Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(12): 105375, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865313

RESUMEN

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation that links glycolysis-derived pyruvate with the tricarboxylic acid (TCA) cycle. Although skeletal muscle is a significant site for glucose oxidation and is closely linked with metabolic flexibility, the importance of muscle PDH during rest and exercise has yet to be fully elucidated. Here, we demonstrate that mice with muscle-specific deletion of PDH exhibit rapid weight loss and suffer from severe lactic acidosis, ultimately leading to early mortality under low-fat diet provision. Furthermore, loss of muscle PDH induces adaptive anaplerotic compensation by increasing pyruvate-alanine cycling and glutaminolysis. Interestingly, high-fat diet supplementation effectively abolishes early mortality and rescues the overt metabolic phenotype induced by muscle PDH deficiency. Despite increased reliance on fatty acid oxidation during high-fat diet provision, loss of muscle PDH worsens exercise performance and induces lactic acidosis. These observations illustrate the importance of muscle PDH in maintaining metabolic flexibility and preventing the development of metabolic disorders.


Asunto(s)
Acidosis Láctica , Alanina , Músculo Esquelético , Complejo Piruvato Deshidrogenasa , Ácido Pirúvico , Animales , Ratones , Acidosis Láctica/fisiopatología , Glucosa/metabolismo , Músculo Esquelético/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo , Glutamina/metabolismo , Alanina/metabolismo , Eliminación de Gen , Dieta , Mortalidad Prematura
2.
Exp Physiol ; 109(3): 350-364, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38192209

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is projected to be the most common chronic liver disease worldwide and is closely linked to obesity, insulin resistance and type 2 diabetes. Currently, no pharmacological treatments are available to treat NAFLD, and lifestyle modification, including dietary interventions, is the only remedy. Therefore, we conducted a study to determine whether supplementation with medium-chain triglycerides (MCTs), containing a mixture of C8 and C10 (60/40), attenuates NAFLD in obese and insulin-resistant mice. To achieve that, we fed C57BL/6 male mice a high-fat diet (HFD) for 12 weeks to induce obesity and hepatic steatosis, after which obese mice were assigned randomly either to remain on the HFD or to transition to an HFD supplemented with MCTs (HFD + MCTs) or a low-fat diet (LFD) for 6 weeks as another dietary intervention model. Another group of mice was kept on an LFD throughout the study and used as a lean control group. Obese mice that transitioned to HFD + MCTs exhibited improvement in glucose and insulin tolerance tests, and the latter improvement was independent of changes in adiposity when compared with HFD-fed mice. Additionally, supplementation with MCTs significantly reduced hepatic steatosis, improved liver enzymes and decreased hepatic expression of inflammation-related genes to levels similar to those observed in obese mice transitioned to an LFD. Importantly, HFD + MCTs markedly lowered hepatic ceramide and diacylglycerol content and prevented protein kinase C-ε translocation to the plasma membrane. Our study demonstrated that supplementation with MCTs formulated mainly from C8 and C10 effectively ameliorated NAFLD in obese mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Enfermedad del Hígado Graso no Alcohólico , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Alta en Grasa , Diglicéridos , Ratones Obesos , Suplementos Dietéticos , Obesidad , Ceramidas , Hígado , Triglicéridos
3.
Am J Physiol Endocrinol Metab ; 324(5): E425-E436, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36989424

RESUMEN

Ketone bodies are an endogenous fuel source generated primarily by the liver to provide alternative energy for extrahepatic tissues during prolonged fasting and exercise. Skeletal muscle is an important site of ketone body oxidation that occurs through a series of reactions requiring the enzyme succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1). We have previously shown that deleting SCOT in the skeletal muscle protects against obesity-induced insulin resistance by increasing pyruvate dehydrogenase (PDH) activity, the rate-limiting enzyme of glucose oxidation. However, it remains unclear whether inhibiting muscle ketone body oxidation causes hypoglycemia and affects fuel metabolism in the absence of obesity. Here, we show that lean mice lacking skeletal muscle SCOT (SCOTSkM-/-) exhibited no overt phenotypic differences in glucose and fat metabolism from their human α-skeletal actin-Cre (HSACre) littermates. Of interest, we found that plasma and muscle branched-chain amino acid (BCAA) levels are elevated in SCOTSkM-/- lean mice compared with their HSACre littermates. Interestingly, this alteration in BCAA catabolism was only seen in SCOTSkM-/- mice under low-fat feeding and associated with decreased expression of mitochondrial branched-chain aminotransferases (BCATm/Bcat2), the first enzyme in BCAA catabolic pathway. Loss- and gain-of-function studies in C2C12 myotubes demonstrated that suppressing SCOT markedly diminished BCATm expression, whereas overexpressing SCOT resulted in an opposite effect without influencing BCAA oxidation enzymes. Furthermore, SCOT overexpression in C2C12 myotubes significantly increased luciferase activity driven by a Bcat2 promoter construct. Together, our findings indicate that SCOT regulates the expression of the Bcat2 gene, which, through the abundance of its product BCATm, may influence circulating BCAA concentrations.NEW & NOTEWORTHY Most studies investigated ketone body metabolism under pathological conditions, whereas the role of ketone body metabolism in regulating normal physiology has been relatively understudied. To address this gap, we used lean mice lacking muscle ketone body oxidation enzyme SCOT. Our work demonstrates that deleting muscle SCOT has no impact on glucose and fat metabolism in lean mice, but it disrupts muscle BCAA catabolism and causes an accumulation of BCAAs by altering BCATm.


Asunto(s)
Cuerpos Cetónicos , Cetonas , Animales , Ratones , Humanos , Cuerpos Cetónicos/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo , Obesidad/metabolismo
4.
Am J Physiol Endocrinol Metab ; 323(1): E8-E20, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575232

RESUMEN

High-fat and very low-carbohydrate based ketogenic diets have gained considerable popularity as a nonpharmacological strategy for obesity, due to their potential to enhance weight loss and improve glucose homeostasis. However, the effectiveness of a ketogenic diet toward metabolic health is equivocal. To better understand the impact of ketogenic diets in obesity, male and female mice were fed a 60% cocoa butter-based high-fat diet for 16-wk to induce obesity, following which mice were transitioned to either an 85% cocoa butter fat-based ketogenic diet, a 10% cocoa butter fat-based low-fat diet, or maintained on a high-fat diet for an additional 8-wk. All experimental diets were matched for sucrose and protein content and contained an identical micronutrient profile, with complex carbohydrates being the primary carbohydrate source in the low-fat diet. The transition to a ketogenic diet was ineffective at promoting significant body fat loss and improving glucose homeostasis in obese male and female mice. Alternatively, obese male and female mice transitioned to a low-fat and high-complex carbohydrate diet exhibited beneficial body composition changes and improved glucose tolerance that may, in part, be attributed to a mild decrease in food intake and a mild increase in energy expenditure. Our findings support the consumption of a diet low in saturated fat and rich in complex carbohydrates as a potential dietary intervention for the treatment of obesity and obesity-induced impairments in glycemia. Furthermore, our results suggest that careful consideration should be taken when considering a ketogenic diet as a nonpharmacological strategy for obesity.NEW & NOTEWORTHY It has been demonstrated that ketogenic diets may be a nutritional strategy for alleviating hyperglycemia and promoting weight loss in obesity. However, there are a number of inconsistencies with many of these studies, especially with regard to the macronutrient and micronutrient compositions of the diets being compared. Our work demonstrates that a ketogenic diet that is both micronutrient-matched and isoproteic with its comparator diets fails to improve glycemia or promote weight loss in obese mice.


Asunto(s)
Dieta Cetogénica , Animales , Glucemia/metabolismo , Dieta con Restricción de Grasas , Carbohidratos de la Dieta/metabolismo , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/metabolismo , Femenino , Homeostasis , Masculino , Ratones , Ratones Obesos , Micronutrientes , Obesidad/metabolismo , Pérdida de Peso
5.
Am J Physiol Heart Circ Physiol ; 320(6): H2255-H2269, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33929899

RESUMEN

Heart failure presents as the leading cause of infant mortality in individuals with Barth syndrome (BTHS), a rare genetic disorder due to mutations in the tafazzin (TAZ) gene affecting mitochondrial structure and function. Investigations into the perturbed bioenergetics in the BTHS heart remain limited. Hence, our objective was to identify the potential alterations in myocardial energy metabolism and molecular underpinnings that may contribute to the early cardiomyopathy and heart failure development in BTHS. Cardiac function and myocardial energy metabolism were assessed via ultrasound echocardiography and isolated working heart perfusions, respectively, in a mouse model of BTHS [doxycycline-inducible Taz knockdown (TazKD) mice]. In addition, we also performed mRNA/protein expression profiling for key regulators of energy metabolism in hearts from TazKD mice and their wild-type (WT) littermates. TazKD mice developed hypertrophic cardiomyopathy as evidenced by increased left ventricular anterior and posterior wall thickness, as well as increased cardiac myocyte cross-sectional area, though no functional impairments were observed. Glucose oxidation rates were markedly reduced in isolated working hearts from TazKD mice compared with their WT littermates in the presence of insulin, which was associated with decreased pyruvate dehydrogenase activity. Conversely, myocardial fatty acid oxidation rates were elevated in TazKD mice, whereas no differences in glycolytic flux or ketone body oxidation rates were observed. Our findings demonstrate that myocardial glucose oxidation is impaired before the development of overt cardiac dysfunction in TazKD mice, and may thus represent a pharmacological target for mitigating the development of cardiomyopathy in BTHS.NEW & NOTEWORTHY Barth syndrome (BTHS) is a rare genetic disorder due to mutations in tafazzin that is frequently associated with infantile-onset cardiomyopathy and subsequent heart failure. Although previous studies have provided evidence of perturbed myocardial energy metabolism in BTHS, actual measurements of flux are lacking. We now report a complete energy metabolism profile that quantifies flux in isolated working hearts from a murine model of BTHS, demonstrating that BTHS is associated with a reduction in glucose oxidation.


Asunto(s)
Síndrome de Barth/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Miocardio/metabolismo , Aciltransferasas/genética , Animales , Síndrome de Barth/genética , Síndrome de Barth/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Coenzima A/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Metabolismo Energético/genética , Técnicas de Silenciamiento del Gen , Glucógeno/metabolismo , Insulina/metabolismo , Preparación de Corazón Aislado , Ratones , Oxidación-Reducción , ARN Mensajero/metabolismo , Triglicéridos/metabolismo
6.
Exp Physiol ; 105(2): 270-281, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31802553

RESUMEN

NEW FINDINGS: What is the central question of the study? Does the action of l-citrulline, which has been shown to augment performance in animals and athletes, possibly via increasing mitochondrial function, translate to obese animals, and does this improve glycaemia? What is the main finding and its importance? Chronic supplementation with l-citrulline improves not only exercise capacity, but also glycaemia in obese mice, which would be beneficial as obese individuals are at increased risk for type 2 diabetes. However, l-citrulline supplementation also caused a mild impairment in insulin signalling and insulin tolerance in obese mice. ABSTRACT: l-Citrulline is an organic α-amino acid that has been shown to have a number of salutary actions on whole-body physiology, including reducing muscle wasting and augmenting exercise and muscle performance. The latter has been suggested to arise from elevations in mitochondrial function. Because enhancing mitochondrial function has been proposed as a novel strategy to mitigate insulin resistance, our goal was to determine whether supplementation with l-citrulline could also improve glycaemia in an experimental mouse model of obesity. We hypothesized that l-citrulline treatment would improve glycaemia in obese mice, and this would be associated with elevations in skeletal muscle mitochondrial function. Ten-week-old C57BL/6J mice were fed either a low-fat (10% kcal from lard) or a high-fat (60% kcal from lard) diet, while receiving drinking water supplemented with either vehicle or l-citrulline (0.6 g l-1 ) for 15 weeks. Glucose homeostasis was assessed via glucose/insulin tolerance testing, while in vivo metabolism was assessed via indirect calorimetry, and forced exercise treadmill testing was utilized to assess endurance. As expected, obese mice supplemented with l-citrulline exhibited an increase in exercise capacity, which was associated with an improvement in glucose tolerance. Consistent with augmented mitochondrial function, we observed an increase in whole body oxygen consumption rates in obese mice supplemented with l-citrulline. Surprisingly, l-citrulline supplementation worsened insulin tolerance and reduced insulin signalling in obese mice. Taken together, although l-citrulline supplementation improves both glucose tolerance and exercise capacity in obese mice, caution must be applied with its broad use as a nutraceutical due to a potential deterioration of insulin sensitivity.


Asunto(s)
Glucemia/efectos de los fármacos , Citrulina/farmacología , Tolerancia al Ejercicio/efectos de los fármacos , Obesidad/tratamiento farmacológico , Animales , Glucemia/metabolismo , Citrulina/uso terapéutico , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Tolerancia al Ejercicio/fisiología , Resistencia a la Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidad/metabolismo
7.
Cardiovasc Diabetol ; 18(1): 86, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31277657

RESUMEN

BACKGROUND: Branched chain amino acids (BCAA) can impair insulin signaling, and cardiac insulin resistance can occur in the failing heart. We, therefore, determined if cardiac BCAA accumulation occurs in patients with dilated cardiomyopathy (DCM), due to an impaired catabolism of BCAA, and if stimulating cardiac BCAA oxidation can improve cardiac function in mice with heart failure. METHOD: For human cohorts of DCM and control, both male and female patients of ages between 22 and 66 years were recruited with informed consent from University of Alberta hospital. Left ventricular biopsies were obtained at the time of transplantation. Control biopsies were obtained from non-transplanted donor hearts without heart disease history. To determine if stimulating BCAA catabolism could lessen the severity of heart failure, C57BL/6J mice subjected to a transverse aortic constriction (TAC) were treated between 1 to 4-week post-surgery with either vehicle or a stimulator of BCAA oxidation (BT2, 40 mg/kg/day). RESULT: Echocardiographic data showed a reduction in ejection fraction (54.3 ± 2.3 to 22.3 ± 2.2%) and an enhanced formation of cardiac fibrosis in DCM patients when compared to the control patients. Cardiac BCAA levels were dramatically elevated in left ventricular samples of patients with DCM. Hearts from DCM patients showed a blunted insulin signalling pathway, as indicated by an increase in P-IRS1ser636/639 and its upstream modulator P-p70S6K, but a decrease in its downstream modulators P-AKT ser473 and in P-GSK3ß ser9. Cardiac BCAA oxidation in isolated working hearts was significantly enhanced by BT2, compared to vehicle, following either acute or chronic treatment. Treatment of TAC mice with BT2 significantly improved cardiac function in both sham and TAC mice (63.0 ± 1.8 and 56.9 ± 3.8% ejection fraction respectively). Furthermore, P-BCKDH and BCKDK expression was significantly decreased in the BT2 treated groups. CONCLUSION: We conclude that impaired cardiac BCAA catabolism and insulin signaling occur in human heart failure, while enhancing BCAA oxidation can improve cardiac function in the failing mouse heart.


Asunto(s)
Aminoácidos de Cadena Ramificada/metabolismo , Cardiomiopatía Dilatada/complicaciones , Metabolismo Energético/efectos de los fármacos , Insuficiencia Cardíaca/etiología , Resistencia a la Insulina , Miocardio/metabolismo , Adulto , Anciano , Animales , Ácidos Carboxílicos/farmacología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Femenino , Fibrosis , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocardio/patología , Oxidación-Reducción , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Adulto Joven
8.
J Cardiovasc Pharmacol ; 74(3): 235-245, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31306370

RESUMEN

A plethora of studies have demonstrated that cardiomyopathy represents a serious source of morbidity and mortality in patients with diabetes. Yet, the underlying mechanisms of diabetic cardiomyopathy are still poorly understood. Of interest, cytochrome P450 2J (CYP2J) and soluble epoxide hydrolase (sEH) are known to control the maintenance of cardiovascular health through the regulation of cardioprotective epoxyeicosatrienoic acids (EETs) and its less active products, dihydroxyeicosatrienoic acids (DHETs). Therefore, we examined the role of the aforementioned pathway in the development of diabetic cardiomyopathy. Our diabetic model initiated cardiomyopathy as indexed by the increase in the expression of hypertrophic markers such as NPPA. Furthermore, diabetic cardiomyopathy was associated with a low level of cardiac EETs and an increase of the DHETs/EETs ratio both in vivo and in cardiac cells. The modulation in EETs and DHETs was attributed to the increase of sEH and the decrease of CYP2J. Interestingly, the reduction of sEH attenuates cardiotoxicity mediated by high glucose in cardiac cells. Mechanistically, the beneficial effect of sEH reduction might be due to the decrease of phosphorylated ERK1/2 and p38. Overall, the present work provides evidence that diabetes initiates cardiomyopathy through the increase in sEH, the reduction of CYP2J, and the decrease of cardioprotective EETs.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 2/enzimología , Cardiomiopatías Diabéticas/enzimología , Eicosanoides/metabolismo , Epóxido Hidrolasas/metabolismo , Miocitos Cardíacos/enzimología , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Glucemia/metabolismo , Línea Celular , Sistema Enzimático del Citocromo P-450/genética , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/genética , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Dieta Alta en Grasa , Epóxido Hidrolasas/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Obesidad/complicaciones , Obesidad/enzimología , Fosforilación , Transducción de Señal , Estreptozocina , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Biochem J ; 475(5): 959-976, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29438065

RESUMEN

The role of carnitine acetyltransferase (CrAT) in regulating cardiac energy metabolism is poorly understood. CrAT modulates mitochondrial acetyl-CoA/CoA (coenzyme A) ratios, thus regulating pyruvate dehydrogenase activity and glucose oxidation. Here, we propose that cardiac CrAT also provides cytosolic acetyl-CoA for the production of malonyl-CoA, a potent inhibitor of fatty acid oxidation. We show that in the murine cardiomyocyte cytosol, reverse CrAT activity (RCrAT, producing acetyl-CoA) is higher compared with the liver, which primarily uses ATP-citrate lyase to produce cytosolic acetyl-CoA for lipogenesis. The heart displayed a lower RCrAT Km for CoA compared with the liver. Furthermore, cytosolic RCrAT accounted for 4.6 ± 0.7% of total activity in heart tissue and 12.7 ± 0.2% in H9C2 cells, while highly purified heart cytosolic fractions showed significant CrAT protein levels. To investigate the relationship between CrAT and acetyl-CoA carboxylase (ACC), the cytosolic enzyme catalyzing malonyl-CoA production from acetyl-CoA, we studied ACC2-knockout mouse hearts which showed decreased CrAT protein levels and activity, associated with increased palmitate oxidation and acetyl-CoA/CoA ratio compared with controls. Conversely, feeding mice a high-fat diet for 10 weeks increased cardiac CrAT protein levels and activity, associated with a reduced acetyl-CoA/CoA ratio and glucose oxidation. These data support the presence of a cytosolic CrAT with a low Km for CoA, favoring the formation of cytosolic acetyl-CoA, providing an additional source to the classical ATP-citrate lyase pathway, and that there is an inverse relation between CrAT and the ratio of acetyl-CoA/CoA as evident in conditions affecting the regulation of cardiac energy metabolism.


Asunto(s)
Acetilcoenzima A/metabolismo , Carnitina O-Acetiltransferasa/fisiología , Citosol/metabolismo , Metabolismo Energético/genética , Miocardio/metabolismo , Animales , Carnitina O-Acetiltransferasa/genética , Carnitina O-Acetiltransferasa/metabolismo , Células Cultivadas , Dieta Alta en Grasa , Metabolismo de los Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxidación-Reducción
10.
Diabetologia ; 61(8): 1849-1855, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29858650

RESUMEN

AIMS/HYPOTHESIS: Cre-loxP systems are frequently used in mouse genetics as research tools for studying tissue-specific functions of numerous genes/proteins. However, the expression of Cre recombinase in a tissue-specific manner often produces undesirable changes in mouse biology that can confound data interpretation when using these tools to generate tissue-specific gene knockout mice. Our objective was to characterise the actions of Cre recombinase in skeletal muscle, and we anticipated that skeletal muscle-specific Cre recombinase expression driven by the human α-skeletal actin (HSA) promoter would influence glucose homeostasis. METHODS: Eight-week-old HSA-Cre expressing mice and their wild-type littermates were fed a low- or high-fat diet for 12 weeks. Glucose homeostasis (glucose/insulin tolerance testing) and whole-body energy metabolism (indirect calorimetry) were assessed. We also measured circulating insulin levels and the muscle expression of key regulators of energy metabolism. RESULTS: Whereas tamoxifen-treated HSA-Cre mice fed a low-fat diet exhibited no alterations in glucose homeostasis, we observed marked improvements in glucose tolerance in tamoxifen-treated, but not corn-oil-treated, HSA-Cre mice fed a high-fat diet vs their wild-type littermates. Moreover, Cre dissociation from heat shock protein 90 and translocation to the nucleus was only seen following tamoxifen treatment. These improvements in glucose tolerance were not due to improvements in insulin sensitivity/signalling or enhanced energy metabolism, but appeared to stem from increases in circulating insulin. CONCLUSIONS/INTERPRETATION: The intrinsic glycaemia phenotype in the HSA-Cre mouse necessitates the use of HSA-Cre controls, treated with tamoxifen, when using Cre-loxP models to investigate skeletal muscle-specific gene/protein function and glucose homeostasis.


Asunto(s)
Actinas/genética , Glucosa/metabolismo , Integrasas/metabolismo , Músculo Esquelético/enzimología , Regiones Promotoras Genéticas , Animales , Composición Corporal , Metabolismo de los Hidratos de Carbono , Medios de Cultivo Condicionados/química , Dieta Alta en Grasa , Metabolismo Energético , Prueba de Tolerancia a la Glucosa , Homeostasis , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Fenotipo , Triglicéridos/química
11.
Can J Physiol Pharmacol ; 96(1): 97-102, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28886253

RESUMEN

The percentage of women who are obese at the time of conception or during pregnancy is increasing, with animal and human studies demonstrating that offspring born to obese dams or mothers are at increased risk for obesity and the metabolic syndrome. Our goal was to confirm in an experimental model of metabolic syndrome in the dam, whether the offspring would be at increased risk of obesity. Conversely, we observed that male offspring born to dams with metabolic syndrome had no alterations in their body mass profiles, whereas female offspring born to dams with metabolic syndrome were heavier at weaning, but exhibited no perturbations in energy metabolism. Moreover, they gained weight at a reduced rate versus female offspring born to healthy dams, and thus weighed less at study completion. Hence, our findings suggest that factors other than increased adiposity and insulin resistance during pregnancy are responsible for the increased risk of obesity in children born to obese mothers.


Asunto(s)
Crecimiento y Desarrollo , Resistencia a la Insulina , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Adiposidad , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Peso Corporal , Dieta Alta en Grasa , Metabolismo Energético , Femenino , Homeostasis , Ratones Endogámicos C57BL , Obesidad/patología , Factores de Riesgo , Destete , Aumento de Peso/efectos de los fármacos
12.
Am J Physiol Heart Circ Physiol ; 313(3): H479-H490, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28687587

RESUMEN

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report here, for the first time, that FoxO1 inhibition increases glucose oxidation in the isolated working mouse heart.


Asunto(s)
Metabolismo Energético , Proteína Forkhead Box O1/metabolismo , Regulación Enzimológica de la Expresión Génica , Glucosa/metabolismo , Miocitos Cardíacos/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Transcripción Genética , Angiotensina II/toxicidad , Animales , Apoptosis/efectos de los fármacos , Sitios de Unión , Línea Celular , Dexametasona/farmacología , Metabolismo Energético/efectos de los fármacos , Femenino , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Cinética , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Oxidación-Reducción , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Quinolonas/farmacología , Interferencia de ARN , Transducción de Señal , Transcripción Genética/efectos de los fármacos , Transfección
13.
Am J Physiol Endocrinol Metab ; 311(2): E423-35, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27382035

RESUMEN

Obesity is a major health concern that increases the risk for insulin resistance, type 2 diabetes (T2D), and cardiovascular disease. Thus, an enormous research effort has been invested into understanding how obesity-associated dyslipidemia and obesity-induced alterations in lipid metabolism increase the risk for these diseases. Accordingly, it has been proposed that the accumulation of lipid metabolites in organs such as the liver, skeletal muscle, and heart is critical to these obesity-induced pathologies. Ceramide is one such lipid metabolite that accumulates in tissues in response to obesity, and both pharmacological and genetic strategies that reduce tissue ceramide levels yield salutary actions on overall metabolic health. We will review herein why ceramide accumulates in tissues during obesity and how an increase in intracellular ceramide impacts cellular signaling and function as well as potential mechanisms by which reducing intracellular ceramide levels improves insulin resistance, T2D, atherosclerosis, and heart failure. Because a reduction in skeletal muscle ceramide levels is frequently associated with improvements in insulin sensitivity in humans, the beneficial findings reported for reducing ceramides in preclinical studies may have clinical application in humans. Therefore, modulating ceramide metabolism may be a novel, exciting target for preventing and/or treating obesity-related diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Ceramidas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dislipidemias/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Obesidad/metabolismo , Animales , Aterosclerosis/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Insuficiencia Cardíaca/metabolismo , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Músculo Esquelético/metabolismo , Miocardio/metabolismo
14.
ScientificWorldJournal ; 2014: 908098, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25485304

RESUMEN

OBJECTIVES: To estimate the impact of ellagic acid (EA) towards healing tooth socket in diabetic animals, after tooth extraction. METHODS: Twenty-four Sprague Dawley male rats weighing 250-300 g were selected for this study. All animals were intraperitoneally injected with 45 mg/kg (b.w.) of freshly prepared streptozotocin (STZ), to induce diabetic mellitus. Then, the animals were anesthetized, and the upper left central incisor was extracted and the whole extracted sockets were filled with Rosuvastatin (RSV). The rats were separated into three groups, comprising 8 rats each. The first group was considered as normal control group and orally treated with normal saline. The second group was regarded as diabetic control group and orally treated with normal saline, whereas the third group comprised diabetic rats, administrated with EA (50 mg/kg) orally. The maxilla tissue stained by eosin and hematoxylin (H&E) was used for histological examinations and immunohistochemical technique. Fibroblast growth factor (FGF-2) and alkaline phosphatase (ALP) were used to evaluate the healing process in the extracted tooth socket by immunohistochemistry test. RESULTS: The reactions of immunohistochemistry for FGF-2 and ALP presented stronger expression, predominantly in EA treated diabetic rat, than the untreated diabetic rat. CONCLUSION: These findings suggest that the administration of EA combined with RSV may have accelerated the healing process of the tooth socket of diabetic rats, after tooth extraction.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Ácido Elágico/farmacología , Osteogénesis/efectos de los fármacos , Extracción Dental , Fosfatasa Alcalina/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucemia/metabolismo , Citocinas/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/patología , Ácido Elágico/uso terapéutico , Ayuno/sangre , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Inmunohistoquímica , Inflamación/sangre , Inflamación/patología , Masculino , Ratas Sprague-Dawley , Estreptozocina , Cicatrización de Heridas/efectos de los fármacos
15.
J Gastroenterol Hepatol ; 28(8): 1321-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23611708

RESUMEN

BACKGROUND AND AIM: Corchorus olitorius is a medicinal plant traditionally utilized as an antifertility, anti-convulsive, and purgative agent. This study aimed to evaluate the gastroprotective effect of an ethanolic extract of C. olitorius against ethanol-induced gastric ulcers in adult Sprague Dawley rats. METHODS: The rats were divided into seven groups according to their pretreatment: an untreated control group, an ulcer control group, a reference control group (20 mg/kg omeprazole), and four experimental groups (50, 100, 200, or 400 mg/kg of extract). Carboxymethyl cellulose was the vehicle for the agents. Prior to the induction of gastric ulcers with absolute ethanol, the rats in each group were pretreated orally. An hour later, the rats were sacrificed, and gastric tissues were collected to evaluate the ulcers and to measure enzymatic activity. The tissues were subjected to histological and immunohistochemical evaluations. RESULTS: Compared with the extensive mucosal damage in the ulcer control group, gross evaluation revealed a marked protection of the gastric mucosa in the experimental groups, with significantly preserved gastric wall mucus. In these groups, superoxide dismutase and malondialdehyde levels were significantly increased (P < 0.05) and reduced (P < 0.05), respectively. In addition to the histologic analyses (HE and periodic acid-Schiff staining), immunohistochemistry confirmed the protection through the upregulation of Hsp70 and the downregulation of Bax proteins. The gastroprotection of the experimental groups was comparable to that of the reference control medicine omeprazole. CONCLUSIONS: Our study reports the gastroprotective property of an ethanolic extract of C. olitorius against ethanol-induced gastric mucosal hemorrhagic lesions in rats.


Asunto(s)
Corchorus , Etanol/efectos adversos , Hemorragia Gastrointestinal/inducido químicamente , Hemorragia Gastrointestinal/prevención & control , Fitoterapia , Extractos Vegetales/farmacología , Animales , Antioxidantes , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Hemorragia Gastrointestinal/metabolismo , Hemorragia Gastrointestinal/patología , Proteínas HSP70 de Choque Térmico/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Malondialdehído/metabolismo , Fenoles , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo , Proteína X Asociada a bcl-2/metabolismo
16.
Can J Kidney Health Dis ; 10: 20543581231191839, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637870

RESUMEN

Purpose of review: Glomerulonephritis refers to a rare group of diseases characterized by glomerular inflammation, which collectively are a common cause of kidney failure. Until recently, there was a lack of high-quality clinical trials to inform the care of patients with glomerulonephritides. We identified examples of successful translational research spanning from basic science to clinical applications, and highlight gaps in implementation science. Sources of information: The focus of our review was derived from discussions between health care professionals, researchers, and patient partners. We also performed literature searches pertaining to the treatment of glomerulonephritis in PubMed and Google Scholar. Methods: Examples of successful knowledge translation were generated through review of new evidence in the past 5 years and by iterative discussions by the authors. We then conducted a narrative review of several themes related to knowledge translation in glomerulonephritis. This was complemented by an interview with a patient partner to provide an example of a patient's perspective living with glomerulonephritis. Key findings: We summarized selected recent advances in glomerulonephritis and its knowledge translation in the following domains: (1) identification of auto-antibodies in membranous nephropathy and minimal change disease; (2) clinical trials of novel targeted therapies for IgA nephropathy and lupus nephritis, which have led to approval of new treatments; (3) developments in research networks and clinical trials in glomerulonephritis; (4) recognition of the importance in developing standardized patient reported outcome measures in clinical trials; and (5) barriers in knowledge translation including access to medication. Limitations: A systematic search of the literature and formal assessment of quality of evidence were beyond the scope of this review.


Motif de la revue: La glomérulonéphrite désigne un groupe rare de maladies qui se caractérisent par une inflammation des glomérules. Collectivement, ces maladies sont une cause fréquente d'insuffisance rénale. Jusqu'à récemment, il n'y avait pas d'essais cliniques de grande qualité pour guider les soins des patients atteints de glomérulonéphrites. Nous avons répertorié des exemples de recherches translationnelles réussies, allant de la recherche fondamentale aux applications cliniques, et nous avons mis en évidence les lacunes dans l'application de la science. Sources: L'essentiel de notre examen est dérivé de discussions entre les professionnels de la santé, les chercheurs et les patients partenaires. Nous avons également procédé à une revue de la littérature sur PubMed et Google Scholar portant sur le traitement de la glomérulonéphrite. Méthodologie: Des exemples d'application réussie des connaissances ont été générés par un examen des récentes données probantes (cinq dernières années) et par des discussions itératives entre les auteurs. Nous avons ensuite procédé à une revue narrative de plusieurs thèmes liés à l'application des connaissances en contexte de glomérulonéphrite. Cette démarche a été complétée par une entrevue avec une patiente partenaire, afin de fournir le point de vue d'une personne vivant avec une glomérulonéphrite. Principaux résultats: Nous avons résumé certaines des avancées récentes de la recherche sur la glomérulonéphrite et l'application des connaissances dans les domaines suivants: 1) l'identification d'auto-anticorps dans la glomérulonéphrite membraneuse et la néphropathie à lésion glomérulaire minime; 2) les essais cliniques portant sur de nouvelles thérapies ciblées pour la néphropathie à IgA et la néphrite lupique qui ont conduit à l'approbation de nouveaux traitements; 3) les développements dans les réseaux de recherche et les essais cliniques sur la glomérulonéphrite; 4) la reconnaissance de l'importance d'élaborer des mesures normalisées pour les résultats rapportés par les patients dans les essais cliniques; 5) les obstacles à l'application des connaissances, y compris l'accès aux médicaments. Limites: Une recherche systématique de la documentation et l'évaluation officielle de la qualité des preuves dépassaient la portée de cet examen.

17.
Basic Clin Pharmacol Toxicol ; 133(2): 194-201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269153

RESUMEN

AIMS: Recent studies have demonstrated that stimulating pyruvate dehydrogenase (PDH, gene Pdha1), the rate-limiting enzyme of glucose oxidation, can reverse obesity-induced non-alcoholic fatty liver disease (NAFLD), which can be achieved via treatment with the antianginal ranolazine. Accordingly, our aim was to determine whether ranolazine's ability to mitigate obesity-induced NAFLD and hyperglycaemia requires increases in hepatic PDH activity. METHODS: We generated liver-specific PDH-deficient (Pdha1Liver-/- ) mice, which were provided a high-fat diet for 12 weeks to induce obesity. Pdha1Liver-/- mice and their albumin-Cre (AlbCre ) littermates were randomized to treatment with either vehicle control or ranolazine (50 mg/kg) once daily via oral gavage during the final 5 weeks, following which we assessed glucose and pyruvate tolerance. RESULTS: Pdha1Liver-/- mice exhibited no overt phenotypic differences (e.g. adiposity, glucose tolerance) when compared to their AlbCre littermates. Of interest, ranolazine treatment improved glucose tolerance and mildly reduced hepatic triacylglycerol content in obese AlbCre mice but not in obese Pdha1Liver-/- mice. The latter was independent of changes in hepatic mRNA expression of genes involved in regulating lipogenesis. CONCLUSIONS: Liver-specific PDH deficiency is insufficient to promote an NAFLD phenotype. Nonetheless, hepatic PDH activity partially contributes to how the antianginal ranolazine improves glucose tolerance and alleviates hepatic steatosis in obesity.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/inducido químicamente , Oxidorreductasas/metabolismo , Ranolazina/efectos adversos , Ranolazina/metabolismo
18.
Diabetes ; 72(1): 126-134, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36256885

RESUMEN

Despite significant progress in understanding the pathogenesis of type 2 diabetes (T2D), the condition remains difficult to manage. Hence, new therapeutic options targeting unique mechanisms of action are required. We have previously observed that elevated skeletal muscle succinyl CoA:3-ketoacid CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone oxidation, contributes to the hyperglycemia characterizing obesity and T2D. Moreover, we identified that the typical antipsychotic agent pimozide is a SCOT inhibitor that can alleviate obesity-induced hyperglycemia. We now extend those observations here, using computer-assisted in silico modeling and in vivo pharmacology studies that highlight SCOT as a noncanonical target shared among the diphenylbutylpiperidine (DPBP) drug class, which includes penfluridol and fluspirilene. All three DPBPs tested (pimozide, penfluridol, and fluspirilene) improved glycemia in obese mice. While the canonical target of the DPBPs is the dopamine 2 receptor, studies in obese mice demonstrated that acute or chronic treatment with a structurally unrelated antipsychotic dopamine 2 receptor antagonist, lurasidone, was devoid of glucose-lowering actions. We further observed that the DPBPs improved glycemia in a SCOT-dependent manner in skeletal muscle, suggesting that this older class of antipsychotic agents may have utility in being repurposed for the treatment of T2D.


Asunto(s)
Antipsicóticos , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratones , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Coenzima A Transferasas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dopamina , Fluspirileno/farmacología , Hiperglucemia/tratamiento farmacológico , Ratones Obesos , Penfluridol/farmacología , Pimozida/farmacología , Receptores Dopaminérgicos/metabolismo
20.
Cell Rep ; 35(1): 108935, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826891

RESUMEN

Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Diástole/fisiología , Proteína Forkhead Box O1/metabolismo , Miocardio/enzimología , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Diabetes Mellitus Experimental/fisiopatología , Cardiomiopatías Diabéticas/fisiopatología , Fibrosis , Proteína Forkhead Box O1/antagonistas & inhibidores , Proteína Forkhead Box O1/deficiencia , Glucosa/metabolismo , Homeostasis , Lípidos/toxicidad , Masculino , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA