Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Chem ; 70(1): 250-260, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37624932

RESUMEN

BACKGROUND: Molecular brain tumor diagnosis is usually dependent on tissue biopsies or resections. This can pose several risks associated with anesthesia or neurosurgery, especially for lesions in the brain stem or other difficult-to-reach anatomical sites. Apart from initial diagnosis, tumor progression, recurrence, or the acquisition of novel genetic alterations can only be proven by re-biopsies. METHODS: We employed Nanopore sequencing on cell-free DNA (cfDNA) from cerebrospinal fluid (CSF) and analyzed copy number variations (CNV) and global DNA methylation using a random forest classifier. We sequenced 129 samples with sufficient DNA. These samples came from 99 patients and encompassed 22 entities. Results were compared to clinical diagnosis and molecular analysis of tumor tissue, if available. RESULTS: 110/129 samples were technically successful, and 50 of these contained detectable circulating tumor DNA (ctDNA) by CNV or methylation profiling. ctDNA was detected in samples from patients with progressive disease but also from patients without known residual disease. CNV plots showed diagnostic and prognostic alterations, such as C19MC amplifications in embryonal tumors with multilayered rosettes or Chr.1q gains and Chr.6q losses in posterior fossa group A ependymoma, respectively. Most CNV profiles mirrored the profiles of the respective tumor tissue. DNA methylation allowed exact classification of the tumor in 22/110 cases and led to incorrect classification in 2/110 cases. Only 5/50 samples with detected ctDNA contained tumor cells detectable through microscopy. CONCLUSIONS: Our results suggest that Nanopore sequencing data of cfDNA from CSF samples may be a promising approach for initial brain tumor diagnostics and an important tool for disease monitoring.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Secuenciación de Nanoporos , Humanos , Ácidos Nucleicos Libres de Células/genética , Variaciones en el Número de Copia de ADN , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Mutación
2.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244428

RESUMEN

The emerging field of regenerative cell therapy is still limited by the few cell types that can reliably be differentiated from pluripotent stem cells and by the immune hurdle of commercially scalable allogeneic cell therapeutics. Here, we show that gene-edited, immune-evasive cell grafts can survive and successfully treat diseases in immunocompetent, fully allogeneic recipients. Transplanted endothelial cells improved perfusion and increased the likelihood of limb preservation in mice with critical limb ischemia. Endothelial cell grafts transduced to express a transgene for alpha1-antitrypsin (A1AT) successfully restored physiologic A1AT serum levels in mice with genetic A1AT deficiency. This cell therapy prevented both structural and functional changes of emphysematous lung disease. A mixture of endothelial cells and cardiomyocytes was injected into infarcted mouse hearts, and both cell types orthotopically engrafted in the ischemic areas. Cell therapy led to an improvement in invasive hemodynamic heart failure parameters. Our study supports the development of hypoimmune, universal regenerative cell therapeutics for cost-effective treatments of major diseases.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/terapia , Inmunocompetencia , Células Madre Pluripotentes Inducidas/inmunología , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/terapia , Trasplante de Células Madre , Animales , Células Endoteliales/trasplante , Insuficiencia Cardíaca/terapia , Miembro Posterior/irrigación sanguínea , Miembro Posterior/patología , Isquemia/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Miocitos Cardíacos/trasplante , Trasplante Homólogo , alfa 1-Antitripsina/metabolismo
3.
Genet Mol Biol ; 47(2): e20230304, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012095

RESUMEN

Growth differentiation factor 11 (GDF11) and myostatin (MSTN/GDF8) are closely related members of the transforming growth factor ß (TGFß) superfamily, sharing structural homology. Despite these structural similarities, recent research has shed light on the distinct roles these ligands play within muscle tissue. This study aims to uncover both the differences and similarities in gene expression at the transcriptome level by utilizing RNA sequencing. We conducted experiments involving five distinct groups, each with three biological replicates, using C2C12 cell cultures. The cells were subjected to high-throughput profiling to investigate disparities in gene expression patterns following preconditioning with either GDF11 or MSTN at concentrations of 1 nM and 10 nM, respectively. In addition, control groups were established. Our research revealed concentration-dependent gene expression patterns, with 38 genes showing significant differences when compared to the control groups. Notably, GADD45, SMAD7, EGR-1, and HOXA3 exhibited significant differential expression. We also conducted an over-representation analysis, highlighting the activation of MAPK and JNK signaling pathways, along with GO-terms related to genes that negatively regulate metabolic processes, biosynthesis, and protein phosphorylation. This study unveiled the activation of several genes not previously discussed in existing literature whose full biological implications are yet to be determined in future research.

4.
Neurogenetics ; 24(3): 171-180, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37039969

RESUMEN

DNM1 developmental and epileptic encephalopathy (DEE) is characterized by severe to profound intellectual disability, hypotonia, movement disorder, and refractory epilepsy, typically presenting with infantile spasms. Most of the affected individuals had de novo missense variants in DNM1. DNM1 undergoes alternative splicing that results in expression of six different transcript variants. One alternatively spliced region affects the tandemly arranged exons 10a and 10b, producing isoforms DNM1A and DNM1B, respectively. Pathogenic variants in the DNM1 coding region affect all transcript variants. Recently, a de novo DNM1 NM_001288739.1:c.1197-8G > A variant located in intron 9 has been reported in several unrelated individuals with DEE that causes in-frame insertion of two amino acids and leads to disease through a dominant-negative mechanism. We report on a patient with DEE and a de novo DNM1 variant NM_001288739.2:c.1197-46C > G in intron 9, upstream of exon 10a. By RT-PCR and Sanger sequencing using fibroblast-derived cDNA of the patient, we identified aberrantly spliced DNM1 mRNAs with exon 9 spliced to the last 45 nucleotides of intron 9 followed by exon 10a (NM_001288739.2:r.1196_1197ins[1197-1_1197-45]). The encoded DNM1A mutant is predicted to contain 15 novel amino acids between Ile398 and Arg399 [NP_001275668.1:p.(Ile398_Arg399ins15)] and likely functions in a dominant-negative manner, similar to other DNM1 mutants. Our data confirm the importance of the DNM1 isoform A for normal human brain function that is underscored by previously reported predominant expression of DMN1A transcripts in pediatric brain, functional differences of the mouse Dnm1a and Dnm1b isoforms, and the Dnm1 fitful mouse, an epilepsy mouse model.


Asunto(s)
Sitios de Empalme de ARN , Espasmos Infantiles , Animales , Niño , Humanos , Ratones , Exones/genética , Mutación , Isoformas de Proteínas/genética , Sitios de Empalme de ARN/genética , Espasmos Infantiles/genética
5.
Neurogenetics ; 24(2): 79-93, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36653678

RESUMEN

Type I inositol polyphosphate-4-phosphatase (INPP4A) belongs to the group of phosphoinositide phosphatases controlling proliferation, apoptosis, and endosome function by hydrolyzing phosphatidylinositol 3,4-bisphosphate. INPP4A produces multiple transcripts encoding shorter and longer INPP4A isoforms with hydrophilic or hydrophobic C-terminus. Biallelic INPP4A truncating variants cause a spectrum of neurodevelopmental disorders ranging from moderate intellectual disability to postnatal microcephaly with developmental and epileptic encephalopathy and (ponto)cerebellar hypoplasia. We report a girl with the novel homozygous INPP4A variant NM_001134224.2:c.2840del/p.(Gly947Glufs*12) (isoform d). She presented with postnatal microcephaly, global developmental delay, visual impairment, myoclonic seizures, and pontocerebellar hypoplasia and died at the age of 27 months. The level of mutant INPP4A mRNAs in proband-derived leukocytes was comparable to controls suggesting production of C-terminally altered INPP4A isoforms. We transiently expressed eGFP-tagged INPP4A isoform a (NM_004027.3) wildtype and p.(Gly908Glufs*12) mutant [p.(Gly947Glufs*12) according to NM_001134224.2] as well as INPP4A isoform b (NM_001566.2) wildtype and p.(Asp915Alafs*2) mutant, previously reported in family members with moderate intellectual disability, in HeLa cells and determined their subcellular distributions. While INPP4A isoform a was preferentially found in perinuclear clusters co-localizing with the GTPase Rab5, isoform b showed a net-like distribution, possibly localizing near and/or on microtubules. Quantification of intracellular localization patterns of the two INPP4A mutants revealed significant differences compared with the respective wildtype and similarity with each other. Our data suggests an important non-redundant function of INPP4A isoforms with hydrophobic or hydrophilic C-terminus in the brain.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Preescolar , Femenino , Humanos , Cerebelo , Células HeLa , Discapacidad Intelectual/genética , Microcefalia/genética , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo
6.
Am J Hum Genet ; 107(6): 1044-1061, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33159882

RESUMEN

Heparan sulfate belongs to the group of glycosaminoglycans (GAGs), highly sulfated linear polysaccharides. Heparan sulfate 2-O-sulfotransferase 1 (HS2ST1) is one of several specialized enzymes required for heparan sulfate synthesis and catalyzes the transfer of the sulfate groups to the sugar moiety of heparan sulfate. We report bi-allelic pathogenic variants in HS2ST1 in four individuals from three unrelated families. Affected individuals showed facial dysmorphism with coarse face, upslanted palpebral fissures, broad nasal tip, and wide mouth, developmental delay and/or intellectual disability, corpus callosum agenesis or hypoplasia, flexion contractures, brachydactyly of hands and feet with broad fingertips and toes, and uni- or bilateral renal agenesis in three individuals. HS2ST1 variants cause a reduction in HS2ST1 mRNA and decreased or absent heparan sulfate 2-O-sulfotransferase 1 in two of three fibroblast cell lines derived from affected individuals. The heparan sulfate synthesized by the individual 1 cell line lacks 2-O-sulfated domains but had an increase in N- and 6-O-sulfated domains demonstrating functional impairment of the HS2ST1. As heparan sulfate modulates FGF-mediated signaling, we found a significantly decreased activation of the MAP kinases ERK1/2 in FGF-2-stimulated cell lines of affected individuals that could be restored by addition of heparin, a GAG similar to heparan sulfate. Focal adhesions in FGF-2-stimulated fibroblasts of affected individuals concentrated at the cell periphery. Our data demonstrate that a heparan sulfate synthesis deficit causes a recognizable syndrome and emphasize a role for 2-O-sulfated heparan sulfate in human neuronal, skeletal, and renal development.


Asunto(s)
Huesos/anomalías , Cuerpo Calloso/patología , Discapacidades del Desarrollo/genética , Riñón/anomalías , Sulfotransferasas/genética , Adolescente , Alelos , Biopsia , Niño , Preescolar , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Salud de la Familia , Femenino , Fibroblastos/metabolismo , Variación Genética , Heparitina Sulfato/metabolismo , Humanos , Ácido Idurónico/farmacología , Recién Nacido , Masculino , Linaje , Fenotipo , Síndrome , Anomalías Urogenitales/genética
7.
PLoS Pathog ; 17(2): e1009304, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33544760

RESUMEN

S. epidermidis is a substantial component of the human skin microbiota, but also one of the major causes of nosocomial infection in the context of implanted medical devices. We here aimed to advance the understanding of S. epidermidis genotypes and phenotypes conducive to infection establishment. Furthermore, we investigate the adaptation of individual clonal lines to the infection lifestyle based on the detailed analysis of individual S. epidermidis populations of 23 patients suffering from prosthetic joint infection. Analysis of invasive and colonizing S. epidermidis provided evidence that invasive S. epidermidis are characterized by infection-supporting phenotypes (e.g. increased biofilm formation, growth in nutrient poor media and antibiotic resistance), as well as specific genetic traits. The discriminating gene loci were almost exclusively assigned to the mobilome. Here, in addition to IS256 and SCCmec, chromosomally integrated phages was identified for the first time. These phenotypic and genotypic features were more likely present in isolates belonging to sequence type (ST) 2. By comparing seven patient-matched nasal and invasive S. epidermidis isolates belonging to identical genetic lineages, infection-associated phenotypic and genotypic changes were documented. Besides increased biofilm production, the invasive isolates were characterized by better growth in nutrient-poor media and reduced hemolysis. By examining several colonies grown in parallel from each infection, evidence for genetic within-host population heterogeneity was obtained. Importantly, subpopulations carrying IS insertions in agrC, mutations in the acetate kinase (AckA) and deletions in the SCCmec element emerged in several infections. In summary, these results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival in hostile infection environments.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Infección Hospitalaria/microbiología , Mutación , Mucosa Nasal/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus epidermidis/genética , Anciano , Anciano de 80 o más Años , Proteínas Bacterianas/metabolismo , Infección Hospitalaria/genética , Infección Hospitalaria/metabolismo , Femenino , Genotipo , Hemólisis , Humanos , Secuencias Repetitivas Esparcidas , Masculino , Persona de Mediana Edad , Mucosa Nasal/metabolismo , Fenotipo , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/metabolismo , Staphylococcus epidermidis/clasificación , Staphylococcus epidermidis/crecimiento & desarrollo , Staphylococcus epidermidis/aislamiento & purificación
8.
Brain ; 145(4): 1551-1563, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34694367

RESUMEN

The major spliceosome mediates pre-mRNA splicing by recognizing the highly conserved sequences at the 5' and 3' splice sites and the branch point. More than 150 proteins participate in the splicing process and are organized in the spliceosomal A, B, and C complexes. FRA10AC1 is a peripheral protein of the spliceosomal C complex and its ortholog in the green alga facilitates recognition or interaction with splice sites. We identified biallelic pathogenic variants in FRA10AC1 in five individuals from three consanguineous families. The two unrelated Patients 1 and 2 with loss-of-function variants showed developmental delay, intellectual disability, and no speech, while three siblings with the c.494_496delAAG (p.Glu165del) variant had borderline to mild intellectual disability. All patients had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism. FRA10AC1 transcripts and proteins were drastically reduced or absent in fibroblasts of Patients 1 and 2. In a heterologous expression system, the p.Glu165del variant impacts intrinsic stability of FRA10AC1 but does not affect its nuclear localization. By co-immunoprecipitation, we found ectopically expressed HA-FRA10AC1 in complex with endogenous DGCR14, another component of the spliceosomal C complex, while the splice factors CHERP, NKAP, RED, and SF3B2 could not be co-immunoprecipitated. Using an in vitro splicing reporter assay, we did not obtain evidence for FRA10AC1 deficiency to suppress missplicing events caused by mutations in the highly conserved dinucleotides of 5' and 3' splice sites in an in vitro splicing assay in patient-derived fibroblasts. Our data highlight the importance of specific peripheral spliceosomal C complex proteins for neurodevelopment. It remains possible that FRA10AC1 may have other and/or additional cellular functions, such as coupling of transcription and splicing reactions.


Asunto(s)
Trastornos del Crecimiento , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Proteínas Nucleares , Proteínas de Unión al ADN/genética , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética
9.
Cell Mol Life Sci ; 79(6): 329, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35639208

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer-enclosed structures that represent newly discovered means for cell-to-cell communication as well as promising disease biomarkers and therapeutic tools. Apart from proteins, lipids, and metabolites, EVs can deliver genetic information such as mRNA, eliciting a response in the recipient cells. In the present study, we have analyzed the mRNA content of brain-derived EVs (BDEVs) isolated 72 h after experimental stroke in mice and compared them to controls (shams) using nCounter® Nanostring panels, with or without prior RNA isolation. We found that both panels show similar results when comparing upregulated mRNAs in stroke. Notably, the highest upregulated mRNAs were related to processes of stress and immune system responses, but also to anatomical structure development, cell differentiation, and extracellular matrix organization, thus indicating that regenerative mechanisms already take place at this time-point. The five top overrepresented mRNAs in stroke mice were confirmed by RT-qPCR and, interestingly, found to be full-length. We could reveal that the majority of the mRNA cargo in BDEVs was of microglial origin and predominantly present in small BDEVs (≤ 200 nm in diameter). However, the EV population with the highest increase in the total BDEVs pool at 72 h after stroke was of oligodendrocytic origin. Our study shows that nCounter® panels are a good tool to study mRNA content in tissue-derived EVs as they can be carried out even without previous mRNA isolation, and that the mRNA cargo of BDEVs indicates a possible participation in inflammatory but also recovery processes after stroke.


Asunto(s)
Vesículas Extracelulares , Accidente Cerebrovascular , Animales , Encéfalo , Vesículas Extracelulares/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones , ARN Mensajero/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo
10.
PLoS Pathog ; 16(8): e1008562, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32833988

RESUMEN

Merkel Cell Polyomavirus (MCPyV) is the etiological agent of the majority of Merkel Cell Carcinomas (MCC). MCPyV positive MCCs harbor integrated, defective viral genomes that constitutively express viral oncogenes. Which molecular mechanisms promote viral integration, if distinct integration patterns exist, and if integration occurs preferentially at loci with specific chromatin states is unknown. We here combined short and long-read (nanopore) next-generation sequencing and present the first high-resolution analysis of integration site structure in MCC cell lines as well as primary tumor material. We find two main types of integration site structure: Linear patterns with chromosomal breakpoints that map closely together, and complex integration loci that exhibit local amplification of genomic sequences flanking the viral DNA. Sequence analysis suggests that linear patterns are produced during viral replication by integration of defective/linear genomes into host DNA double strand breaks via non-homologous end joining, NHEJ. In contrast, our data strongly suggest that complex integration patterns are mediated by microhomology-mediated break-induced replication, MMBIR. Furthermore, we show by ChIP-Seq and RNA-Seq analysis that MCPyV preferably integrates in open chromatin and provide evidence that viral oncogene expression is driven by the viral promoter region, rather than transcription from juxtaposed host promoters. Taken together, our data explain the characteristics of MCPyV integration and may also provide a model for integration of other oncogenic DNA viruses such as papillomaviruses.


Asunto(s)
Carcinoma de Células de Merkel/patología , Reparación del ADN por Unión de Extremidades , Poliomavirus de Células de Merkel/genética , Infecciones por Polyomavirus/complicaciones , Infecciones Tumorales por Virus/complicaciones , Integración Viral , Replicación Viral , Antígenos Virales de Tumores , Neoplasias Óseas/genética , Neoplasias Óseas/secundario , Neoplasias Óseas/virología , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/virología , Humanos , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/virología , Recombinación Genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/virología , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/virología , Proteínas Virales/genética
11.
Am J Med Genet A ; 188(8): 2448-2453, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35451546

RESUMEN

The cardiofacioneurodevelopmental syndrome (CFNDS) is characterized by craniofacial anomalies including bilateral cleft lip and palate, cardiac, skeletal, and neurodevelopmental features and additional variable manifestations. Whole-exome sequencing revealed homozygous loss-of-function variants in CCDC32 (alternative name: C15orf57) in both previously described patients. ccdc32 deletion in zebrafish suggests a ciliary contribution to the pathomechanism. We report a 9-year-old female patient with CFNDS caused by a homozygous 32,583-bp deletion affecting CCDC32. Independent of the affected CCDC32 transcript variant this deletion likely leads to loss of the encoded protein. The patient had intellectual disability, marked hypertelorism, bilateral cleft lip and palate, and short stature. She had bilateral conductive hearing loss, small hands and feet, and finger abnormalities. Brain imaging disclosed hypoplastic corpus callosum. We describe a core phenotype comprising developmental delay and bilateral cleft lip and palate in the three individuals with CFNDS. Variable abnormalities of the face, brain, heart, fingers, and toes and postnatal growth retardation or microcephaly can be present. Possible involvement of the uncharacterized CCDC32 protein in the adapter protein 2 (AP2) complex regulating clathrin-mediated endocytosis has been reported. Cleft palate and cardiac defects observed in mice deficient of different AP2 subunits support a CCDC32 function in the AP2 complex.


Asunto(s)
Labio Leporino , Fisura del Paladar , Anomalías Craneofaciales , Discapacidad Intelectual , Animales , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Anomalías Craneofaciales/genética , Femenino , Discapacidad Intelectual/genética , Ratones , Fenotipo , Pez Cebra
12.
Brain ; 144(10): 3036-3049, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34037727

RESUMEN

Golgi-associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes are membrane-tethering heterotetramers located at the trans-Golgi network and recycling endosomes, respectively. GARP and EARP share the three subunits VPS51, VPS52 and VPS53, while VPS50 is unique to EARP and VPS54 to GARP. Retrograde transport of endosomal cargos to the trans-Golgi network is mediated by GARP and endocytic recycling by EARP. Here we report two unrelated individuals with homozygous variants in VPS50, a splice variant (c.1978-1G>T) and an in-frame deletion (p.Thr608del). Both patients had severe developmental delay, postnatal microcephaly, corpus callosum hypoplasia, seizures and irritability, transient neonatal cholestasis and failure to thrive. Light and transmission electron microscopy of liver from one revealed the absence of gamma-glutamyltransferase at bile canaliculi, with mislocalization to basolateral membranes and abnormal tight junctions. Using patient-derived fibroblasts, we identified reduced VPS50 protein accompanied by reduced levels of VPS52 and VPS53. While the transferrin receptor internalization rate was normal in cells of both patients, recycling of the receptor to the plasma membrane was significantly delayed. These data underscore the importance of VPS50 and/or the EARP complex in endocytic recycling and suggest an additional function in establishing cell polarity and trafficking between basolateral and apical membranes in hepatocytes. Individuals with biallelic hypomorphic variants in VPS50, VPS51 or VPS53 show an overarching neurodegenerative disorder with severe developmental delay, intellectual disability, microcephaly, early-onset epilepsy and variable atrophy of the cerebellum, cerebrum and/or brainstem. The term 'GARP/EARP deficiency' designates disorders in such individuals.


Asunto(s)
Colestasis/diagnóstico , Colestasis/genética , Variación Genética/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Proteínas de Transporte Vesicular/genética , Alelos , Células Cultivadas , Preescolar , Colestasis/complicaciones , Humanos , Lactante , Recién Nacido , Masculino , Trastornos del Neurodesarrollo/complicaciones , Linaje , Proteínas de Transporte Vesicular/metabolismo , Red trans-Golgi/fisiología
13.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36077086

RESUMEN

Dominant KCNQ1 variants are well-known for underlying cardiac arrhythmia syndromes. The two heterozygous KCNQ1 missense variants, R116L and P369L, cause an allelic disorder characterized by pituitary hormone deficiency and maternally inherited gingival fibromatosis. Increased K+ conductance upon co-expression of KCNQ1 mutant channels with the beta subunit KCNE2 is suggested to underlie the phenotype; however, the reason for KCNQ1-KCNE2 (Q1E2) channel gain-of-function is unknown. We aimed to discover the genetic defect in a single individual and three family members with gingival overgrowth and identified the KCNQ1 variants P369L and V185M, respectively. Patch-clamp experiments demonstrated increased constitutive K+ conductance of V185M-Q1E2 channels, confirming the pathogenicity of the novel variant. To gain insight into the pathomechanism, we examined all three disease-causing KCNQ1 mutants. Manipulation of the intracellular Ca2+ concentration prior to and during whole-cell recordings identified an impaired Ca2+ sensitivity of the mutant KCNQ1 channels. With low Ca2+, wild-type KCNQ1 currents were efficiently reduced and exhibited a pre-pulse-dependent cross-over of current traces and a high-voltage-activated component. These features were absent in mutant KCNQ1 channels and in wild-type channels co-expressed with calmodulin and exposed to high intracellular Ca2+. Moreover, co-expression of calmodulin with wild-type Q1E2 channels and loading the cells with high Ca2+ drastically increased Q1E2 current amplitudes, suggesting that KCNE2 normally limits the resting Q1E2 conductance by an increased demand for calcified calmodulin to achieve effective channel opening. Our data link impaired Ca2+ sensitivity of the KCNQ1 mutants R116L, V185M and P369L to Q1E2 gain-of-function that is associated with a particular KCNQ1 channelopathy.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Calmodulina/genética , Mutación con Ganancia de Función , Canal de Potasio KCNQ1/genética , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/genética
14.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499277

RESUMEN

Significant progress has been achieved in the treatment of metastatic castration-resistant prostate cancer (mCRPC). However, results in patients with aggressive variant prostate cancer (AVPC) have been disappointing. Here, we report retrospectively collected data from intensively pretreated AVPC patients (n = 17; 88.2% visceral metastases; 82% elevation of neuroendocrine markers) treated with salvage chemotherapy consisting of cisplatin, ifosfamide, and paclitaxel (TIP). At the interim analysis, 60% of patients showed radiographic response or stable disease (PFS = 2.5 months; OS = 6 months). In men who responded to chemotherapy, an OS > 15 months was observed. Preclinical analyses confirmed the high activity of the TIP regimen, especially in docetaxel-resistant prostate cancer cells. This effect was primarily mediated by increased cisplatin sensitivity in the emergence of taxane resistance. Proteomic and functional analyses identified a lower DNA repair capacity and cell cycle machinery deficiency to be causative. In contrast, paclitaxel showed inconsistent effects, partially antagonizing cisplatin and ifosfamide in some AVPC models. Consequently, paclitaxel has been excluded from the TIP combination for future patients. In summary, we report for the first time the promising efficacy of TIP as salvage therapy in AVPC. Our preclinical data indicate a pivotal role for cisplatin in overcoming docetaxel resistance.


Asunto(s)
Paclitaxel , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Paclitaxel/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Estudios Retrospectivos , Proteómica , Cisplatino/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Recuperativa/métodos , Docetaxel/uso terapéutico , Resultado del Tratamiento
15.
Brain ; 143(8): 2437-2453, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32761064

RESUMEN

In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Discapacidades del Desarrollo/genética , Factores de Intercambio de Guanina Nucleótido/genética , Enfermedades del Sistema Nervioso/genética , Humanos , Mutación , Fenotipo , Transporte de Proteínas/genética , Transducción de Señal/genética
16.
Nucleic Acids Res ; 47(1): 341-361, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30357366

RESUMEN

The RNA-binding protein TDP-43 is heavily implicated in neurodegenerative disease. Numerous patient mutations in TARDBP, the gene encoding TDP-43, combined with data from animal and cell-based models, imply that altered RNA regulation by TDP-43 causes Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. However, underlying mechanisms remain unresolved. Increased cytoplasmic TDP-43 levels in diseased neurons suggest a possible role in this cellular compartment. Here, we examined the impact on translation of overexpressing human TDP-43 and the TDP-43A315T patient mutant protein in motor neuron-like cells and primary cultures of cortical neurons. In motor-neuron like cells, TDP-43 associates with ribosomes without significantly affecting global translation. However, ribosome profiling and additional assays revealed enhanced translation and direct binding of Camta1, Mig12, and Dennd4a mRNAs. Overexpressing either wild-type TDP-43 or TDP-43A315T stimulated translation of Camta1 and Mig12 mRNAs via their 5'UTRs and increased CAMTA1 and MIG12 protein levels. In contrast, translational enhancement of Dennd4a mRNA required a specific 3'UTR region and was specifically observed with the TDP-43A315T patient mutant allele. Our data reveal that TDP-43 can function as an mRNA-specific translational enhancer. Moreover, since CAMTA1 and DENND4A are linked to neurodegeneration, they suggest that this function could contribute to disease.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al ADN/genética , Enfermedades Neurodegenerativas/genética , Transactivadores/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Citoplasma/genética , Citoplasma/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Regulación de la Expresión Génica/genética , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Enfermedades Neurodegenerativas/patología , Cultivo Primario de Células , ARN Mensajero/genética , Ribosomas/genética
17.
J Allergy Clin Immunol ; 145(6): 1641-1654, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32305348

RESUMEN

BACKGROUND: Prenatal challenges such as maternal stress perception increase the risk and severity of asthma during childhood. However, insights into the trajectories and targets underlying the pathogenesis of prenatally triggered asthma are largely unknown. The developing lung and immune system may constitute such targets. OBJECTIVE: Here we have aimed to identify the differential sex-specific effects of prenatal challenges on lung function, immune response, and asthma severity in mice. METHODS: We generated bone marrow chimeric (BMC) mice harboring either prenatally stress-exposed lungs or a prenatally stress-exposed immune (hematopoietic) system and induced allergic asthma via ovalbumin. Next-generation sequencing (RNA sequencing) of lungs and assessment of airway epithelial barrier function in ovalbumin-sensitized control and prenatally stressed offspring was also performed. RESULTS: Profoundly enhanced airway hyperresponsiveness, inflammation, and fibrosis were exclusively present in female BMC mice with prenatally stress-exposed lungs. These effects were significantly perpetuated if both the lungs and the immune system had been exposed to prenatal stress. A prenatally stress-exposed immune system alone did not suffice to increase the severity of these asthma features. RNA sequencing analysis of lungs from prenatally stressed, non-BMC, ovalbumin-sensitized females unveiled a deregulated expression of genes involved in asthma pathogenesis, tissue remodeling, and tight junction formation. It was also possible to independently confirm a tight junction disruption. In line with this, we identified an altered perinatal and/or postnatal expression of genes involved in lung development along with an impaired alveolarization in female prenatally stressed mice. CONCLUSION: Here we have shown that the fetal origin of asthma is orchestrated by a disrupted airway epithelium and further perpetuated by a predisposed immune system.


Asunto(s)
Asma/inmunología , Pulmón/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Mucosa Respiratoria/inmunología , Animales , Médula Ósea/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Inmunidad/inmunología , Inflamación/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Embarazo , Hipersensibilidad Respiratoria/inmunología , Uniones Estrechas/inmunología
18.
Hum Mutat ; 41(9): 1645-1661, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32623794

RESUMEN

The family of Tre2-Bub2-Cdc16 (TBC)-domain containing GTPase activating proteins (RABGAPs) is not only known as key regulatorof RAB GTPase activity but also has GAP-independent functions. Rab GTPases are implicated in membrane trafficking pathways, such as vesicular trafficking. We report biallelic loss-of-function variants in TBC1D2B, encoding a member of the TBC/RABGAP family with yet unknown function, as the underlying cause of cognitive impairment, seizures, and/or gingival overgrowth in three individuals from unrelated families. TBC1D2B messenger RNA amount was drastically reduced, and the protein was absent in fibroblasts of two patients. In immunofluorescence analysis, ectopically expressed TBC1D2B colocalized with vesicles positive for RAB5, a small GTPase orchestrating early endocytic vesicle trafficking. In two independent TBC1D2B CRISPR/Cas9 knockout HeLa cell lines that serve as cellular model of TBC1D2B deficiency, epidermal growth factor internalization was significantly reduced compared with the parental HeLa cell line suggesting a role of TBC1D2B in early endocytosis. Serum deprivation of TBC1D2B-deficient HeLa cell lines caused a decrease in cell viability and an increase in apoptosis. Our data reveal that loss of TBC1D2B causes a neurodevelopmental disorder with gingival overgrowth, possibly by deficits in vesicle trafficking and/or cell survival.


Asunto(s)
Proteínas Activadoras de GTPasa/genética , Sobrecrecimiento Gingival/genética , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Adulto , Niño , Endocitosis , Femenino , Células HeLa , Humanos , Lactante , Mutación con Pérdida de Función , Masculino , Linaje , Secuenciación del Exoma , Adulto Joven
19.
Biol Blood Marrow Transplant ; 26(7): e167-e170, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32147533

RESUMEN

The significance of clonal evolution in myelofibrosis (MF) relapse remains poorly understood. Here we performed panel sequencing in paired samples of 30 patients with MF who relapsed after undergoing allogeneic hematopoietic stem cell transplantation (alloSCT). We identified a median of 2 mutations (range, 0 to 12) in a median of 2 genes (range, 0 to 8) before allo-SCT, along with a median of 2 mutations (range, 0 to 12) in 2 genes (range, 0 to 6) at relapse. Additional whole-genome sequencing (n = 6) did not elucidate additional molecular changes. Taken together, our data provide further evidence, here on MF, that clonal evolution after alloSCT is limited and that instead, alloSCT selects specific (sub)clones.


Asunto(s)
Evolución Clonal , Trasplante de Células Madre Hematopoyéticas , Mielofibrosis Primaria , Humanos , Mutación , Mielofibrosis Primaria/genética , Mielofibrosis Primaria/terapia , Recurrencia
20.
Am J Hum Genet ; 100(1): 117-127, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28017373

RESUMEN

From a GeneMatcher-enabled international collaboration, we identified ten individuals affected by intellectual disability, speech delay, ataxia, and facial dysmorphism and carrying a deleterious EBF3 variant detected by whole-exome sequencing. One 9-bp duplication and one splice-site, five missense, and two nonsense variants in EBF3 were found; the mutations occurred de novo in eight individuals, and the missense variant c.625C>T (p.Arg209Trp) was inherited by two affected siblings from their healthy mother, who is mosaic. EBF3 belongs to the early B cell factor family (also known as Olf, COE, or O/E) and is a transcription factor involved in neuronal differentiation and maturation. Structural assessment predicted that the five amino acid substitutions have damaging effects on DNA binding of EBF3. Transient expression of EBF3 mutant proteins in HEK293T cells revealed mislocalization of all but one mutant in the cytoplasm, as well as nuclear localization. By transactivation assays, all EBF3 mutants showed significantly reduced or no ability to activate transcription of the reporter gene CDKN1A, and in situ subcellular fractionation experiments demonstrated that EBF3 mutant proteins were less tightly associated with chromatin. Finally, in RNA-seq and ChIP-seq experiments, EBF3 acted as a transcriptional regulator, and mutant EBF3 had reduced genome-wide DNA binding and gene-regulatory activity. Our findings demonstrate that variants disrupting EBF3-mediated transcriptional regulation cause intellectual disability and developmental delay and are present in ∼0.1% of individuals with unexplained neurodevelopmental disorders.


Asunto(s)
Ataxia/genética , Cara/anomalías , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Mutación , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Transcripción Genética/genética , Adolescente , Adulto , Sustitución de Aminoácidos , Niño , Preescolar , Cromatina/genética , Cromatina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Discapacidades del Desarrollo/genética , Exoma/genética , Femenino , Regulación de la Expresión Génica/genética , Genes Reporteros , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Mosaicismo , Transporte de Proteínas/genética , Síndrome , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA