Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339217

RESUMEN

Molecular magnetic resonance imaging (MRI) is an emerging field that is set to revolutionize our perspective of disease diagnosis, treatment efficacy monitoring, and precision medicine in full concordance with personalized medicine. A wide range of hyperpolarized (HP) 129Xe biosensors have been recently developed, demonstrating their potential applications in molecular settings, and achieving notable success within in vitro studies. The favorable nuclear magnetic resonance properties of 129Xe, coupled with its non-toxic nature, high solubility in biological tissues, and capacity to dissolve in blood and diffuse across membranes, highlight its superior role for applications in molecular MRI settings. The incorporation of reporters that combine signal enhancement from both hyperpolarized 129Xe and chemical exchange saturation transfer holds the potential to address the primary limitation of low sensitivity observed in conventional MRI. This review provides a summary of the various applications of HP 129Xe biosensors developed over the last decade, specifically highlighting their use in MRI. Moreover, this paper addresses the evolution of in vivo applications of HP 129Xe, discussing its potential transition into clinical settings.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Solubilidad , Xenón/química
2.
Thorax ; 78(4): 418-421, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36596692

RESUMEN

129Xe MRI red blood cell to alveolar tissue plasma ratio (RBC:TP) abnormalities have been observed in ever-hospitalised and never-hospitalised people with postacute COVID-19 syndrome (PACS). But, it is not known if such abnormalities resolve when symptoms and quality-of-life scores improve. We evaluated 21 participants with PACS, 7±4 months (baseline) and 14±4 months (follow-up) postinfection. Significantly improved diffusing capacity of the lung for carbon monoxide (DLCO, Δ=14%pred ;95%CI 7 to 21, p<0.001), postexertional dyspnoea (Δ=-0.7; 95%CI=-0.2 to -1.2, p=0.019), St George's Respiratory Questionnaire-score (SGRQ Δ=-6; 95% CI=-1 to -11, p=0.044) but not RBC:TP (Δ=0.03; 95% CI=0.01 to 0.05, p=0.051) were observed at 14 months. DLCO correlated with RBC:TP (r=0.60, 95% CI=0.22 to 0.82, p=0.004) at 7 months. While DLCO and SGRQ measurements improved, these values did not normalise 14 months post-infection. ClinicalTrials.gov NCT04584671.


Asunto(s)
COVID-19 , Humanos , Estudios de Seguimiento , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Calidad de Vida , Capacidad de Difusión Pulmonar
3.
Radiology ; 307(2): e222557, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36749209

RESUMEN

Background In individuals with postacute COVID-19 syndrome (PACS) and normal pulmonary function, xenon 129 (129Xe) MRI ventilation defects, abnormal quality-of-life scores, and exercise limitation were reported 3 months after infection; the longitudinal trajectory remains unclear. Purpose To measure and compare pulmonary function, exercise capacity, quality of life, and 129Xe MRI ventilation defect percent (VDP) in individuals with PACS evaluated 3 and 15 months after COVID-19 infection. Materials and Methods In this prospective study, participants with PACS aged 18-80 years were enrolled between July 2020 and August 2021 from two quaternary care centers. 129Xe MRI VDP, diffusing capacity of lung for carbon monoxide (Dlco), spirometry, oscillometry, 6-minute walk distance (6MWD), and St George Respiratory Questionnaire (SGRQ) scores were evaluated 3 months and 15 months after COVID-19 infection. Differences between time points were evaluated using the paired t test. Multivariable models were generated to explain exercise capacity and quality-of-life improvement. Odds ratios (ORs) were used to evaluate potential treatment influences. Results Overall, 53 participants (mean age, 55 years ± 18 [SD]; 27 women) attended both 3- and 15-month visits and were included in the analysis. The mean values for 129Xe MRI VDP (5.8% and 4.2%; P = .003), forced expiratory volume in the 1st second of expiration percent predicted (84% and 90%; P = .001), Dlco percent predicted (86% and 99%; P = .002), and SGRQ score (35 and 25; P < .001) improved between the 3- and 15-month visit. VDP measured 3 months after COVID-19 infection predicted the change in 6MWD (ß = -0.643, P = .006), while treatment with respiratory medication at 3 months predicted an improved quality-of-life score at 15 months (OR, 4.0; 95% CI: 1.2, 13.8; P = .03). Conclusion Pulmonary function, gas exchange, exercise capacity, quality of life, and 129Xe MRI ventilation defect percent (VDP) improved in participants with postacute COVID-19 syndrome at 15 months compared with 3 months after infection. VDP measured at 3 months after infection correlated with improved exercise capacity, while treatment with respiratory medication was associated with an improved quality-of-life score 15 months after infection. ClinicalTrials.gov registration no. NCT05014516 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Vogel-Claussen in this issue.


Asunto(s)
COVID-19 , Trastornos Respiratorios , Femenino , Humanos , Persona de Mediana Edad , Pulmón , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Calidad de Vida , Adolescente , Anciano , Anciano de 80 o más Años , Masculino
4.
Chemphyschem ; 24(23): e202300828, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38062347

RESUMEN

The front cover artwork is provided by Prof. Mitchell S. Albert's group at Lakehead University. The image shows the hyperpolarized chemical exchange saturation transfer (HyperCEST) effect in cucurbit[6]uril molecular biosensors within a blood vessel. Read the full text of the Research Article at 10.1002/cphc.202300346.

5.
Chemphyschem ; 24(23): e202300346, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37713677

RESUMEN

Molecular imaging is the future of personalized medicine; however, it requires effective contrast agents. Hyperpolarized chemical exchange saturation transfer (HyperCEST) can boost the signal of Hyperpolarized 129 Xe MRI and render it a molecular imaging modality of high efficiency. Cucurbit[6]uril (CB6) has been successfully employed in vivo as a contrast agent for HyperCEST MRI, however its performance in a clinical MRI scanner has yet to be optimized. In this study, MRI pulse sequence parameter optimization was first performed in CB6 solutions in phosphate-buffered saline (PBS), and subsequently in whole sterile citrated bovine blood. The performance of four different depolarization pulse shapes (sinusoidal, 3-lobe sinc (3LS), rectangular (block), and hyperbolic secant (hypsec) was optimized. The detectability limits of CB6 in a clinical 3.0T MRI scanner was assessed using the optimized pulse sequences. The 3LS depolarization pulses performed best, and demonstrated 24 % depletion in a 25 µM solution of CB6 in PBS. It performed similarly in blood. The CB6 detectability limit was found to be 100 µM in citrated bovine blood with a correspondent HyperCEST depletion of 30 % ±9 %. For the first time, the HP 129 Xe HyperCEST effect was observed in red blood cells (RBC) and had a similar strength as HyperCEST in plasma.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Animales , Bovinos , Espectroscopía de Resonancia Magnética/métodos , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Imagen Molecular
6.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511071

RESUMEN

Hyperpolarized (HP) xenon-129 (129Xe), when dissolved in blood, has two NMR resonances: one in red blood cells (RBC) and one in plasma. The impact of numerous blood components on these resonances, however, has not yet been investigated. This study evaluates the effects of elevated glucose levels on the chemical shift (CS) and T2* relaxation times of HP 129Xe dissolved in sterile citrated sheep blood for the first time. HP 129Xe was mixed with sheep blood samples premixed with a stock glucose solution using a liquid-gas exchange module. Magnetic resonance spectroscopy was performed on a 3T clinical MRI scanner using a custom-built quadrature dual-tuned 129Xe/1H coil. We observed an additional resonance for the RBCs (129Xe-RBC1) for the increased glucose levels. The CS of 129Xe-RBC1 and 129Xe-plasma peaks did not change with glucose levels, while the CS of 129Xe-RBC2 (original RBC resonance) increased linearly at a rate of 0.015 ± 0.002 ppm/mM with glucose level. 129Xe-RBC1 T2* values increased nonlinearly from 1.58 ± 0.24 ms to 2.67 ± 0.40 ms. As a result of the increased glucose levels in blood samples, the novel additional HP 129Xe dissolved phase resonance was observed in blood and attributed to the 129Xe bound to glycated hemoglobin (HbA1c).


Asunto(s)
Reacción de Maillard , Isótopos de Xenón , Animales , Ovinos , Isótopos de Xenón/química , Imagen por Resonancia Magnética/métodos , Hemoglobinas , Glucosa , Xenón , Pulmón
7.
Radiology ; 305(2): 466-476, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35762891

RESUMEN

BACKGROUND: In patients with post-acute COVID-19 syndrome (PACS), abnormal gas-transfer and pulmonary vascular density have been reported, but such findings have not been related to each other or to symptoms and exercise limitation. The pathophysiologic drivers of PACS in patients previously infected with COVID-19 who were admitted to in-patient treatment in hospital (or ever-hospitalized patients) and never-hospitalized patients are not well understood. PURPOSE: To determine the relationship of persistent symptoms and exercise limitation with xenon 129 (129Xe) MRI and CT pulmonary vascular measurements in individuals with PACS. MATERIALS AND METHODS: In this prospective study, patients with PACS aged 18-80 years with a positive polymerase chain reaction COVID-19 test were recruited from a quaternary-care COVID-19 clinic between April and October 2021. Participants with PACS underwent spirometry, diffusing capacity of the lung for carbon monoxide (DLco), 129Xe MRI, and chest CT. Healthy controls had no prior history of COVID-19 and underwent spirometry, DLco, and 129Xe MRI. The 129Xe MRI red blood cell (RBC) to alveolar-barrier signal ratio, RBC area under the receiver operating characteristic curve (AUC), CT volume of pulmonary vessels with cross-sectional area 5 mm2 or smaller (BV5), and total blood volume were quantified. St George's Respiratory Questionnaire, International Physical Activity Questionnaire, and modified Borg Dyspnea Scale measured quality of life, exercise limitation, and dyspnea. Differences between groups were compared with use of Welch t-tests or Welch analysis of variance. Relationships were evaluated with use of Pearson (r) and Spearman (ρ) correlations. RESULTS: Forty participants were evaluated, including six controls (mean age ± SD, 35 years ± 15, three women) and 34 participants with PACS (mean age, 53 years ± 13, 18 women), of whom 22 were never hospitalized. The 129Xe MRI RBC:barrier ratio was lower in ever-hospitalized participants (P = .04) compared to controls. BV5 correlated with RBC AUC (ρ = .44, P = .03). The 129Xe MRI RBC:barrier ratio was related to DLco (r = .57, P = .002) and forced expiratory volume in 1 second (ρ = .35, P = .03); RBC AUC was related to dyspnea (ρ = -.35, P = .04) and International Physical Activity Questionnaire score (ρ = .45, P = .02). CONCLUSION: Xenon 129 (129Xe) MRI measurements were lower in participants previously infected with COVID-19 who were admitted to in-patient treatment in hospital with post-acute COVID-19 syndrome, 34 weeks ± 25 after infection compared to controls. The 129Xe MRI measures were associated with CT pulmonary vascular density, diffusing capacity of the lung for carbon monoxide, exercise capacity, and dyspnea. Clinical trial registration no.: NCT04584671 © RSNA, 2022 Online supplemental material is available for this article See also the editorial by Wild and Collier in this issue.


Asunto(s)
COVID-19 , Femenino , Humanos , Persona de Mediana Edad , Monóxido de Carbono , COVID-19/diagnóstico por imagen , Disnea , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Estudios Prospectivos , Calidad de Vida , Tomografía Computarizada por Rayos X , Isótopos de Xenón , Masculino , Adolescente , Adulto Joven , Adulto , Anciano , Anciano de 80 o más Años , Síndrome Post Agudo de COVID-19
8.
Magn Reson Med ; 88(1): 83-105, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35253919

RESUMEN

Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.


Asunto(s)
Pulmón , Isótopos de Xenón , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen , Isótopos de Xenón/metabolismo
9.
Magn Reson Med ; 86(6): 3175-3181, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34272774

RESUMEN

PURPOSE: To demonstrate the possibility of performing multi-slice in-vivo human brain MRI using hyperpolarized (HP) xenon-129 (129 Xe) in two different orientations and to calculate the signal-to-noise ratio (SNR). METHODS: Two healthy female participants were imaged during a single breath-hold of HP 129 Xe using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). Each HP 129 Xe multi-slice brain image was acquired during separate HP 129 Xe breath-holds using 3D gradient echo (GRE) imaging. The acquisition started 10 s after the inhalation of 1 L of HP 129 Xe. Overall, four sagittal and three axial images were acquired (seven imaging sessions per participant). The SNR was calculated for each slice in both orientations. RESULTS: The first ever HP 129 Xe multi-slice images of the brain were acquired in axial and sagittal orientations. The HP 129 Xe signal distribution correlated well with the gray matter distribution. The highest SNR values were close in the axial and sagittal orientations (19.46 ± 3.25 and 18.76 ± 4.94, respectively). Additionally, anatomical features, such as the ventricles, were observed in both orientations. CONCLUSION: The possibility of using multi-slice HP 129 Xe human brain magnetic resonance imaging was demonstrated for the first time. HP 129 Xe multi-slice MRI can be implemented for brain imaging to improve current diagnostic methods.


Asunto(s)
Pulmón , Isótopos de Xenón , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética , Relación Señal-Ruido
10.
Magn Reson Med ; 86(6): 3147-3155, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34254356

RESUMEN

PURPOSE: To evaluate the effect of an initial 90° depolarization RF pulse on the dissolved-phase hyperpolarized (HP) xenon-129 (129 Xe) brain imaging and to compare the SNR variability of HP 129 Xe images acquired without an initial depolarization RF pulse to those following the initial depolarization pulse. METHODS: Five cognitive normal healthy volunteers were imaged using a Philips Achieva 3.0T MRI scanner during a single breath-hold following inhalation of 1 L of HP 129 Xe. Each participant underwent six HP 129 Xe scans. Three scans were performed using conventional single-slice projection HP 129 Xe brain imaging, and the other three scans were performed using the HP 129 Xe time-of-flight imaging with an initial rectangular depolarization pulse. RESULTS: Although the utilization of an initial depolarization results in the reduction of the mean image SNR, the presence of an initial depolarization RF pulse reduces the SNR variability of the HP 129 Xe brain image by a factor of 2.26. The highest SNR variability was observed from the posterior brain region, where the anterior region possessed the lower level of signal variability. CONCLUSION: An initial 90° depolarization RF pulse, applied prior to the HP 129 Xe image acquisition, reduced the HP 129 Xe signal variability more than two times between the different breath-hold images.


Asunto(s)
Pulmón , Isótopos de Xenón , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen
11.
Magn Reson Med ; 85(2): 987-994, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32789900

RESUMEN

PURPOSE: To test octafluorocyclobutane (OFCB) as an inhalation contrast agent for fluorine-19 MRI of the lung, and to compare the image quality of OFCB scans with perfluoropropane (PFP) scans THEORY AND METHODS: After normalizing for the number of signal averages, a theoretical comparison between the OFCB signal-to-noise ratio (SNR) and PFP SNR predicted the average SNR advantage of 90% using OFCB during gradient echo imaging. The OFCB relaxometry was conducted using single-voxel spectroscopy and spin-echo imaging. A comparison of OFCB and PFP SNRs was performed in vitro and in vivo. Five healthy Sprague-Dawley rats were imaged during single breath-hold and continuous breathing using a Philips Achieva 3.0T MRI scanner (Philips, Andover, MA). The scan time was constant for both gases. Statistical comparison between PFP and OFCB scans was conducted using a paired t test and by calculating the Bayes factor. RESULTS: Spin-lattice (T1 ) and effective spin-spin ( T2∗ ) relaxation time constants of the pure OFCB gas were determined as 28.5 ± 1.2 ms and 10.5 ± 1.8 ms, respectively. Mixing with 21% of oxygen decreased T1 by 30% and T2∗ by 20%. The OFCB in vivo images showed 73% higher normalized SNR on average compared with images acquired using PFP. The statistical significance was shown by both paired t test and calculated Bayes factors. The experimental results agree with theoretical calculations within the error of the relaxation parameter measurements. CONCLUSION: The quality of the lung images acquired using OFCB was significantly better compared with PFP scans. The OFCB images had higher a SNR and were artifact-free.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19 , Animales , Teorema de Bayes , Clorofluorocarburos , Pulmón/diagnóstico por imagen , Imagen por Resonancia Magnética , Ratas , Ratas Sprague-Dawley
12.
Molecules ; 25(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731418

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and results in progressive neurodegeneration. The incidence rate of AD is increasing, creating a major public health issue. AD is characterized by neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein and senile plaques composed of amyloid-ß (Aß). Currently, a definitive diagnosis of AD is accomplished post-mortem. Thus, the use of molecular probes that are able to selectively bind to NFTs or Aß can be valuable tools for the accurate and early diagnosis of AD. The aim of this review is to summarize and highlight fluorinated molecular probes that can be used for molecular imaging to detect either NFTs or Aß. Specifically, fluorinated molecular probes used in conjunction with 19F MRI, PET, and fluorescence imaging will be explored.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Hidrocarburos Fluorados/uso terapéutico , Sondas Moleculares/uso terapéutico , Imagen Óptica , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Humanos
13.
Molecules ; 25(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261035

RESUMEN

Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides consisting of multiple glucose subunits. CDs are widely used in host-guest chemistry and biochemistry due to their structural advantages, biocompatibility, and ability to form inclusion complexes. Recently, CDs have become of high interest in the field of medical imaging as a potential scaffold for the development of a large variety of the contrast agents suitable for magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, positron emission tomography, single photon emission computed tomography, and computed tomography. The aim of this review is to summarize and highlight the achievements in the field of cyclodextrin-based contrast agents for medical imaging.


Asunto(s)
Medios de Contraste/química , Ciclodextrinas/química , Diagnóstico por Imagen/métodos , Animales , Humanos
14.
J Magn Reson Imaging ; 49(2): 343-354, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30248212

RESUMEN

Fluorine-19 (19 F) MRI using inhaled inert fluorinated gases is an emerging technique that can provide functional images of the lungs. Inert fluorinated gases are nontoxic, abundant, relatively inexpensive, and the technique can be performed on any MRI scanner with broadband multinuclear imaging capabilities. Pulmonary 19 F MRI has been performed in animals, healthy human volunteers, and in patients with lung disease. In this review, the technical requirements of 19 F MRI are discussed, along with various imaging approaches used to optimize the image quality. Lung imaging is typically performed in humans using a gas mixture containing 79% perfluoropropane (PFP) or sulphur hexafluoride (SF6 ) and 21% oxygen. In lung diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), ventilation defects are apparent in regions that the inhaled gas cannot access. 19 F lung images are typically acquired in a single breath-hold, or in a time-resolved, multiple breath fashion. The former provides measurements of the ventilation defect percent (VDP), while the latter provides measurements of gas replacement (ie, fractional ventilation). Finally, preliminary comparisons with other functional lung imaging techniques are discussed, such as Fourier decomposition MRI and hyperpolarized gas MRI. Overall, functional 19 F lung MRI is expected to complement existing proton-based structural imaging techniques, and the combination of structural and functional lung MRI will provide useful outcome measures in the future management of pulmonary diseases in the clinic. Level of Evidence: 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:343-354.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19 , Fluorocarburos/administración & dosificación , Gases , Pulmón/diagnóstico por imagen , Hexafluoruro de Azufre/administración & dosificación , Animales , Asma/diagnóstico por imagen , Calibración , Fibrosis Quística/diagnóstico por imagen , Voluntarios Sanos , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Enfermedades Pulmonares , Oxígeno , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Respiración , Programas Informáticos
15.
Magn Reson Med ; 75(5): 2050-4, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26079271

RESUMEN

PURPOSE: In this study, a new model of pulmonary embolism in rats was developed and tested, to examine if hyperpolarized (HP) (3) He MR images can measure impairment of the exchange of oxygen from the airspaces to the blood during pulmonary embolism. METHODS: HP (3) He MRI was used to image six treatment-group rats in which a branch of the pulmonary artery was embolized, and six control-group rats. HP (3) He MR images were used to calculate the initial partial pressure of oxygen (pO ) and the rate of oxygen depletion (R) in rat lungs. RESULTS: The pO was significantly higher in the ischemic lung than in the contralateral normal side, and pO was significantly higher in the ischemic lung than in both sides of the control lungs. Mean R in ischemic lungs was significantly lower than in the contralateral lungs, and mean R in ischemic lungs was also significantly lower than in both control lungs. CONCLUSION: These results demonstrate that pO and R, as measured by the T1 decay of HP (3) He, are sensitive to pulmonary ischemia in rats, confirming the findings in studies performed in large animal models of pulmonary ischemia.


Asunto(s)
Helio/química , Isquemia/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Pulmón/patología , Imagen por Resonancia Magnética , Oxígeno/química , Arteria Pulmonar/patología , Embolia Pulmonar/diagnóstico por imagen , Animales , Procesamiento de Imagen Asistido por Computador , Isquemia/patología , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/patología , Arteria Pulmonar/diagnóstico por imagen , Embolia Pulmonar/patología , Ratas , Ratas Sprague-Dawley
16.
NMR Biomed ; 29(5): 545-52, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26866511

RESUMEN

The purpose of this study was to extend established methods for fractional ventilation mapping using (19) F MRI of inert fluorinated gases to rat models of pulmonary inflammation and fibrosis. In this study, five rats were instilled with lipopolysaccharide (LPS) in the lungs two days prior to imaging, six rats were instilled with bleomycin in the lungs two weeks prior to imaging and an additional four rats were used as controls. (19) F MR lung imaging was performed at 3 T with rats continuously breathing a mixture of sulfur hexafluoride and O2 . Fractional ventilation maps were obtained using a wash-out approach, by switching the breathing mixture to pure O2 , and acquiring images following each successive wash-out breath. The mean fractional ventilation (r) was 0.29 ± 0.05 for control rats, 0.23 ± 0.10 for LPS-instilled rats and 0.19 ± 0.03 for bleomycin-instilled rats. Bleomycin-instilled rats had a significantly decreased mean r value compared with controls (P = 0.010). Although LPS-instilled rats had a slightly reduced mean r value, this trend was not statistically significant (P = 0.556). Fractional ventilation gradients were calculated in the anterior/posterior (A/P) direction, and the mean A/P gradient was -0.005 ± 0.008 cm(-1) for control rats, 0.013 ± 0.005 cm(-1) for LPS-instilled rats and 0.009 ± 0.018 cm(-1) for bleomycin-instilled rats. Fractional ventilation gradients were significantly different for control rats compared with LPS-instilled rats only (P = 0.016). The ventilation gradients calculated from control rats showed the expected gravitational relationship, while ventilation gradients calculated from LPS- and bleomycin-instilled rats showed the opposite trend. Histology confirmed that LPS-instilled rats had a significantly elevated alveolar wall thickness, while bleomycin-instilled rats showed signs of substantial fibrosis. Overall, (19)F MRI may be able to detect the effects of pulmonary inflammation and fibrosis using a simple and inexpensive imaging approach that can potentially be translated to humans.


Asunto(s)
Halogenación , Imagen por Resonancia Magnética/métodos , Gases Nobles/química , Neumonía/diagnóstico , Fibrosis Pulmonar/diagnóstico , Ventilación Pulmonar , Animales , Bleomicina , Modelos Animales de Enfermedad , Pulmón/patología , Masculino , Neumonía/inducido químicamente , Alveolos Pulmonares/patología , Ratas Sprague-Dawley
17.
Magn Reson Med ; 74(2): 550-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25105721

RESUMEN

PURPOSE: Inert fluorinated gas lung MRI is a new and promising alternative to hyperpolarized gas lung MRI; it is less expensive and does not require expensive isotopes/polarizers. The thermally polarized nature of signal obtained from fluorinated gases makes it relatively easy to use for dynamic lung imaging and for obtaining lung ventilation maps. In this study, we propose that the sensitivity and resolution of fluorine-19 (19F) in vivo images can be improved using the x-centric pulse sequence, thereby achieving a short echo time/pulse repetition time. This study is a transitional step for converting to more sustainable gases for lung imaging. METHODS: A 19F-resolution phantom was used to validate the efficiency of performing the x-centric pulse sequence on a clinical scanner. Ventilation maps were obtained in the lungs of five normal rats with a washout approach (adapted from Xe-enhanced computed tomography [Xe-CT] regional ventilation mapping), using mixtures of either sulfur hexafluoride/oxygen or perfluoropropane/oxygen and a two-breath x-centric method. RESULTS: Fractional ventilation (r) values obtained in this study (0.35-0.46 interval) were in good agreement with previously published values for 3He/129Xe. Calculated r gradients agreed well with published gradients obtained in rats with Xe-CT measurements. CONCLUSIONS: These results suggest that fluorinated gases can be reliably used in vivo in dynamic lung studies as an alternative to 3He/129Xe.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética con Fluor-19/métodos , Interpretación de Imagen Asistida por Computador/métodos , Ventilación Pulmonar/fisiología , Procesamiento de Señales Asistido por Computador , Administración por Inhalación , Animales , Gases/farmacocinética , Aumento de la Imagen/métodos , Proyectos Piloto , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
NMR Biomed ; 27(12): 1525-34, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25066661

RESUMEN

Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.


Asunto(s)
Halogenación , Pulmón/fisiología , Imagen por Resonancia Magnética/métodos , Gases Nobles , Animales , Gravitación , Humanos , Respiración
19.
Radiology ; 269(3): 903-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23985278

RESUMEN

PURPOSE: To perform static breath-hold fluorine 19 ((19)F) three-dimensional (3D) ultrashort echo time (UTE) magnetic resonance (MR) imaging of the lungs in healthy volunteers by using a mixture of 79% perfluoropropane (PFP) and 21% O2. MATERIALS AND METHODS: This study protocol was approved by the local research ethics board and by Health Canada. All volunteers provided written informed consent. Ten healthy volunteers underwent MR imaging at 3.0 T. Fluorine 19 3D UTE MR images were acquired during a 15-second breath hold according to one of two breathing protocols: protocol A, a 1-L inhalation of a mixture of 79% PFP and 21% O2, and protocol B, continuous breathing from a 5-L bag of a mixture of 79% PFP and 21% O2 followed by a 1-L inhalation of the same PFP-O2 mixture from a separate bag and a subsequent breath hold. The signal-to-noise ratio (SNR) was measured in the three most central image sections and was compared between breathing protocols by using an unpaired t test. RESULTS: Overall, the SNR was significantly greater for breathing protocol B (continuous breathing) than for breathing protocol A (single breath) (P = .018). The mean SNRs were 18 ± 6 (standard deviation) and 32 ± 6 for images acquired by using breathing protocols A and B, respectively. Breathing protocol B improves SNR by "washing out" the air from the lungs and increasing the PFP concentration prior to (19)F imaging. CONCLUSION: This study demonstrates the feasibility of (19)F 3D UTE static breath-hold MR imaging of human lungs with inert fluorinated gases.


Asunto(s)
Flúor/administración & dosificación , Fluorocarburos/administración & dosificación , Imagenología Tridimensional , Pulmón/anatomía & histología , Imagen por Resonancia Magnética/métodos , Oxígeno/administración & dosificación , Adulto , Estudios de Factibilidad , Femenino , Humanos , Aumento de la Imagen/métodos , Masculino , Persona de Mediana Edad , Relación Señal-Ruido
20.
ACS Sens ; 8(12): 4707-4715, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38064687

RESUMEN

Hyperpolarized (HP) xenon-129 (129Xe) magnetic resonance imaging (MRI) has the potential to be used as a molecular imaging modality. For this purpose, numerous supramolecular cages have been developed and evaluated in the past. Herein, we report a novel and unique macrocycle that can be successfully utilized for xenon MRI, the resorcinarene trimer methanesulfonate (R3-Noria-MeSO3H). This molecule is capable of two different contrast mechanisms for xenon-MRI, resulting from an increase in the effective spin-spin relaxation and hyperpolarized chemical exchange saturation transfer (HyperCEST). We have demonstrated a superior negative contrast caused by R3-Noria-MeSO3H on HP 129Xe MRI at 3.0 T as well as HyperCEST imaging of the studied macrocycle. Additionally, we have found that the complex aggregation behaviors of R3-Noria-methanesulfonate and its impact on xenon-129 relaxivity are an area for future study.


Asunto(s)
Imagen por Resonancia Magnética , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Isótopos de Xenón/química , Xenón/química , Medios de Contraste/química , Mesilatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA