Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Dev Cell ; 59(2): 175-186.e8, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38159568

RESUMEN

Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.


Asunto(s)
Proteínas Hedgehog , Células Madre Embrionarias de Ratones , Ratones , Animales , Proteínas Hedgehog/metabolismo , Glándulas Mamarias Animales , Células Epiteliales , Diferenciación Celular , Organoides
2.
J Clin Invest ; 134(7)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271119

RESUMEN

Loss of BRCA2 (breast cancer 2) is lethal for normal cells. Yet it remains poorly understood how, in BRCA2 mutation carriers, cells undergoing loss of heterozygosity overcome the lethality and undergo tissue-specific neoplastic transformation. Here, we identified mismatch repair gene mutL homolog 1 (MLH1) as a genetic interactor of BRCA2 whose overexpression supports the viability of Brca2-null cells. Mechanistically, we showed that MLH1 interacts with Flap endonuclease 1 (FEN1) and competes to process the RNA flaps of Okazaki fragments. Together, they restrained the DNA2 nuclease activity on the reversed forks of lagging strands, leading to replication fork (RF) stability in BRCA2-deficient cells. In these cells, MLH1 also attenuated R-loops, allowing the progression of stable RFs, which suppressed genomic instability and supported cell viability. We demonstrated the significance of their genetic interaction by the lethality of Brca2-mutant mice and inhibition of Brca2-deficient tumor growth in mice by Mlh1 loss. Furthermore, we described estrogen as inducing MLH1 expression through estrogen receptor α (ERα), which might explain why the majority of BRCA2 mutation carriers develop ER-positive breast cancer. Taken together, our findings reveal a role of MLH1 in relieving replicative stress and show how it may contribute to the establishment of BRCA2-deficient breast tumors.


Asunto(s)
Proteína BRCA2 , Neoplasias Mamarias Animales , Animales , Ratones , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Reparación de la Incompatibilidad de ADN , Replicación del ADN
3.
Sci Rep ; 12(1): 7200, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35504930

RESUMEN

Signaling pathways play an important role in cell fate determination in stem cells and regulate a plethora of developmental programs, the dysregulation of which can lead to human diseases. Growth factors (GFs) regulating these signaling pathways therefore play a major role in the plasticity of adult stem cells and modulate cellular differentiation and tissue repair outcomes. We consider murine mammary organoid generation from self-organizing adult stem cells as a tool to understand the role of GFs in organ development and tissue regeneration. The astounding capacity of mammary organoids to regenerate a gland in vivo after transplantation makes it a convenient model to study organ regeneration. We show organoids grown in suspension with minimal concentration of Matrigel and in the presence of a cocktail of GFs regulating EGF and FGF signaling can recapitulate key epithelial layers of adult mammary gland. We establish a toolkit utilizing in vivo whole animal imaging and ultrasound imaging combined with ex vivo approaches including tissue clearing and confocal imaging to study organ regeneration and ductal morphogenesis. Although the organoid structures were severely impaired in vitro when cultured in the presence of individual GFs, ex vivo imaging revealed ductal branching after transplantation albeit with significantly reduced number of terminal end buds. We anticipate these imaging modalities will open novel avenues to study mammary gland morphogenesis in vivo and can be beneficial for monitoring mammary tumor progression in pre-clinical and clinical settings.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Organoides , Animales , Factores Inmunológicos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Morfogénesis , Organoides/crecimiento & desarrollo , Organoides/metabolismo , Regeneración
4.
Nat Commun ; 13(1): 1751, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365640

RESUMEN

The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB.


Asunto(s)
Roturas del ADN de Doble Cadena , Recombinasa Rad51 , Animales , ADN , Reparación del ADN/genética , Recombinación Homóloga , Ratones , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo
5.
Cell Death Dis ; 12(9): 838, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489406

RESUMEN

Hereditary non-polyposis colorectal cancer, now known as Lynch syndrome (LS) is one of the most common cancer predisposition syndromes and is caused by germline pathogenic variants (GPVs) in DNA mismatch repair (MMR) genes. A common founder GPV in PMS2 in the Canadian Inuit population, NM_000535.5: c.2002A>G, leads to a benign missense (p.I668V) but also acts as a de novo splice site that creates a 5 bp deletion resulting in a truncated protein (p.I668*). Individuals homozygous for this GPV are predisposed to atypical constitutional MMR deficiency with a delayed onset of first primary malignancy. We have generated mice with an equivalent germline mutation (Pms2c.1993A>G) and demonstrate that it results in a splicing defect similar to those observed in humans. Homozygous mutant mice are viable like the Pms2 null mice. However, unlike the Pms2 null mice, these mutant mice are fertile, like humans homozygous for this variant. Furthermore, these mice exhibit a significant increase in microsatellite instability and intestinal adenomas on an Apc mutant background. Rectification of the splicing defect in human and murine fibroblasts using antisense morpholinos suggests that this novel mouse model can be valuable in evaluating the efficacy aimed at targeting the splicing defect in PMS2 that is highly prevalent among the Canadian Inuits.


Asunto(s)
Reparación de la Incompatibilidad de ADN/genética , Efecto Fundador , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Mutación/genética , Empalme del ARN/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Exones/genética , Fertilidad/genética , Fibroblastos/metabolismo , Masculino , Meiosis , Ratones Endogámicos C57BL , Inestabilidad de Microsatélites , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Morfolinos/farmacología , Pólipos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermatozoides/patología , Testículo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA