 20 neonates with asymptomatic infections were determined by Sanger and next-generation sequencing. The data showed that all 39 viruses had identical genotype constellations (G10-P[11]-I2-R2-C2-M2-A1-N1-T1-E2-H3), the same as those of the previously characterized symptomatic N155 Vellore isolate. The data also showed that the RNA and deduced protein sequences of all the Vellore G10P[11] viruses were nearly identical; no nucleotide or amino acid differences were found that correlated with symptomatic versus asymptomatic infection. Next-generation sequencing data revealed that some stool samples, both from neonates with symptomatic infections and from neonates with asymptomatic infections, also contained one or more positive-strand RNA viruses (Aichi virus, astrovirus, or salivirus/klassevirus) suspected of being potential causes of pediatric gastroenteritis. However, none of the positive-strand RNA viruses could be causally associated with the development of symptoms. These results indicate that the diversity of clinical symptoms in Vellore neonates does not result from genetic differences among G10P[11] RVs; instead, other undefined factors appear to influence whether neonates develop gastrointestinal disease symptoms. IMPORTANCE: Rotavirus (RV) strains have been identified that preferentially replicate in neonates, in some cases, without causing gastrointestinal disease. Surveillance studies have established that G10P[11] RVs are a major cause of neonatal infection in Vellore, India, with half of infected neonates exhibiting symptoms. We used Sanger and next-generation sequencing technologies to contrast G10P[11] RVs recovered from symptomatic and asymptomatic neonates. Remarkably, the data showed that the RNA genomes of the viruses were virtually indistinguishable and lacked any differences that could explain the diversity of clinical outcomes among infected Vellore neonates. The sequencing results also indicated that some symptomatic and some asymptomatic Vellore neonates were infected with other enteric viruses (Aichi virus, astrovirus, salvirus/klassevirus); however, none could be correlated with the presence of symptoms in neonates. Together, our findings suggest that other poorly defined factors, not connected to the genetic makeup of the Vellore G10P[11] viruses, influence whether neonates develop gastrointestinal disease symptoms.


Asunto(s)
Diarrea/virología , Infecciones por Rotavirus/virología , Rotavirus/genética , Heces/virología , Gastroenteritis/virología , Genotipo , Humanos , India , Recién Nacido , Kobuvirus/genética
6.
J Virol ; 86(17): 9148-62, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22696651

RESUMEN

Group A rotaviruses (RVs) are 11-segmented, double-stranded RNA viruses and are primary causes of gastroenteritis in young children. Despite their medical relevance, the genetic diversity of modern human RVs is poorly understood, and the impact of vaccine use on circulating strains remains unknown. In this study, we report the complete genome sequence analysis of 58 RVs isolated from children with severe diarrhea and/or vomiting at Vanderbilt University Medical Center (VUMC) in Nashville, TN, during the years spanning community vaccine implementation (2005 to 2009). The RVs analyzed include 36 G1P[8], 18 G3P[8], and 4 G12P[8] Wa-like genogroup 1 strains with VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genotype constellations of I1-R1-C1-M1-A1-N1-T1-E1-H1. By constructing phylogenetic trees, we identified 2 to 5 subgenotype alleles for each gene. The results show evidence of intragenogroup gene reassortment among the cocirculating strains. However, several isolates from different seasons maintained identical allele constellations, consistent with the notion that certain RV clades persisted in the community. By comparing the genes of VUMC RVs to those of other archival and contemporary RV strains for which sequences are available, we defined phylogenetic lineages and verified that the diversity of the strains analyzed in this study reflects that seen in other regions of the world. Importantly, the VP4 and VP7 proteins encoded by VUMC RVs and other contemporary strains show amino acid changes in or near neutralization domains, which might reflect antigenic drift of the virus. Thus, this large-scale, comparative genomic study of modern human RVs provides significant insight into how this pathogen evolves during its spread in the community.


Asunto(s)
Diarrea/virología , Gastroenteritis/virología , Variación Genética , Genoma Viral , Rotavirus/genética , Rotavirus/aislamiento & purificación , Niño , Preescolar , Femenino , Genómica , Humanos , Masculino , Datos de Secuencia Molecular , Filogenia , Rotavirus/clasificación , Proteínas Virales/genética
7.
Infect Genet Evol ; 63: 79-88, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29782933

RESUMEN

Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity.


Asunto(s)
Genotipo , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Rotavirus/genética , Secuenciación Completa del Genoma , África/epidemiología , Heces/virología , Humanos , Filogenia , Virus Reordenados/genética
8.
PeerJ ; 5: e2733, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28070453

RESUMEN

G1P[8] rotaviruses are responsible for the majority of human rotavirus infections worldwide. The effect of universal mass vaccination with rotavirus vaccines on circulating G1P[8] rotaviruses is still poorly understood. Therefore we analyzed the complete genomes of the Rotarix™ vaccine strain, and 70 G1P[8] rotaviruses, detected between 1999 and 2010 in Belgium (36 before and 34 after vaccine introduction) to investigate the impact of rotavirus vaccine introduction on circulating G1P[8] strains. All rotaviruses possessed a complete Wa-like genotype constellation, but frequent intra-genogroup reassortments were observed as well as multiple different cluster constellations circulating in a single season. In addition, identical cluster constellations were found to circulate persistently over multiple seasons. The Rotarix™ vaccine strain possessed a unique cluster constellation that was not present in currently circulating G1P[8] strains. At the nucleotide level, the VP6, VP2 and NSP2 gene segments of Rotarix™ were relatively distantly related to any Belgian G1P[8] strain, but other gene segments of Rotarix™ were found in clusters also containing circulating Belgian strains. At the amino acid level, the genetic distance between Rotarix™ and circulating Belgian strains was considerably lower, except for NSP1. When we compared the Belgian G1P[8] strains collected before and after vaccine introduction a reduction in the proportion of strains that were found in the same cluster as the Rotarix™ vaccine strain was observed for most gene segments. The reduction in the proportion of strains belonging to the same cluster may be the result of the vaccine introduction, although natural fluctuations cannot be ruled out.

9.
Genome Announc ; 3(2)2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25767240

RESUMEN

We report the first complete sequence for an avian group G rotavirus (RVG) genome from Africa, which is the third publically available RVG genome. These RVG genomes are highly diverse, especially in their VP4, VP7, NSP4, and NSP3 segments, indicating that RVG diversity is comparable to that of rotavirus A.

10.
Genome Biol Evol ; 7(9): 2473-83, 2015 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-26254487

RESUMEN

Rotaviruses are the most important etiological agent of acute gastroenteritis in young children worldwide. Among the first countries to introduce rotavirus vaccines into their national immunization programs were Belgium (November 2006) and Australia (July 2007). Surveillance programs in Belgium (since 1999) and Australia (since 1989) offer the opportunity to perform a detailed comparison of rotavirus strains circulating pre- and postvaccine introduction. G1P[8] rotaviruses are the most prominent genotype in humans, and a total of 157 G1P[8] rotaviruses isolated between 1999 and 2011 were selected from Belgium and Australia and their complete genomes were sequenced. Phylogenetic analysis showed evidence of frequent reassortment among Belgian and Australian G1P[8] rotaviruses. Although many different phylogenetic subclusters were present before and after vaccine introduction, some unique clusters were only identified after vaccine introduction, which could be due to natural fluctuation or the first signs of vaccine-driven evolution. The times to the most recent common ancestors for the Belgian and Australian G1P[8] rotaviruses ranged from 1846 to 1955 depending on the gene segment, with VP7 and NSP4 resulting in the most recent estimates. We found no evidence that rotavirus population size was affected after vaccine introduction and only six amino acid sites in VP2, VP3, VP7, and NSP1 were identified to be under positive selective pressure. Continued surveillance of G1P[8] strains is needed to determine long-term effects of vaccine introductions, particularly now rotavirus vaccines are implemented in the national immunization programs of an increasing number of countries worldwide.


Asunto(s)
Evolución Molecular , Vacunas contra Rotavirus , Rotavirus/genética , Australia , Bélgica , Preescolar , Genes Virales , Genoma Viral , Genotipo , Humanos , Filogenia , Rotavirus/clasificación , Rotavirus/aislamiento & purificación
11.
Infect Genet Evol ; 31: 321-34, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25701122

RESUMEN

Group A rotaviruses (RVA) are among the main global causes of severe diarrhea in children under the age of 5years. Strain diversity, mixed infections and untypeable RVA strains are frequently reported in Africa. We analysed rotavirus-positive human stool samples (n=13) obtained from hospitalised children under the age of 5years who presented with acute gastroenteritis at sentinel hospital sites in six African countries, as well as bovine and porcine stool samples (n=1 each), to gain insights into rotavirus diversity and evolution. Polyacrylamide gel electrophoresis (PAGE) analysis and genotyping with G-(VP7) and P-specific (VP4) typing primers suggested that 13 of the 15 samples contained more than 11 segments and/or mixed G/P genotypes. Full-length amplicons for each segment were generated using RVA-specific primers and sequenced using the Ion Torrent and/or Illumina MiSeq next-generation sequencing platforms. Sequencing detected at least one segment in each sample for which duplicate sequences, often having distinct genotypes, existed. This supported and extended the PAGE and RT-PCR genotyping findings that suggested these samples were collected from individuals that had mixed rotavirus infections. The study reports the first porcine (MRC-DPRU1567) and bovine (MRC-DPRU3010) mixed infections. We also report a unique genome segment 9 (VP7), whose G9 genotype belongs to lineage VI and clusters with porcine reference strains. Previously, African G9 strains have all been in lineage III. Furthermore, additional RVA segments isolated from humans have a clear evolutionary relationship with porcine, bovine and ovine rotavirus sequences, indicating relatively recent interspecies transmission and reassortment. Thus, multiple RVA strains from sub-Saharan Africa are infecting mammalian hosts with unpredictable variations in their gene segment combinations. Whole-genome sequence analyses of mixed RVA strains underscore the considerable diversity of rotavirus sequences and genome segment combinations that result from a complex evolutionary history involving multiple host species.


Asunto(s)
Enfermedades de los Animales/virología , Coinfección , Genoma Viral , Infecciones por Rotavirus/virología , Rotavirus/clasificación , Rotavirus/genética , África del Sur del Sahara , Animales , Bovinos , Preescolar , Genotipo , Humanos , Lactante , Recién Nacido , Filogenia , Rotavirus/aislamiento & purificación , Infecciones por Rotavirus/epidemiología , Análisis de Secuencia de ADN , Porcinos
12.
Emerg Microbes Infect ; 3(7): e47, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26038746

RESUMEN

In 2010, a large outbreak of rotavirus gastroenteritis occurred in the Alice Springs region of the Northern Territory, Australia. The outbreak occurred 43 months after the introduction of the G1P[8] rotavirus vaccine Rotarix(®). Forty-three infants were hospitalized during the outbreak and analysis of fecal samples from each infant revealed a G1P[8] rotavirus strain. The outbreak strain was adapted to cell culture and neutralization assays were performed using VP7 and VP4 neutralizing monoclonal antibodies. The outbreak strain exhibited a distinct neutralization resistance pattern compared to the Rotarix(®) vaccine strain. Whole genome sequencing of the 2010 outbreak virus strain demonstrated numerous amino acid differences compared to the Rotarix(®) vaccine strain in the characterized neutralization epitopes of the VP7 and VP4 proteins. Phylogenetic analysis of the outbreak strain revealed a close genetic relationship to global strains, in particular RVA/Human-wt/BEL/BE0098/2009/G1P[8] and RVA/Human-wt/BEL/BE00038/2008/G1P[8] for numerous genes. The 2010 outbreak strain was likely introduced from a globally circulating population of strains rather than evolving from an endemic Australian strain. The outbreak strain possessed antigenic differences in the VP7 and VP4 proteins compared to the Rotarix(®) vaccine strain. The outbreak was associated with moderate vaccine coverage and possibly low vaccine take in the population.

13.
Infect Genet Evol ; 27: 156-62, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25075468

RESUMEN

Group A rotaviruses are a major cause of severe gastroenteritis in children worldwide. Currently, two rotavirus vaccines are being used in vaccination programs, and one of the factors involved in lower vaccine efficacy is the mismatch among the circulating strains and the vaccine strains. Thus, the emergence of animal strains in the human population could affect the efficacy of vaccination programs. Here we report the presence of a G4P[6] strain in a Paraguayan child presenting acute gastroenteritis in 2009. Genomic analyses revealed that the strain presents a porcine-like genome (G4-P[6]-I1-R1-C1-M1-A8-N1-T7-E1-H1), suggesting a direct animal-to-human transmission. Continuous surveillance of rotaviruses in humans and animals will help us to better understand rotavirus epidemiology and evolution.


Asunto(s)
Diarrea/virología , Genoma Viral , Infecciones por Rotavirus/virología , Rotavirus/clasificación , Rotavirus/genética , Animales , Niño , Epítopos/química , Epítopos/inmunología , Genómica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Vigilancia en Salud Pública , Rotavirus/inmunología , Infecciones por Rotavirus/transmisión , Análisis de Secuencia de ADN , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/inmunología
14.
Infect Genet Evol ; 28: 513-23, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25301114

RESUMEN

Group A rotaviruses (RVA) are double stranded RNA viruses that are a significant cause of acute pediatric gastroenteritis. Beginning in 2006 and 2008, respectively, two vaccines, Rotarix™ and RotaTeq®, have been approved for use in the USA for prevention of RVA disease. The effects of possible vaccine pressure on currently circulating strains in the USA and their genome constellations are still under investigation. In this study we report 33 complete RVA genomes (ORF regions) collected in multiple cities across USA during 2006-2009, including 8 collected from children with verified receipt of 3 doses of rotavirus vaccine. The strains included 16 G1P[8], 10 G3P[8], and 7 G9P[8]. All 33 strains had a Wa like backbone with the consensus genotype constellation of G(1/3/9)-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. From maximum likelihood based phylogenetic analyses, we identified 3-7 allelic constellations grouped mostly by respective G types, suggesting a possible allelic segregation based on the VP7 gene of RVA, primarily for the G3 and G9 strains. The vaccine failure strains showed similar grouping for all genes in G9 strains and most genes of G3 strains suggesting that these constellations were necessary to evade vaccine-derived immune protection. Substitutions in the antigenic region of VP7 and VP4 genes were also observed for the vaccine failure strains which could possibly explain how these strains escape vaccine induced immune response. This study helps elucidate how RVA strains are currently evolving in the population post vaccine introduction and supports the need for continued RVA surveillance.


Asunto(s)
Genoma Viral , Genómica , Genotipo , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/virología , Rotavirus/clasificación , Rotavirus/genética , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Niño , Análisis por Conglomerados , Gastroenteritis/epidemiología , Gastroenteritis/historia , Gastroenteritis/virología , Historia del Siglo XXI , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Vigilancia de la Población , Conformación Proteica , Infecciones por Rotavirus/historia , Análisis de Secuencia de ADN , Estados Unidos/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA