Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 620(7975): 873-880, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558876

RESUMEN

Human tripartite motif protein 5α (TRIM5α) is a well-characterized restriction factor for some RNA viruses, including HIV1-5; however, reports are limited for DNA viruses6,7. Here we demonstrate that TRIM5α also restricts orthopoxviruses and, via its SPRY domain, binds to the orthopoxvirus capsid protein L3 to diminish virus replication and activate innate immunity. In response, several orthopoxviruses, including vaccinia, rabbitpox, cowpox, monkeypox, camelpox and variola viruses, deploy countermeasures. First, the protein C6 binds to TRIM5 via the RING domain to induce its proteasome-dependent degradation. Second, cyclophilin A (CypA) is recruited via interaction with the capsid protein L3 to virus factories and virions to antagonize TRIM5α; this interaction is prevented by cyclosporine A (CsA) and the non-immunosuppressive derivatives alisporivir and NIM811. Both the proviral effect of CypA and the antiviral effect of CsA are dependent on TRIM5α. CsA, alisporivir and NIM811 have antiviral activity against orthopoxviruses, and because these drugs target a cellular protein, CypA, the emergence of viral drug resistance is difficult. These results warrant testing of CsA derivatives against orthopoxviruses, including monkeypox and variola.


Asunto(s)
Factores de Restricción Antivirales , Ciclofilina A , Poxviridae , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Proteínas Virales , Humanos , Antivirales/metabolismo , Factores de Restricción Antivirales/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , Ciclofilina A/metabolismo , Poxviridae/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Virales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
2.
PLoS Pathog ; 18(2): e1010277, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35148361

RESUMEN

Cellular proteins often have multiple and diverse functions. This is illustrated with protein Spir-1 that is an actin nucleator, but, as shown here, also functions to enhance innate immune signalling downstream of RNA sensing by RIG-I/MDA-5. In human and mouse cells lacking Spir-1, IRF3 and NF-κB-dependent gene activation is impaired, whereas Spir-1 overexpression enhanced IRF3 activation. Furthermore, the infectious virus titres and sizes of plaques formed by two viruses that are sensed by RIG-I, vaccinia virus (VACV) and Zika virus, are increased in Spir-1 KO cells. These observations demonstrate the biological importance of Spir-1 in the response to virus infection. Like cellular proteins, viral proteins also have multiple and diverse functions. Here, we also show that VACV virulence factor K7 binds directly to Spir-1 and that a diphenylalanine motif of Spir-1 is needed for this interaction and for Spir-1-mediated enhancement of IRF3 activation. Thus, Spir-1 is a new virus restriction factor and is targeted directly by an immunomodulatory viral protein that enhances virus virulence and diminishes the host antiviral responses.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Actinas/metabolismo , Animales , Inmunidad Innata , Ratones , Fenilalanina , Transducción de Señal , Virus Vaccinia/genética , Proteínas Virales/metabolismo , Virus Zika/metabolismo
3.
J Virol ; 96(11): e0039822, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35543552

RESUMEN

Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood. Here, we further characterize how B12 and VRK1 regulate one another during poxvirus infection. First, we demonstrate that B12 is stabilized in the presence of VRK1 and that VRK1 and B12 coinfluence their respective solubility and subcellular localization. In this regard, we find that B12 promotes VRK1 colocalization with cellular DNA during mitosis and that B12 and VRK1 may be tethered cooperatively to chromatin. Next, we observe that the C-terminal tail of VRK1 is unnecessary for B12-VRK1 complex formation or its proviral activity. Interestingly, we identify a point mutation of B12 capable of abrogating interaction with VRK1 and which renders B12 nonrepressive during infection. Lastly, we investigated the influence of B12 on the host factor BAF and antiviral signaling pathways and find that B12 triggers redistribution of BAF from the cytoplasm to the nucleus. In addition, B12 increases DNA-induced innate immune signaling, revealing a new functional consequence of the B12 pseudokinase. Together, this study characterizes the multifaceted roles B12 plays during poxvirus infection that impact VRK1, BAF, and innate immune signaling. IMPORTANCE Protein pseudokinases comprise a considerable fraction of the human kinome, as well as other forms of life. Recent studies have demonstrated that their lack of key catalytic residues compared to their kinase counterparts does not negate their ability to intersect with molecular signal transduction. While the multifaceted roles pseudokinases can play are known, their contribution to virus infection remains understudied. Here, we further characterize the mechanism of how the VACV B12 pseudokinase and human VRK1 kinase regulate one another in the nucleus during poxvirus infection and inhibit VACV DNA replication. We find that B12 disrupts regulation of VRK1 and its downstream target BAF, while also enhancing DNA-dependent innate immune signaling. Combined with previous data, these studies contribute to the growing field of nuclear pathways targeted by poxviruses and provide evidence of unexplored roles of B12 in the activation of antiviral immunity.


Asunto(s)
Inmunidad Innata , Péptidos y Proteínas de Señalización Intracelular , Infecciones por Poxviridae , Proteínas Serina-Treonina Quinasas , Virus Vaccinia , ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Infecciones por Poxviridae/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Vaccinia , Virus Vaccinia/enzimología , Virus Vaccinia/fisiología
4.
Arch Virol ; 165(3): 671-681, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31942645

RESUMEN

Dengue virus (DENV) is the most common mosquito-borne viral disease. The World Health Organization estimates that 400 million new cases of dengue fever occur every year. Approximately 500,000 individuals develop severe and life-threatening complications from dengue fever, such as dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF), which cause 22,000 deaths yearly. Currently, there are no specific licensed therapeutics to treat DENV illness. We have previously shown that the MEK/ERK inhibitor U0126 inhibits the replication of the flavivirus yellow fever virus. In this study, we demonstrate that the MEK/ERK inhibitor AZD6244 has potent antiviral efficacy in vitro against DENV-2, DENV-3, and Saint Louis encephalitis virus (SLEV). We also show that it is able to protect AG129 mice from a lethal challenge with DENV-2 (D2S20). The molecule is currently undergoing phase III clinical trials for the treatment of non-small-cell lung cancer. The effect of AZD6244 on the DENV life cycle was attributed to a blockade of morphogenesis. Treatment of AG129 mice twice daily with oral doses of AZD6244 (100 mg/kg/day) prevented the animals from contracting dengue hemorrhagic fever (DHF)-like lethal disease upon intravenous infection with 1 × 105 PFU of D2S20. The effectiveness of AZD6244 was observed even when the treatment of infected animals was initiated 1-2 days postinfection. This was also followed by a reduction in viral copy number in both the serum and the spleen. There was also an increase in IL-1ß and TNF-α levels in mice that were infected with D2S20 and treated with AZD6244 in comparison to infected mice that were treated with the vehicle only. These data demonstrate the potential of AZD6244 as a new therapeutic agent to treat DENV infection and possibly other flavivirus diseases.


Asunto(s)
Antivirales/uso terapéutico , Bencimidazoles/uso terapéutico , Virus del Dengue/crecimiento & desarrollo , Dengue Grave/prevención & control , Animales , Línea Celular , Cricetinae , Virus del Dengue/efectos de los fármacos , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Interleucina-1beta/sangre , Ratones , Dengue Grave/virología , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre
5.
J Gen Virol ; 97(9): 2346-2351, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27312213

RESUMEN

Vaccinia virus (VACV) is a poxvirus and encodes many proteins that modify the host cell metabolism or inhibit the host response to infection. For instance, it is known that VACV infection can activate the mitogen-activated protein kinase (MAPK)/activator protein 1 (AP-1) pathway and inhibit activation of the pro-inflammatory transcription factor NF-κB. Since NF-κB and MAPK/AP-1 share common upstream activators we investigated whether six different VACV Bcl-2-like NF-κB inhibitors can also influence MAPK/AP-1 activation. Data presented show that proteins A52, B14 and K7 each contribute to AP-1 activation during VACV infection, and when expressed individually outwith infection. B14 induced the greatest stimulation of AP-1 and further investigation showed B14 activated mainly the MAPKs ERK (extracellular signal-regulated kinase) and JNK (Jun N-terminal kinase), and their substrate c-Jun (a component of AP-1). These data indicate that the same viral protein can have different effects on distinct signalling pathways, in blocking NF-κB activation whilst leading to MAPK/AP-1 activation.


Asunto(s)
Interacciones Huésped-Patógeno , Factores Inmunológicos/metabolismo , Factor de Transcripción AP-1/metabolismo , Virus Vaccinia/fisiología , Proteínas Virales/metabolismo , Transducción de Señal
6.
Arch Virol ; 161(11): 2991-3002, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27465567

RESUMEN

The orthopoxvirus vaccinia virus (VACV) interacts with both actin and microtubule cytoskeletons in order to generate and spread progeny virions. Here, we present evidence demonstrating the involvement of PAK1 (p21-activated kinase 1) in the dissemination of VACV. Although PAK1 activation has previously been associated with optimal VACV entry via macropinocytosis, its absence does not affect the production of intracellular mature virions (IMVs) and extracellular enveloped virions (EEVs). Our data demonstrate that low-multiplicity infection of PAK1(-/-) MEFs leads to a reduction in plaque size followed by decreased production of both IMVs and EEVs, strongly suggesting that virus spread was impaired in the absence of PAK1. Confocal and scanning electron microscopy showed a substantial reduction in the amount of VACV-induced actin tails in PAK1(-/-) MEFs, but no significant alteration in the total amount of cell-associated enveloped virions (CEVs). Furthermore, the decreased VACV dissemination in PAK1(-/-) cells was correlated with the absence of phosphorylated ARPC1 (Thr21), a downstream target of PAK1 and a key regulatory subunit of the ARP2/3 complex, which is necessary for the formation of actin tails and viral spread. We conclude that PAK1, besides its role in virus entry, also plays a relevant role in VACV dissemination.


Asunto(s)
Endocitosis , Interacciones Huésped-Patógeno , Virus Vaccinia/fisiología , Internalización del Virus , Quinasas p21 Activadas/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Ratones , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Quinasas p21 Activadas/genética
7.
Virol J ; 11: 95, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24886672

RESUMEN

BACKGROUND: The identification of novel giant viruses from the nucleocytoplasmic large DNA viruses group and their virophages has increased in the last decade and has helped to shed light on viral evolution. This study describe the discovery, isolation and characterization of Samba virus (SMBV), a novel giant virus belonging to the Mimivirus genus, which was isolated from the Negro River in the Brazilian Amazon. We also report the isolation of an SMBV-associated virophage named Rio Negro (RNV), which is the first Mimivirus virophage to be isolated in the Americas. METHODS/RESULTS: Based on a phylogenetic analysis, SMBV belongs to group A of the putative Megavirales order, possibly a new virus related to Acanthamoeba polyphaga mimivirus (APMV). SMBV is the largest virus isolated in Brazil, with an average particle diameter about 574 nm. The SMBV genome contains 938 ORFs, of which nine are ORFans. The 1,213.6 kb SMBV genome is one of the largest genome of any group A Mimivirus described to date. Electron microscopy showed RNV particle accumulation near SMBV and APMV factories resulting in the production of defective SMBV and APMV particles and decreasing the infectivity of these two viruses by several logs. CONCLUSION: This discovery expands our knowledge of Mimiviridae evolution and ecology.


Asunto(s)
Mimiviridae/aislamiento & purificación , Filogenia , Ríos/virología , Brasil , ADN Viral/química , ADN Viral/genética , Microscopía Electrónica de Transmisión , Mimiviridae/clasificación , Mimiviridae/genética , Mimiviridae/ultraestructura , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Bosque Lluvioso , Análisis de Secuencia de ADN , Virión/ultraestructura
8.
Curr Opin Virol ; 58: 101291, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529073

RESUMEN

The capacity of host cells to detect and restrict an infecting virus rests on an array of cell-autonomous antiviral effectors and innate immune receptors that can trigger inflammatory processes at tissue and organismal levels. Dynamic changes in protein abundance, subcellular localisation, post-translational modifications and interactions with other biomolecules govern these processes. Proteomics is therefore an ideal experimental tool to discover novel mechanisms of host antiviral immunity. Additional information can be gleaned both about host and virus by systematic analysis of viral immune evasion strategies. In this review, we summarise recent advances in proteomic technologies and their application to antiviral innate immunity.


Asunto(s)
Antivirales , Virus , Proteómica , Inmunidad Innata , Evasión Inmune , Interacciones Huésped-Patógeno
9.
Nat Commun ; 14(1): 8134, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38065956

RESUMEN

Modified vaccinia Ankara (MVA) virus does not replicate in human cells and is the vaccine deployed to curb the current outbreak of mpox. Here, we conduct a multiplexed proteomic analysis to quantify >9000 cellular and ~80% of viral proteins throughout MVA infection of human fibroblasts and macrophages. >690 human proteins are down-regulated >2-fold by MVA, revealing a substantial remodelling of the host proteome. >25% of these MVA targets are not shared with replication-competent vaccinia. Viral intermediate/late gene expression is necessary for MVA antagonism of innate immunity, and suppression of interferon effectors such as ISG20 potentiates virus gene expression. Proteomic changes specific to infection of macrophages indicate modulation of the inflammatory response, including inflammasome activation. Our approach thus provides a global view of the impact of MVA on the human proteome and identifies mechanisms that may underpin its abortive infection. These discoveries will prove vital to design future generations of vaccines.


Asunto(s)
Vaccinia , Humanos , Proteoma , Proteómica , Virus Vaccinia/genética , Muerte Celular , Antivirales
10.
Nat Microbiol ; 7(1): 154-168, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949827

RESUMEN

Infection of mammalian cells with viruses activates NF-κB to induce the expression of cytokines and chemokines and initiate an antiviral response. Here, we show that a vaccinia virus protein mimics the transactivation domain of the p65 subunit of NF-κB to inhibit selectively the expression of NF-κB-regulated genes. Using co-immunoprecipitation assays, we found that the vaccinia virus protein F14 associates with NF-κB co-activator CREB-binding protein (CBP) and disrupts the interaction between p65 and CBP. This abrogates CBP-mediated acetylation of p65, after which it reduces promoter recruitment of the transcriptional regulator BRD4 and diminishes stimulation of NF-κB-regulated genes CXCL10 and CCL2. Recruitment of BRD4 to the promoters of NFKBIA and CXCL8 remains unaffected by either F14 or JQ1 (a competitive inhibitor of BRD4 bromodomains), indicating that BRD4 recruitment is acetylation-independent. Unlike other viral proteins that are general antagonists of NF-κB, F14 is a selective inhibitor of NF-κB-dependent gene expression. An in vivo model of infection demonstrated that F14 promotes virulence. Molecular mimicry of NF-κB may be conserved because other orthopoxviruses, including variola, monkeypox and cowpox viruses, encode orthologues of F14.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Imitación Molecular , FN-kappa B/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Proteína de Unión a CREB/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Humanos , FN-kappa B/metabolismo , Transducción de Señal , Transcripción Genética , Vaccinia/virología , Virus Vaccinia/inmunología , Virus Vaccinia/patogenicidad , Proteínas Virales/inmunología , Proteínas Virales/metabolismo
11.
Cell Rep ; 27(6): 1920-1933.e7, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067474

RESUMEN

Vaccinia virus (VACV) has numerous immune evasion strategies, including multiple mechanisms of inhibition of interferon regulatory factor 3 (IRF-3), nuclear factor κB (NF-κB), and type I interferon (IFN) signaling. Here, we use highly multiplexed proteomics to quantify ∼9,000 cellular proteins and ∼80% of viral proteins at seven time points throughout VACV infection. A total of 265 cellular proteins are downregulated >2-fold by VACV, including putative natural killer cell ligands and IFN-stimulated genes. Two-thirds of these viral targets, including class II histone deacetylase 5 (HDAC5), are degraded proteolytically during infection. In follow-up analysis, we demonstrate that HDAC5 restricts replication of both VACV and herpes simplex virus type 1. By generating a protein-based temporal classification of VACV gene expression, we identify protein C6, a multifunctional IFN antagonist, as being necessary and sufficient for proteasomal degradation of HDAC5. Our approach thus identifies both a host antiviral factor and a viral mechanism of innate immune evasion.


Asunto(s)
Histona Desacetilasas/metabolismo , Interferones/antagonistas & inhibidores , Proteómica , Virus Vaccinia/metabolismo , Vaccinia/metabolismo , Vaccinia/virología , Citomegalovirus/metabolismo , Regulación hacia Abajo , Regulación Viral de la Expresión Génica , Herpesvirus Humano 1/metabolismo , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Interferones/metabolismo , Proteínas de la Membrana/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Factores de Tiempo , Virus Vaccinia/genética , Virus Vaccinia/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
Viruses ; 10(3)2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495547

RESUMEN

The increasing frequency of monkeypox virus infections, new outbreaks of other zoonotic orthopoxviruses and concern about the re-emergence of smallpox have prompted research into developing antiviral drugs and better vaccines against these viruses. This article considers the genetic engineering of vaccinia virus (VACV) to enhance vaccine immunogenicity and safety. The virulence, immunogenicity and protective efficacy of VACV strains engineered to lack specific immunomodulatory or host range proteins are described. The ultimate goal is to develop safer and more immunogenic VACV vaccines that induce long-lasting immunological memory.


Asunto(s)
Ingeniería Genética , Memoria Inmunológica , Inmunomodulación , Virus Vaccinia/genética , Vacunas Virales/inmunología , Animales , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/metabolismo , Enfermedades Transmisibles Emergentes/prevención & control , Citocinas/metabolismo , Humanos , Inmunidad , Inmunogenicidad Vacunal , Mediadores de Inflamación/metabolismo , Viruela/tratamiento farmacológico , Viruela/inmunología , Viruela/metabolismo , Viruela/prevención & control , Vacuna contra Viruela/inmunología , Virus Vaccinia/inmunología , Vacunas Virales/genética , Zoonosis
13.
Cell Signal ; 28(9): 1283-1291, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27181679

RESUMEN

The Ras-Raf-MEK-ERK1/2 signaling pathway regulates fundamental processes in malignant cells. However, the exact contributions of MEK1 and MEK2 to the development of cancer remain to be established. We studied the effects of MEK small-molecule inhibitors (PD98059 and U0126) and MEK1 and MEK2 knock-down on cell proliferation, apoptosis and MAPK activation. We showed a diminution of cell viability that was associated with a downregulation of cyclin D1 expression and an increase of apoptosis marker in MEK2 silenced cells; by contrast, a slight increase of cell survival was observed in the absence of MEK1 that correlated with an augment of cyclin D1 expression. These data indicate that MEK2 but not MEK1 is essential for MDA-MB-231 cell survival. Importantly, the role of MEK2 in cell survival appeared independent on ERK1/2 phosphorylation since its absence did not alter the level of activated ERK1/2. Indeed, we have reported an unrevealed link between MEK2 and MKK3/MKK6-p38 MAPK axis where MEK2 was essential for the phosphorylation of MKK3/MKK6 and p38 MAPK that directly impacted on cyclin D1 expression. Importantly, the MEK1 inhibitor PD98059, like MEK1 silencing, induced an augment of cyclin D1 expression that correlated with an increase of MDA-MB-231 cell proliferation suggesting that MEK1 may play a regulatory role in these cells. In sum, the crucial role of MEK2 in MDA-MB-231 cell viability and the unknown relationship between MEK2 and MKK3/MKK6-p38 axis here revealed may open new therapeutic strategies for aggressive breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Ciclina D1/metabolismo , MAP Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 6/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Butadienos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Femenino , Flavonoides/farmacología , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Humanos , Nitrilos/farmacología , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
14.
Front Microbiol ; 6: 539, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26082761

RESUMEN

The complexity of giant virus genomes is intriguing, especially the presence of genes encoding components of the protein translation machinery such as transfer RNAs and aminoacyl-tRNA-synthetases; these features are uncommon among other viruses. Although orthologs of these genes are codified by their hosts, one can hypothesize that having these translation-related genes might represent a gain of fitness during infection. Therefore, the aim of this study was to evaluate the expression of translation-related genes by mimivirus during infection of Acanthamoeba castellanii under different nutritional conditions. In silico analysis of amino acid usage revealed remarkable differences between the mimivirus isolates and the A. castellanii host. Relative expression analysis by quantitative PCR revealed that mimivirus was able to modulate the expression of eight viral translation-related genes according to the amoebal growth condition, with a higher induction of gene expression under starvation. Some mimivirus isolates presented differences in translation-related gene expression; notably, polymorphisms in the promoter regions correlated with these differences. Two mimivirus isolates did not encode the tryptophanyl-tRNA in their genomes, which may be linked with low conservation pressure based on amino acid usage analysis. Taken together, our data suggest that mimivirus can modulate the expression of translation-related genes in response to nutrient availability in the host cell, allowing the mimivirus to adapt to different hosts growing under different nutritional conditions.

15.
Antiviral Res ; 111: 82-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25241249

RESUMEN

Exploiting the inhibition of host signaling pathways aiming for discovery of potential antiflaviviral compounds is clearly a beneficial strategy for the control of life-threatening diseases caused by flaviviruses. Here we describe the antiviral activity of the MEK1/2 inhibitor U0126 against Yellow fever virus 17D vaccine strain (YFV-17D). Infection of VERO cells with YFV-17D stimulates ERK1/2 phosphorylation early during infection. Pharmacological inhibition of MEK1/2 through U0126 treatment of VERO cells blockades not only the YFV-stimulated ERK1/2 phosphorylation, but also inhibits YFV replication by ∼99%. U0126 was also effective against dengue virus (DENV-2 and -3) and Saint-Louis encephalitis virus (SLEV). Levels of NS4AB, as detected by immunofluorescence, are diminished upon treatment with the inhibitor, as well as the characteristic endoplasmic reticulum membrane invagination stimulated during the infection. Though not protective, treatment of YFV-infected, adult BALB/c mice with U0126 resulted in significant reduction of virus titers in brains. Collectively, our data suggest the potential targeting of the MEK1/2 kinase as a therapeutic tool against diseases caused by flaviviruses such as yellow fever, adverse events associated with yellow fever vaccination and dengue.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Replicación Viral , Fiebre Amarilla/enzimología , Virus de la Fiebre Amarilla/fisiología , Animales , Chlorocebus aethiops , Activación Enzimática , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Células Vero , Fiebre Amarilla/genética , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética
16.
Int J Environ Health Res ; 17(2): 133-40, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17616869

RESUMEN

Shellfish can bioaccumulate in their tissues pathogenic contaminants present in water and they have been related with several outbreaks of food-borne diseases worldwide. With their increased population in urban areas, gulls have been reported as an important source of water environment contamination. During a 10-month period, water, gulls feces and oyster samples were collected in a shellfish harvesting site and analyzed for total and fecal coliform counts (water) and Salmonella presence (gull feces and oyster meat). Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used to differentiate Salmonella species detected in gulls and oysters. Salmonella presence was detected in 3/10 of oyster samples and in 6/10 of gull feces samples by PCR. There was a relationship between Salmonella presence in oysters and fecal contamination in water. Restriction profiles of both gulls and oyster samples were similar to Salmonella Typhimurium profile by RFLP. These findings indicate strong evidence that gulls can contribute to Salmonella contamination of harvested oysters.


Asunto(s)
Charadriiformes/microbiología , Microbiología de Alimentos/normas , Ostreidae/microbiología , Salmonella typhimurium/aislamiento & purificación , Mariscos/microbiología , Microbiología del Agua/normas , Animales , Brasil , Monitoreo del Ambiente , Heces/microbiología , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Salmonella typhimurium/genética , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA