Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Care Med ; 52(5): 743-751, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214566

RESUMEN

OBJECTIVES: Ventilator dyssynchrony may be associated with increased delivered tidal volumes (V t s) and dynamic transpulmonary pressure (ΔP L,dyn ), surrogate markers of lung stress and strain, despite low V t ventilation. However, it is unknown which types of ventilator dyssynchrony are most likely to increase these metrics or if specific ventilation or sedation strategies can mitigate this potential. DESIGN: A prospective cohort analysis to delineate the association between ten types of breaths and delivered V t , ΔP L,dyn , and transpulmonary mechanical energy. SETTING: Patients admitted to the medical ICU. PATIENTS: Over 580,000 breaths from 35 patients with acute respiratory distress syndrome (ARDS) or ARDS risk factors. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Patients received continuous esophageal manometry. Ventilator dyssynchrony was identified using a machine learning algorithm. Mixed-effect models predicted V t , ΔP L,dyn , and transpulmonary mechanical energy for each type of ventilator dyssynchrony while controlling for repeated measures. Finally, we described how V t , positive end-expiratory pressure (PEEP), and sedation (Richmond Agitation-Sedation Scale) strategies modify ventilator dyssynchrony's association with these surrogate markers of lung stress and strain. Double-triggered breaths were associated with the most significant increase in V t , ΔP L,dyn , and transpulmonary mechanical energy. However, flow-limited, early reverse-triggered, and early ventilator-terminated breaths were also associated with significant increases in V t , ΔP L,dyn , and energy. The potential of a ventilator dyssynchrony type to increase V t , ΔP L,dyn , or energy clustered similarly. Increasing set V t may be associated with a disproportionate increase in high-volume and high-energy ventilation from double-triggered breaths, but PEEP and sedation do not clinically modify the interaction between ventilator dyssynchrony and surrogate markers of lung stress and strain. CONCLUSIONS: Double-triggered, flow-limited, early reverse-triggered, and early ventilator-terminated breaths are associated with increases in V t , ΔP L,dyn , and energy. As flow-limited breaths are more than twice as common as double-triggered breaths, further work is needed to determine the interaction of ventilator dyssynchrony frequency to cause clinically meaningful changes in patient outcomes.


Asunto(s)
Respiración Artificial , Síndrome de Dificultad Respiratoria , Humanos , Respiración Artificial/efectos adversos , Estudios Prospectivos , Ventiladores Mecánicos , Volumen de Ventilación Pulmonar , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/etiología , Biomarcadores
2.
JAMA ; 331(8): 665-674, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38245889

RESUMEN

Importance: Sepsis is a leading cause of death among children worldwide. Current pediatric-specific criteria for sepsis were published in 2005 based on expert opinion. In 2016, the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) defined sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection, but it excluded children. Objective: To update and evaluate criteria for sepsis and septic shock in children. Evidence Review: The Society of Critical Care Medicine (SCCM) convened a task force of 35 pediatric experts in critical care, emergency medicine, infectious diseases, general pediatrics, nursing, public health, and neonatology from 6 continents. Using evidence from an international survey, systematic review and meta-analysis, and a new organ dysfunction score developed based on more than 3 million electronic health record encounters from 10 sites on 4 continents, a modified Delphi consensus process was employed to develop criteria. Findings: Based on survey data, most pediatric clinicians used sepsis to refer to infection with life-threatening organ dysfunction, which differed from prior pediatric sepsis criteria that used systemic inflammatory response syndrome (SIRS) criteria, which have poor predictive properties, and included the redundant term, severe sepsis. The SCCM task force recommends that sepsis in children be identified by a Phoenix Sepsis Score of at least 2 points in children with suspected infection, which indicates potentially life-threatening dysfunction of the respiratory, cardiovascular, coagulation, and/or neurological systems. Children with a Phoenix Sepsis Score of at least 2 points had in-hospital mortality of 7.1% in higher-resource settings and 28.5% in lower-resource settings, more than 8 times that of children with suspected infection not meeting these criteria. Mortality was higher in children who had organ dysfunction in at least 1 of 4-respiratory, cardiovascular, coagulation, and/or neurological-organ systems that was not the primary site of infection. Septic shock was defined as children with sepsis who had cardiovascular dysfunction, indicated by at least 1 cardiovascular point in the Phoenix Sepsis Score, which included severe hypotension for age, blood lactate exceeding 5 mmol/L, or need for vasoactive medication. Children with septic shock had an in-hospital mortality rate of 10.8% and 33.5% in higher- and lower-resource settings, respectively. Conclusions and Relevance: The Phoenix sepsis criteria for sepsis and septic shock in children were derived and validated by the international SCCM Pediatric Sepsis Definition Task Force using a large international database and survey, systematic review and meta-analysis, and modified Delphi consensus approach. A Phoenix Sepsis Score of at least 2 identified potentially life-threatening organ dysfunction in children younger than 18 years with infection, and its use has the potential to improve clinical care, epidemiological assessment, and research in pediatric sepsis and septic shock around the world.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Niño , Choque Séptico/mortalidad , Insuficiencia Multiorgánica/diagnóstico , Insuficiencia Multiorgánica/etiología , Consenso , Sepsis/mortalidad , Síndrome de Respuesta Inflamatoria Sistémica/diagnóstico , Puntuaciones en la Disfunción de Órganos
3.
JAMA ; 331(8): 675-686, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38245897

RESUMEN

Importance: The Society of Critical Care Medicine Pediatric Sepsis Definition Task Force sought to develop and validate new clinical criteria for pediatric sepsis and septic shock using measures of organ dysfunction through a data-driven approach. Objective: To derive and validate novel criteria for pediatric sepsis and septic shock across differently resourced settings. Design, Setting, and Participants: Multicenter, international, retrospective cohort study in 10 health systems in the US, Colombia, Bangladesh, China, and Kenya, 3 of which were used as external validation sites. Data were collected from emergency and inpatient encounters for children (aged <18 years) from 2010 to 2019: 3 049 699 in the development (including derivation and internal validation) set and 581 317 in the external validation set. Exposure: Stacked regression models to predict mortality in children with suspected infection were derived and validated using the best-performing organ dysfunction subscores from 8 existing scores. The final model was then translated into an integer-based score used to establish binary criteria for sepsis and septic shock. Main Outcomes and Measures: The primary outcome for all analyses was in-hospital mortality. Model- and integer-based score performance measures included the area under the precision recall curve (AUPRC; primary) and area under the receiver operating characteristic curve (AUROC; secondary). For binary criteria, primary performance measures were positive predictive value and sensitivity. Results: Among the 172 984 children with suspected infection in the first 24 hours (development set; 1.2% mortality), a 4-organ-system model performed best. The integer version of that model, the Phoenix Sepsis Score, had AUPRCs of 0.23 to 0.38 (95% CI range, 0.20-0.39) and AUROCs of 0.71 to 0.92 (95% CI range, 0.70-0.92) to predict mortality in the validation sets. Using a Phoenix Sepsis Score of 2 points or higher in children with suspected infection as criteria for sepsis and sepsis plus 1 or more cardiovascular point as criteria for septic shock resulted in a higher positive predictive value and higher or similar sensitivity compared with the 2005 International Pediatric Sepsis Consensus Conference (IPSCC) criteria across differently resourced settings. Conclusions and Relevance: The novel Phoenix sepsis criteria, which were derived and validated using data from higher- and lower-resource settings, had improved performance for the diagnosis of pediatric sepsis and septic shock compared with the existing IPSCC criteria.


Asunto(s)
Sepsis , Choque Séptico , Humanos , Niño , Choque Séptico/mortalidad , Insuficiencia Multiorgánica , Estudios Retrospectivos , Puntuaciones en la Disfunción de Órganos , Sepsis/complicaciones , Mortalidad Hospitalaria
4.
J Biomed Inform ; 137: 104275, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572279

RESUMEN

Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.


Asunto(s)
Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Ventiladores Mecánicos , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Pulmón
5.
J Biomed Inform ; 144: 104419, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37301528

RESUMEN

OBJECTIVES: To examine the feasibility of promoting engagement with data-driven self-management of health among individuals from minoritized medically underserved communities by tailoring the design of self-management interventions to individuals' type of motivation and regulation in accordance with the Self-Determination Theory. METHODS: Fifty-three individuals with type 2 diabetes from an impoverished minority community were randomly assigned to four different versions of an mHealth app for data-driven self-management with the focus on nutrition, Platano; each version was tailored to a specific type of motivation and regulation within the SDT self-determination continuum. These versions included financial rewards (external regulation), feedback from expert registered dietitians (RDF, introjected regulation), self-assessment of attainment of one's nutritional goals (SA, identified regulation), and personalized meal-time nutrition decision support with post-meal blood glucose forecasts (FORC, integrated regulation). We used qualitative interviews to examine interaction between participants' experiences with the app and their motivation type (internal-external). RESULTS: As hypothesized, we found a clear interaction between the type of motivation and Platano features that users responded to and benefited from. For example, those with more internal motivation reported more positive experience with SA and FORC than those with more external motivation. However, we also found that Platano features that aimed to specifically address the needs of individuals with external regulation did not create the desired experience. We attribute this to a mismatch in emphasis on informational versus emotional support, particularly evident in RDF. In addition, we found that for participants recruited from an economically disadvantaged community, internal factors, such as motivation and regulation, interacted with external factors, most notably with limited health literacy and limited access to resources. CONCLUSIONS: The study suggests feasibility of using SDT to tailor design of mHealth interventions for promoting data-driven self-management to individuals' motivation and regulation. However, further research is needed to better align design solutions with different levels of self-determination continuum, to incorporate stronger emphasis on emotional support for individuals with external regulation, and to address unique needs and challenges of underserved communities, with particular attention to limited health literacy and access to resources.


Asunto(s)
Diabetes Mellitus Tipo 2 , Equidad en Salud , Automanejo , Humanos , Diabetes Mellitus Tipo 2/terapia , Motivación
6.
Chaos ; 33(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486667

RESUMEN

Forecasting blood glucose (BG) levels with routinely collected data is useful for glycemic management. BG dynamics are nonlinear, complex, and nonstationary, which can be represented by nonlinear models. However, the sparsity of routinely collected data creates parameter identifiability issues when high-fidelity complex models are used, thereby resulting in inaccurate forecasts. One can use models with reduced physiological fidelity for robust and accurate parameter estimation and forecasting with sparse data. For this purpose, we approximate the nonlinear dynamics of BG regulation by a linear stochastic differential equation: we develop a linear stochastic model, which can be specialized to different settings: type 2 diabetes mellitus (T2DM) and intensive care unit (ICU), with different choices of appropriate model functions. The model includes deterministic terms quantifying glucose removal from the bloodstream through the glycemic regulation system and representing the effect of nutrition and externally delivered insulin. The stochastic term encapsulates the BG oscillations. The model output is in the form of an expected value accompanied by a band around this value. The model parameters are estimated patient-specifically, leading to personalized models. The forecasts consist of values for BG mean and variation, quantifying possible high and low BG levels. Such predictions have potential use for glycemic management as part of control systems. We present experimental results on parameter estimation and forecasting in T2DM and ICU settings. We compare the model's predictive capability with two different nonlinear models built for T2DM and ICU contexts to have a sense of the level of prediction achieved by this model.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucosa , Humanos , Glucemia , Insulina , Dinámicas no Lineales
7.
PLoS Comput Biol ; 17(8): e1009325, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34415908

RESUMEN

[This corrects the article DOI: 10.1371/journal.pcbi.1005232.].

8.
J Biomed Inform ; 113: 103639, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316422

RESUMEN

Decision-making related to health is complex. Machine learning (ML) and patient generated data can identify patterns and insights at the individual level, where human cognition falls short, but not all ML-generated information is of equal utility for making health-related decisions. We develop and apply attributable components analysis (ACA), a method inspired by optimal transport theory, to type 2 diabetes self-monitoring data to identify patterns of association between nutrition and blood glucose control. In comparison with linear regression, we found that ACA offers a number of characteristics that make it promising for use in decision support applications. For example, ACA was able to identify non-linear relationships, was more robust to outliers, and offered broader and more expressive uncertainty estimates. In addition, our results highlight a tradeoff between model accuracy and interpretability, and we discuss implications for ML-driven decision support systems.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Humanos , Aprendizaje Automático
9.
Inverse Probl ; 35(9)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33223593

RESUMEN

Ensemble Kalman methods constitute an increasingly important tool in both state and parameter estimation problems. Their popularity stems from the derivative-free nature of the methodology which may be readily applied when computer code is available for the underlying state-space dynamics (for state estimation) or for the parameter-to-observable map (for parameter estimation). There are many applications in which it is desirable to enforce prior information in the form of equality or inequality constraints on the state or parameter. This paper establishes a general framework for doing so, describing a widely applicable methodology, a theory which justifies the methodology, and a set of numerical experiments exemplifying it.

10.
PLoS Comput Biol ; 13(4): e1005232, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28448498

RESUMEN

Type 2 diabetes leads to premature death and reduced quality of life for 8% of Americans. Nutrition management is critical to maintaining glycemic control, yet it is difficult to achieve due to the high individual differences in glycemic response to nutrition. Anticipating glycemic impact of different meals can be challenging not only for individuals with diabetes, but also for expert diabetes educators. Personalized computational models that can accurately forecast an impact of a given meal on an individual's blood glucose levels can serve as the engine for a new generation of decision support tools for individuals with diabetes. However, to be useful in practice, these computational engines need to generate accurate forecasts based on limited datasets consistent with typical self-monitoring practices of individuals with type 2 diabetes. This paper uses three forecasting machines: (i) data assimilation, a technique borrowed from atmospheric physics and engineering that uses Bayesian modeling to infuse data with human knowledge represented in a mechanistic model, to generate real-time, personalized, adaptable glucose forecasts; (ii) model averaging of data assimilation output; and (iii) dynamical Gaussian process model regression. The proposed data assimilation machine, the primary focus of the paper, uses a modified dual unscented Kalman filter to estimate states and parameters, personalizing the mechanistic models. Model selection is used to make a personalized model selection for the individual and their measurement characteristics. The data assimilation forecasts are empirically evaluated against actual postprandial glucose measurements captured by individuals with type 2 diabetes, and against predictions generated by experienced diabetes educators after reviewing a set of historical nutritional records and glucose measurements for the same individual. The evaluation suggests that the data assimilation forecasts compare well with specific glucose measurements and match or exceed in accuracy expert forecasts. We conclude by examining ways to present predictions as forecast-derived range quantities and evaluate the comparative advantages of these ranges.


Asunto(s)
Glucemia/metabolismo , Biología Computacional/métodos , Diabetes Mellitus Tipo 2/metabolismo , Modelación Específica para el Paciente , Adulto , Algoritmos , Glucemia/análisis , Femenino , Humanos , Insulina/metabolismo , Masculino
11.
J Biomed Inform ; 86: 149-159, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30172760

RESUMEN

We studied how lagged linear regression can be used to detect the physiologic effects of drugs from data in the electronic health record (EHR). We systematically examined the effect of methodological variations ((i) time series construction, (ii) temporal parameterization, (iii) intra-subject normalization, (iv) differencing (lagged rates of change achieved by taking differences between consecutive measurements), (v) explanatory variables, and (vi) regression models) on performance of lagged linear methods in this context. We generated two gold standards (one knowledge-base derived, one expert-curated) for expected pairwise relationships between 7 drugs and 4 labs, and evaluated how the 64 unique combinations of methodological perturbations reproduce the gold standards. Our 28 cohorts included patients in the Columbia University Medical Center/NewYork-Presbyterian Hospital clinical database, and ranged from 2820 to 79,514 patients with between 8 and 209 average time points per patient. The most accurate methods achieved AUROC of 0.794 for knowledge-base derived gold standard (95%CI [0.741, 0.847]) and 0.705 for expert-curated gold standard (95% CI [0.629, 0.781]). We observed a mean AUROC of 0.633 (95%CI [0.610, 0.657], expert-curated gold standard) across all methods that re-parameterize time according to sequence and use either a joint autoregressive model with time-series differencing or an independent lag model without differencing. The complement of this set of methods achieved a mean AUROC close to 0.5, indicating the importance of these choices. We conclude that time-series analysis of EHR data will likely rely on some of the beneficial pre-processing and modeling methodologies identified, and will certainly benefit from continued careful analysis of methodological perturbations. This study found that methodological variations, such as pre-processing and representations, have a large effect on results, exposing the importance of thoroughly evaluating these components when comparing machine-learning methods.


Asunto(s)
Quimioterapia/métodos , Registros Electrónicos de Salud , Aprendizaje Automático , Preparaciones Farmacéuticas , Centros Médicos Académicos , Área Bajo la Curva , Recolección de Datos , Bases de Datos Factuales , Humanos , Modelos Lineales , Ciudad de Nueva York , Curva ROC , Análisis de Regresión , Reproducibilidad de los Resultados , Factores de Tiempo
14.
J Biomed Inform ; 51: 24-34, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24727481

RESUMEN

Electronic health record (EHR) data show promise for deriving new ways of modeling human disease states. Although EHR researchers often use numerical values of laboratory tests as features in disease models, a great deal of information is contained in the context within which a laboratory test is taken. For example, the same numerical value of a creatinine test has different interpretation for a chronic kidney disease patient and a patient with acute kidney injury. We study whether EHR research studies are subject to biased results and interpretations if laboratory measurements taken in different contexts are not explicitly separated. We show that the context of a laboratory test measurement can often be captured by the way the test is measured through time. We perform three tasks to study the properties of these temporal measurement patterns. In the first task, we confirm that laboratory test measurement patterns provide additional information to the stand-alone numerical value. The second task identifies three measurement pattern motifs across a set of 70 laboratory tests performed for over 14,000 patients. Of these, one motif exhibits properties that can lead to biased research results. In the third task, we demonstrate the potential for biased results on a specific example. We conduct an association study of lipase test values to acute pancreatitis. We observe a diluted signal when using only a lipase value threshold, whereas the full association is recovered when properly accounting for lipase measurements in different contexts (leveraging the lipase measurement patterns to separate the contexts). Aggregating EHR data without separating distinct laboratory test measurement patterns can intermix patients with different diseases, leading to the confounding of signals in large-scale EHR analyses. This paper presents a methodology for leveraging measurement frequency to identify and reduce laboratory test biases.


Asunto(s)
Artefactos , Sistemas de Información en Laboratorio Clínico/estadística & datos numéricos , Interpretación Estadística de Datos , Minería de Datos/métodos , Registros Electrónicos de Salud/clasificación , Registros Electrónicos de Salud/estadística & datos numéricos , Reconocimiento de Normas Patrones Automatizadas/métodos , Sistemas de Información en Laboratorio Clínico/clasificación , Factores de Confusión Epidemiológicos , New York
15.
medRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293069

RESUMEN

Background: The protocols and therapeutic guidance established for treating traumatic brain injuries (TBI) in neurointensive care focus on managing cerebral blood flow (CBF) and brain tissue oxygenation based on pressure signals. The decision support process relies on assumed relationships between cerebral perfusion pressure (CPP) and blood flow, pressure-flow relationships (PFRs), and shares this framework of assumptions with mathematical intracranial hemodynamic models. These foundational assumptions are difficult to verify, and their violation can impact clinical decision-making and model validity. Method: A hypothesis- and model-driven method for verifying and understanding the foundational intracranial hemodynamic PFRs is developed and applied to a novel multi-modality monitoring dataset. Results: Model analysis of joint observations of CPP and CBF validates the standard PFR when autoregulatory processes are impaired as well as unmodelable cases dominated by autoregulation. However, it also identifies a dynamical regime -or behavior pattern- where the PFR assumptions are wrong in a precise, data-inferable way due to negative CPP-CBF coordination over long timescales. This regime is of both clinical and research interest: its dynamics are modelable under modified assumptions while its causal direction and mechanistic pathway remain unclear. Conclusions: Motivated by the understanding of mathematical physiology, the validity of the standard PFR can be assessed a) directly by analyzing pressure reactivity and mean flow indices (PRx and Mx) or b) indirectly through the relationship between CBF and other clinical observables. This approach could potentially help personalize TBI care by considering intracranial pressure and CPP in relation to other data, particularly CBF. The analysis suggests a threshold using clinical indices of autoregulation jointly generalizes independently set indicators to assess CA functionality. These results support the use of increasingly data-rich environments to develop more robust hybrid physiological-machine learning models.

16.
Comput Biol Med ; 173: 108349, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547660

RESUMEN

BACKGROUND: Ventilator dyssynchrony (VD) can worsen lung injury and is challenging to detect and quantify due to the complex variability in the dyssynchronous breaths. While machine learning (ML) approaches are useful for automating VD detection from the ventilator waveform data, scalable severity quantification and its association with pathogenesis and ventilator mechanics remain challenging. OBJECTIVE: We develop a systematic framework to quantify pathophysiological features observed in ventilator waveform signals such that they can be used to create feature-based severity stratification of VD breaths. METHODS: A mathematical model was developed to represent the pressure and volume waveforms of individual breaths in a feature-based parametric form. Model estimates of respiratory effort strength were used to assess the severity of flow-limited (FL)-VD breaths compared to normal breaths. A total of 93,007 breath waveforms from 13 patients were analyzed. RESULTS: A novel model-defined continuous severity marker was developed and used to estimate breath phenotypes of FL-VD breaths. The phenotypes had a predictive accuracy of over 97% with respect to the previously developed ML-VD identification algorithm. To understand the incidence of FL-VD breaths and their association with the patient state, these phenotypes were further successfully correlated with ventilator-measured parameters and electronic health records. CONCLUSION: This work provides a computational pipeline to identify and quantify the severity of FL-VD breaths and paves the way for a large-scale study of VD causes and effects. This approach has direct application to clinical practice and in meaningful knowledge extraction from the ventilator waveform data.


Asunto(s)
Lesión Pulmonar , Humanos , Ventiladores Mecánicos , Pulmón/fisiología , Respiración Artificial/métodos
17.
medRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168309

RESUMEN

Refined management of mechanically ventilation is an obvious target for improving patient outcomes, but is impeded by the nature of data for study and hypothesis generation. The connections between clinical outcomes and temporal development of iatrogenic injuries current lung-protective ventilator settings remain poorly understood. Analysis of lung-ventilator system (LVS) evolution at relevant timescales is frustrated by data volume and multiple sources of heterogeneity. This work motivates, presents, and validates a computational pipeline for resolving LVS systems into the joint evolution of data-conditioned model parameters and ventilator information. Applied to individuals, the workflow yields a concise low-dimensional representation of LVS behavior expressed in phenotypic breath waveforms suitable for analysis. The effectiveness of this approach is demonstrated through application to multi-day observational series of 35 patients. Individual patient analyses reveal multiple types of patient-oriented dynamics and breath behavior to expose the complexity of LVS evolution; less than 10% of phenotype changes related to ventilator settings changes. Dynamics are shown to including both stable and unstable phenotype transitions as well as both discrete and continuous changes unrelated to ventilator settings. At a cohort scale, 721 phenotypes constructed from individual data are condensed into a set of 16 groups that empirically organize around certain settings (positive end-expository pressure and ventilator mode) and structurally similar pressure-volume loop characterizations. Individual and cohort scale phenotypes, which may be refined by hypothesis-specific constructions, provide a common framework for ongoing temporal analysis and investigation of LVS dynamics.

18.
J Clin Periodontol ; 40(5): 474-82, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23495669

RESUMEN

AIM: To use linked electronic medical and dental records to discover associations between periodontitis and medical conditions independent of a priori hypotheses. MATERIALS AND METHODS: This case-control study included 2475 patients who underwent dental treatment at the College of Dental Medicine at Columbia University and medical treatment at NewYork-Presbyterian Hospital. Our cases are patients who received periodontal treatment and our controls are patients who received dental maintenance but no periodontal treatment. Chi-square analysis was performed for medical treatment codes and logistic regression was used to adjust for confounders. RESULTS: Our method replicated several important periodontitis associations in a largely Hispanic population, including diabetes mellitus type I (OR = 1.6, 95% CI 1.30-1.99, p < 0.001) and type II (OR = 1.4, 95% CI 1.22-1.67, p < 0.001), hypertension (OR = 1.2, 95% CI 1.10-1.37, p < 0.001), hypercholesterolaemia (OR = 1.2, 95% CI 1.07-1.38, p = 0.004), hyperlipidaemia (OR = 1.2, 95% CI 1.06-1.43, p = 0.008) and conditions pertaining to pregnancy and childbirth (OR = 2.9, 95% CI: 1.32-7.21, p = 0.014). We also found a previously unreported association with benign prostatic hyperplasia (OR = 1.5, 95% CI 1.05-2.10, p = 0.026) after adjusting for age, gender, ethnicity, hypertension, diabetes, obesity, lipid and circulatory system conditions, alcohol and tobacco abuse. CONCLUSIONS: This study contributes a high-throughput method for associating periodontitis with systemic diseases using linked electronic records.


Asunto(s)
Registros Odontológicos , Registros Electrónicos de Salud , Epidemiología , Periodontitis/epidemiología , Adulto , Anciano , Alcoholismo/epidemiología , Estudios de Casos y Controles , Codificación Clínica , Factores de Confusión Epidemiológicos , Recolección de Datos , Minería de Datos , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Hispánicos o Latinos/estadística & datos numéricos , Humanos , Hipercolesterolemia/epidemiología , Hiperlipidemias/epidemiología , Hipertensión/epidemiología , Masculino , Persona de Mediana Edad , New York/epidemiología , Obesidad/epidemiología , Parto , Embarazo , Hiperplasia Prostática/epidemiología , Tabaquismo/epidemiología
19.
medRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076801

RESUMEN

Invasive mechanical ventilation can worsen lung injury. Ventilator dyssynchrony (VD) may propagate ventilator-induced lung injury (VILI) and is challenging to detect and systematically monitor because each patient takes approximately 25,000 breaths a day yet some types of VD are rare, accounting for less than 1% of all breaths. Therefore, we sought to develop and validate accurate machine learning (ML) algorithms to detect multiple types of VD by leveraging esophageal pressure waveform data to quantify patient effort with airway pressure, flow, and volume data generated during mechanical ventilation, building a computational pipeline to facilitate the study of VD. Materials and Methods: We collected ventilator waveform and esophageal pressure data from 30 patients admitted to the ICU. Esophageal pressure allows the measurement of transpulmonary pressure and patient effort. Waveform data were cleaned, features considered essential to VD detection were calculated, and a set of 10,000 breaths were manually labeled. Four ML algorithms were trained to classify each type of VD: logistic regression, support vector classification, random forest, and XGBoost. Results: We trained ML models to detect different families and seven types of VD with high sensitivity (>90% and >80%, respectively). Three types of VD remained difficult for ML to classify because of their rarity and lack of sample size. XGBoost classified breaths with increased specificity compared to other ML algorithms. Discussion: We developed ML models to detect multiple types of VD accurately. The ability to accurately detect multiple VD types addresses one of the significant limitations in understanding the role of VD in affecting patient outcomes. Conclusion: ML models identify multiple types of VD by utilizing esophageal pressure data and airway pressure, flow, and volume waveforms. The development of such computational pipelines will facilitate the identification of VD in a scalable fashion, allowing for the systematic study of VD and its impact on patient outcomes.

20.
Front Physiol ; 14: 1217183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565138

RESUMEN

Acute respiratory distress syndrome (ARDS) and acute lung injury have a diverse spectrum of causative factors including sepsis, aspiration of gastric contents, and near drowning. Clinical management of severe lung injury typically includes mechanical ventilation to maintain gas exchange which can lead to ventilator-induced lung injury (VILI). The cause of respiratory failure is acknowledged to affect the degree of lung inflammation, changes in lung structure, and the mechanical function of the injured lung. However, these differential effects of injury and the role of etiology in the structure-function relationship are not fully understood. To address this knowledge gap we caused lung injury with intratracheal hydrochloric acid (HCL) or endotoxin (LPS) 2 days prior to ventilation or with an injurious lavage (LAV) immediately prior to ventilation. These injury groups were then ventilated with high inspiratory pressures and positive end expiratory pressure (PEEP) = 0 cmH2O to cause VILI and model the clinical course of ARDS followed by supportive ventilation. The effects of injury were quantified using invasive lung function measurements recorded during PEEP ladders where the end-expiratory pressure was increased from 0 to 15 cm H2O and decreased back to 0 cmH2O in steps of 3 cmH2O. Design-based stereology was used to quantify the parenchymal structure of lungs air-inflated to 2, 5, and 10 cmH2O. Pro-inflammatory gene expression was measured with real-time quantitative polymerase chain reaction and alveolocapillary leak was estimated by measuring bronchoalveolar lavage protein content. The LAV group had small, stiff lungs that were recruitable at higher pressures, but did not demonstrate substantial inflammation. The LPS group showed septal swelling and high pro-inflammatory gene expression that was exacerbated by VILI. Despite widespread alveolar collapse, elastance in LPS was only modestly elevated above healthy mice (CTL) and there was no evidence of recruitability. The HCL group showed increased elastance and some recruitability, although to a lesser degree than LAV. Pro-inflammatory gene expression was elevated, but less than LPS, and the airspace dimensions were reduced. Taken together, those data highlight how different modes of injury, in combination with a 2nd hit of VILI, yield markedly different effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA