Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Ther ; 31(5): 1275-1292, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37025062

RESUMEN

Machado-Joseph disease (MJD)/spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominantly inherited ataxia worldwide. It is caused by an over-repetition of the trinucleotide CAG within the ATXN3 gene, which confers toxic properties to ataxin-3 (ATXN3) species. RNA interference technology has shown promising therapeutic outcomes but still lacks a non-invasive delivery method to the brain. Extracellular vesicles (EVs) emerged as promising delivery vehicles due to their capacity to deliver small nucleic acids, such as microRNAs (miRNAs). miRNAs were found to be enriched into EVs due to specific signal motifs designated as ExoMotifs. In this study, we aimed at investigating whether ExoMotifs would promote the packaging of artificial miRNAs into EVs to be used as non-invasive therapeutic delivery vehicles to treat MJD/SCA3. We found that miRNA-based silencing sequences, associated with ExoMotif GGAG and ribonucleoprotein A2B1 (hnRNPA2B1), retained the capacity to silence mutant ATXN3 (mutATXN3) and were 3-fold enriched into EVs. Bioengineered EVs containing the neuronal targeting peptide RVG on the surface significantly decreased mutATXN3 mRNA in primary cerebellar neurons from MJD YAC 84.2 and in a novel dual-luciferase MJD mouse model upon daily intranasal administration. Altogether, these findings indicate that bioengineered EVs carrying miRNA-based silencing sequences are a promising delivery vehicle for brain therapy.


Asunto(s)
Enfermedad de Machado-Joseph , MicroARNs , Ratones , Animales , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/terapia , MicroARNs/genética , Ataxina-3/genética , Interferencia de ARN , Péptidos/genética
2.
An Acad Bras Cienc ; 96(3): e20220414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38865504

RESUMEN

Eustachys presents lower diversity in the Old World than in the Neotropics and it occurs disjunctly between main tropical regions. This qualifies Eustachys as a good model to test whether lineages expand their niches during the process of range expansion. We performed ancestral range reconstruction, compared environmental spaces of the different geographic areas and assessed bioclimatic trait evolution. Ancestral range reconstruction indicated that most speciation in Eustachys occurred in the South America. Ancestral climatic niches of the New World are different from those of African and Australasia lineages. Our results show that Eustachys experienced niche expansion when it reached the New World. Evolutionary history of Eustachys illustrates how the range expansion promoted climatic niche shifts, which could drive unbalanced species richness of the genus among different tropical regions.


Asunto(s)
Clima , Poaceae , Poaceae/genética , Poaceae/clasificación , Biodiversidad , Evolución Biológica , Ecosistema , América del Sur , Filogenia
3.
Med Mycol ; 61(11)2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37960963

RESUMEN

Germline-encoded pattern recognition receptors, particularly C-type lectin receptors (CLRs), are essential for phagocytes to sense invading fungal cells. Among CLRs, Dectin-2 (encoded by Clec4n) plays a critical role in the antifungal immune response as it recognizes high-mannose polysaccharides on the fungal cell wall, triggering phagocyte functional activities and ultimately determining adaptive responses. Here, we assessed the role of Dectin-2 on the course of primary Paracoccidioides brasiliensis systemic infection in mice with Dectin-2-targeted deletion. Paracoccidioides brasiliensis constitutes the principal etiologic agent of paracoccidioidomycosis, the most prominent invasive mycosis in Latin American countries. The deficiency of Dectin-2 resulted in shortened survival rates, high lung fungal burden, and increased lung pathology in mice infected with P. brasiliensis. Consistently, dendritic cells (DCs) from mice lacking Dectin-2 infected ex vivo with P. brasiliensis showed impaired secretion of several proinflammatory and regulatory cytokines, including TNF-α, IL-1ß, IL-6, and IL-10. Additionally, when cocultured with splenic lymphocytes, DCs were less efficient in promoting a type 1 cytokine pattern secretion (i.e., IFN-γ). In macrophages, Dectin-2-mediated signaling was required to ensure phagocytosis and fungicidal activity associated with nitric oxide production. Overall, Dectin-2-mediated signaling is critical to promote host protection against P. brasiliensis infection, and its exploitation might lead to the development of new vaccines and immunotherapeutic approaches.


We report a critical role of the innate immune receptor Dectin-2 during Paracoccidioides brasiliensis infection. Fungal sensing by Dectin-2 improved the survival of mice and lowered fungal burden. Further, Dectin-2 was required for cytokine production, phagocytosis, and fungal killing by phagocytes.


Asunto(s)
Paracoccidioides , Paracoccidioidomicosis , Ratones , Animales , Fagocitos/patología , Lectinas Tipo C/metabolismo , Macrófagos , Paracoccidioidomicosis/veterinaria
4.
Med Mycol ; 61(8)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553154

RESUMEN

The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.


Fungal infections are neglected diseases that affect more than a billion people worldwide. Some histone deacetylase inhibitors can act against fungal cells. Our data reveal that HDACi LDT536 and LDT537 have potential antibiofilm and antifungal activities.

5.
An Acad Bras Cienc ; 95(3): e20220579, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878905

RESUMEN

In the current study, two euglossine species, Exaerete smaragdina and Eulaema nigrita, a cleptoparasite bee and its host, respectively, were used as models to: (i) access the genetic diversity and population structure of both species, sampled along a wide latitudinal range of Atlantic Forest, where the distribution of El. nigrita and Ex. smaragdina co-occurs; (ii) investigate the evolutionary history of these species through the Atlantic Forest, and in a wider scenario, to examine the evolutionary history of these species across others forest domains. Analyses involved males of El. nigrita and Ex. smaragdina sampled through Brazilian territory, including 19 sites in the Atlantic Forest. Bayesian Skyline Plot (BSP) was used to infer possible climate oscillations on population of both species over time. The BSP revealed stability in effective population size for both species in most of the Plio-Pleistocene period. However, BSP results aligned to the starlike configuration in the haplotype network, neutrality test, and population diversity patterns indicated population expansion of the two species during the late Pleistocene. Our findings suggest areas of potential refugia to the climatic oscillations of the Pleistocene in the Atlantic Forest in the Brazilian states of Espírito Santo for El. nigrita and Pernambuco for Ex. smaragdina.


Asunto(s)
Bosques , Interacciones Huésped-Parásitos , Masculino , Abejas/genética , Animales , Teorema de Bayes , Evolución Biológica , Variación Genética/genética , Filogenia , Filogeografía
6.
J Cell Mol Med ; 26(10): 2793-2807, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35460166

RESUMEN

Tryptophyllins constitute a heterogeneous group of peptides that are one of the first classes of peptides identified from amphibian's skin secretions. Here, we report the structural characterization and antioxidant properties of a novel tryptophyllin-like peptide, named PpT-2, isolated from the Iberian green frog Pelophylax perezi. The skin secretion of P. perezi was obtained by electrical stimulation and fractionated using RP-HPLC. De novo peptide sequencing was conducted using MALDI MS/MS. The primary structure of PpT-2 (FPWLLS-NH2 ) was confirmed by Edman degradation and subsequently investigated using in silico tools. PpT-2 shared physicochemical properties with other well-known antioxidants. To test PpT-2 for antioxidant activity in vitro, the peptide was synthesized by solid phase and assessed in the chemical-based ABTS and DPPH scavenging assays. Then, a flow cytometry experiment was conducted to assess PpT-2 antioxidant activity in oxidatively challenged murine microglial cells. As predicted by the in silico analyses, PpT-2 scavenged free radicals in vitro and suppressed the generation of reactive species in PMA-stimulated BV-2 microglia cells. We further explored possible bioactivities of PpT-2 against prostate cancer cells and bacteria, against which the peptide exerted a moderate antiproliferative effect and negligible antimicrobial activity. The biocompatibility of PpT-2 was evaluated in cytotoxicity assays and in vivo toxicity with Galleria mellonella. No toxicity was detected in cells treated with up to 512 µg/ml and in G. mellonella treated with up to 40 mg/kg PpT-2. This novel peptide, PpT-2, stands as a promising peptide with potential therapeutic and biotechnological applications, mainly for the treatment/prevention of neurodegenerative disorders.


Asunto(s)
Antioxidantes , Fármacos Neuroprotectores , Animales , Antioxidantes/metabolismo , Anuros/metabolismo , Masculino , Ratones , Microglía/metabolismo , Péptidos/química , Ranidae/metabolismo , Relación Estructura-Actividad , Espectrometría de Masas en Tándem
7.
Immunology ; 165(1): 110-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34458991

RESUMEN

Decades of studies on antibody structure led to the tenet that the V region binds antigens while the C region interacts with immune effectors. In some antibodies, however, the C region affects affinity and/or specificity for the antigen. One example is the 3E5 monoclonal murine IgG family, in which the mIgG3 isotype has different fine specificity to the Cryptococcus neoformans capsule polysaccharide than the other mIgG isotypes despite their identical variable sequences. Our group serendipitously found another pair of mIgG1/mIgG3 antibodies based on the 2H1 hybridoma to the C. neoformans capsule that recapitulated the differences observed with 3E5. In this work, we report the molecular basis of the constant domain effects on antigen binding using recombinant antibodies. As with 3E5, immunofluorescence experiments show a punctate pattern for 2H1-mIgG3 and an annular pattern for 2H1-mIgG1; these binding patterns have been associated with protective efficacy in murine cryptococcosis. Also as observed with 3E5, 2H1-mIgG3 bound on ELISA to both acetylated and non-acetylated capsular polysaccharide, whereas 2H1-mIgG1 only bound well to the acetylated form, consistent with differences in fine specificity. In engineering hybrid mIgG1/mIgG3 antibodies, we found that switching the 2H1-mIgG3 hinge for its mIgG1 counterpart changed the immunofluorescence pattern to annular, but a 2H1-mIgG1 antibody with an mIgG3 hinge still had an annular pattern. The hinge is thus necessary but not sufficient for these changes in binding to the antigen. This important role for the constant region in antigen binding could affect antibody biology and engineering.


Asunto(s)
Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Cápsulas Bacterianas/química , Cápsulas Bacterianas/inmunología , Cryptococcus neoformans/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Sitios de Unión de Anticuerpos , Células CHO , Línea Celular , Cricetulus , Criptococosis/inmunología , Epítopos/química , Epítopos/inmunología , Ratones , Proteínas Recombinantes de Fusión , Relación Estructura-Actividad
8.
J Appl Microbiol ; 132(4): 2859-2869, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34905274

RESUMEN

AIMS: Optimize the production of Aspergillus brasiliensis endoglucanase in a solid-phase bioprocess using cupuaçu shell as substrate. METHODS AND RESULTS: The shells were supplemented with nitrogen and phosphorous and used as a substrate. The centesimal and inorganic composition of the residue was determined, and found to be rich in fibres, and possessed essential elements for fungal growth. In the initial cultivation of A. brasiliensis, endoglucanase activity of 7.35 U g-1 was obtained. A factorial experimental design was used to determine the most significant variables for the bioprocess. The interactions between moisture, temperature and nitrogen source were noteworthy (p < 0.05). From the rotational central composite design, the optimization of temperature and nitrogen supplementation was obtained, and this reached 40.50 U g-1 , which is an increase of more than five times the value obtained initially. The enzymatic extract was applied as the biocatalyst in the hydrolysis of cupuaçu shells and, after 48 h, it was possible to observe the production of reducing sugars. CONCLUSIONS: Cupuaçu shell can be used as a substrate for endoglucanase production by A. brasiliensis. The process was optimized for the cultivation temperature and the nitrogen source. The enzymatic extract can be applied in the hydrolysis of lignocellulosic biomass. SIGNIFICANCE AND IMPACT OF THE STUDY: Cupuaçu shells can be used to produce cellulases, a product of high added value that can generate economic and environmental benefits for communities and companies producing derivatives of the cupuaçu fruit.


Asunto(s)
Cacao , Celulasa , Aspergillus/metabolismo , Cacao/metabolismo , Celulasa/metabolismo , Fermentación
9.
World J Microbiol Biotechnol ; 38(2): 30, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989888

RESUMEN

Enzymes are biocatalysts that are widely used in different industries and generate billions of dollars annually. With the advancement of biotechnology, new enzymatic sources are being evaluated, especially microbial ones, in order to find efficient producers. Endophytic fungi are promising sources of biomolecules; however, Amazonian species are still poorly studied as to their enzymatic production potential. In this sense, the production of hydrolases (amylases, lipases, cellulases and pectinases) was evaluated in endophytic fungi isolated from the leaves, roots and stems of açai palms (Euterpe precatoria). A qualitative test was carried out to detect the enzymatic synthesis in each isolate, and the most promising ones were cultivated using submerged fermentation. The enzyme extracts were quantified to determine those with the greatest activity. Cellulolytic and amylolytic extracts showed the highest enzymatic activities and were partially characterized. Among 50 isolates, 82.9% produced pectinase, 58.5% produced cellulase, 31.7% produced amylase, and 12.2% produced lipase. Penicillium sp. L3 was the best producer of amylase and Colletotrichum sp. S1 was the best producer of cellulase in liquid medium cultivation. The amylolytic extract showed the highest enzymatic activity at pH 8.0 and 45 °C, and the cellulolytic extract at pH 5.0 and 35 °C. The cellulase and amylase produced by the endophytes had their molecular masses estimated between 38 and 76 kDa. These results indicate that endophytic fungi from the açai palm can be used as a new source of hydrolytic enzymes, which can be applied in numerous biotechnological processes.


Asunto(s)
Endófitos/enzimología , Endófitos/metabolismo , Euterpe/microbiología , Hongos/enzimología , Hongos/metabolismo , Amilasas/metabolismo , Biotecnología/métodos , Celulasa/metabolismo , Celulasas/metabolismo , Colletotrichum , Hongos/clasificación , Hidrólisis , Lipasa/metabolismo , Penicillium , Péptido Hidrolasas , Poligalacturonasa/metabolismo
10.
J Immunol ; 202(9): 2782-2794, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894426

RESUMEN

Abs exert several of their effector functions by binding to cell surface receptors. For murine IgG3 (mIgG3), the identity of its receptors (and the very existence of a receptor) is still under debate, as not all mIgG3 functions can be explained by interaction with FcγRI. This implies the existence of an alternate receptor, whose identity we sought to pinpoint. We found that blockage of integrin ß1 selectively hampered binding of mIgG3 to macrophages and mIgG3-mediated phagocytosis. Manganese, an integrin activator, increased mIgG3 binding to macrophages. Blockage of FcγRI or Itgb1 inhibited binding of different mIgG3 Abs to variable extents. Our results are consistent with the notion that Itgb1 functions as part of an IgG receptor complex. Given the more ancient origin of integrins in comparison with FcγR, this observation could have far-ranging implications for our understanding of the evolution of Ab-mediated immunity as well as in immunity to microorganisms, pathogenesis of autoimmune diseases, and Ab engineering.


Asunto(s)
Inmunoglobulina G/inmunología , Integrina beta1/inmunología , Macrófagos/inmunología , Fagocitosis , Receptores de IgG/inmunología , Animales , Inmunoglobulina G/genética , Integrina beta1/genética , Ratones , Ratones Noqueados , Receptores de IgG/genética
11.
Chem Biodivers ; 18(3): e2000938, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33508178

RESUMEN

Aniba parviflora (Meisn.) Mez (Lauraceae) is an aromatic plant of the Amazon rainforest, which has a tremendous commercial value in the perfumery industry; it is popularly used as flavoring sachets and aromatic baths. In Brazilian folk medicine, A. parviflora is used to treat victims of snakebites. Herein, we analyzed the chemical composition of A. parviflora bark essential oil (EO) and its effect on the growth of human hepatocellular carcinoma HepG2 cells in vitro and in vivo. EO was obtained by hydrodistillation and characterized by GC-MS and GC-FID. The main constituents of EO were linalool (16.3±3.15), α-humulene (14.5±2.41 %), δ-cadinene (10.2±1.09 %), α-copaene (9.51±1.12 %) and germacrene B (7.58±2.15 %). Initially, EO's cytotoxic effect was evaluated against five cancer cell lines (HepG2, MCF-7, HCT116, HL-60 and B16-F10) and one non-cancerous one (MRC-5), using the Alamar blue method after 72 h of treatment. The calculated IC50 values were 9.05, 22.04, >50, 15.36, 17.57, and 30.46 µg/mL, respectively. The best selectivity was for HepG2 cells with a selective index of 3.4. DNA Fragmentation and cell cycle distribution were quantified in HepG2 cells by flow cytometry after a treatment period of 24 and 48 h. The effect of EO on tumor development in vivo was evaluated in a xenograft model using C.B-17 SCID mice engrafted with HepG2 cells. In vivo tumor growth inhibition of HepG2 xenograft at the doses of 40 and 80 mg/kg were 12.1 and 62.4 %, respectively.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Lauraceae/química , Aceites Volátiles/farmacología , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones SCID , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Corteza de la Planta/química , Estereoisomerismo , Relación Estructura-Actividad
12.
Fungal Genet Biol ; 140: 103368, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32201128

RESUMEN

Ergosterol is the most important membrane sterol in fungal cells and a component not found in the membranes of human cells. We identified the ERG6 gene in the AIDS-associated fungal pathogen, Cryptococcus neoformans, encoding the sterol C-24 methyltransferase of fungal ergosterol biosynthesis. In this work, we have explored its relationship with high-temperature growth and virulence of C. neoformans by the construction of a loss-of-function mutant. In contrast to other genes involved in ergosterol biosynthesis, C. neoformans ERG6 is not essential for growth under permissive conditions in vitro. However, the erg6 mutant displayed impaired thermotolerance and increased susceptibility to osmotic and oxidative stress, as well as to different antifungal drugs. Total lipid analysis demonstrated a decrease in the erg6Δ strain membrane ergosterol content. In addition, this mutant strain was avirulent in an invertebrate model of C. neoformans infection. C. neoformans Erg6 was cyto-localized in the endoplasmic reticulum and Golgi complex. Our results demonstrate that Erg6 is crucial for growth at high temperature and virulence, likely due to its effects on C. neoformans membrane integrity and dynamics. These pathogen-focused investigations into ergosterol biosynthetic pathway components reinforce the multiple roles of ergosterol in the response of diverse fungal species to alterations in the environment, especially that of the infected host. These studies open perspectives to understand the participation of ergosterol in mechanism of resistance to azole and polyene drugs. Observed synergistic growth defects with co-inhibition of Erg6 and other components of the ergosterol biosynthesis pathway suggests novel approaches to treatment in human fungal infections.


Asunto(s)
Criptococosis/genética , Cryptococcus neoformans/genética , Ergosterol/biosíntesis , Metiltransferasas/genética , Antifúngicos/farmacología , Azoles/farmacología , Vías Biosintéticas/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Retículo Endoplásmico/efectos de los fármacos , Ergosterol/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación/efectos de los fármacos , Virulencia/genética
13.
Cell Microbiol ; 21(10): e13066, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31173452

RESUMEN

Free-living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose-binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose-binding proteins, Ac-fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.


Asunto(s)
Acanthamoeba castellanii/metabolismo , Hongos/patogenicidad , Lectina de Unión a Manosa/metabolismo , Acanthamoeba castellanii/química , Acanthamoeba castellanii/microbiología , Acanthamoeba castellanii/ultraestructura , Animales , Candida albicans/patogenicidad , Candida albicans/ultraestructura , Concanavalina A/metabolismo , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Histoplasma/patogenicidad , Histoplasma/ultraestructura , Interacciones Huésped-Patógeno , Larva/microbiología , Lepidópteros/microbiología , Manosa/química , Manosa/metabolismo , Lectina de Unión a Manosa/química , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Paracoccidioides/patogenicidad , Paracoccidioides/ultraestructura , Saccharomyces cerevisiae/patogenicidad , Saccharomyces cerevisiae/ultraestructura , Factores de Tiempo , Imagen de Lapso de Tiempo , Virulencia , Factores de Virulencia/metabolismo
14.
Mediators Inflamm ; 2020: 3412763, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33380899

RESUMEN

Cryptococcus neoformans is an encapsulated yeast that causes disease mainly in immunosuppressed hosts. It is considered a facultative intracellular pathogen because of its capacity to survive and replicate inside phagocytes, especially macrophages. This ability is heavily dependent on various virulence factors, particularly the glucuronoxylomannan (GXM) component of the polysaccharide capsule. Inflammasome activation in phagocytes is usually protective against fungal infections, including cryptococcosis. Nevertheless, recognition of C. neoformans by inflammasome receptors requires specific changes in morphology or the opsonization of the yeast, impairing proper inflammasome function. In this context, we analyzed the impact of molecules secreted by C. neoformans B3501 strain and its acapsular mutant Δcap67 in inflammasome activation in an in vitro model. Our results showed that conditioned media derived from B3501 was capable of inhibiting inflammasome-dependent events (i.e., IL-1ß secretion and LDH release via pyroptosis) more strongly than conditioned media from Δcap67, regardless of GXM presence. We also demonstrated that macrophages treated with conditioned media were less responsive against infection with the virulent strain H99, exhibiting lower rates of phagocytosis, increased fungal burdens, and enhanced vomocytosis. Moreover, we showed that the aromatic metabolite DL-Indole-3-lactic acid (ILA) and DL-p-Hydroxyphenyllactic acid (HPLA) were present in B3501's conditioned media and that ILA alone or with HPLA is involved in the regulation of inflammasome activation by C. neoformans. These results were confirmed by in vivo experiments, where exposure to conditioned media led to higher fungal burdens in Acanthamoeba castellanii culture as well as in higher fungal loads in the lungs of infected mice. Overall, the results presented show that conditioned media from a wild-type strain can inhibit a vital recognition pathway and subsequent fungicidal functions of macrophages, contributing to fungal survival in vitro and in vivo and suggesting that secretion of aromatic metabolites, such as ILA, during cryptococcal infections fundamentally impacts pathogenesis.


Asunto(s)
Cryptococcus neoformans/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Polisacáridos/química , Animales , Caspasa 1/metabolismo , Criptococosis , Medios de Cultivo Condicionados , Células Dendríticas/metabolismo , Técnica del Anticuerpo Fluorescente , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Polisacáridos/metabolismo , Factores de Virulencia/metabolismo
15.
Fungal Genet Biol ; 121: 46-55, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30268928

RESUMEN

Trichosporon asahii shares with Cryptococcus species the ability to produce glucuronoxylomannan (GXM), an immunomodulatory fungal polysaccharide. The ability of other opportunistic species of Trichosporon to produce GXM-like polysaccharides is unknown. In this study, we observed that T. mucoides was less pathogenic than T. asahii in an infection model of Galleria mellonella and asked whether this difference was related to the characteristics of GXM-like molecules. Compositional analysis of samples obtained from both pathogens indicated that the components of GXM (mannose, xylose and glucuronic acid) were, in fact, detected in T. mucoides and T. asahii glycans. The identification of the T. mucoides glycan as a GXM-like molecule was confirmed by its reactivity with a monoclonal antibody raised to cryptococcal GXM and incorporation of the glycan into the cell surface of an acapsular mutant of C. neoformans. T. mucoides and T. asahii glycans differed in molecular dimensions. The antibody to cryptococcal GXM recognized T. mucoides yeast forms less efficiently than T. asahii cells. Experiments with animal cells revealed that the T. mucoides glycan manifested antiphagocytic properties. Comparative phagocytosis assays revealed that T. mucoides and T. asahii were similarly recognized by macrophages. However, fungal association with the phagocytes did not depend on the typical receptors of cryptococcal GXM, as concluded from assays using macrophages obtained from Tlr2-/- and Cd14-/- knockout mice. These results add T. mucoides to the list of fungal pathogens producing GXM-like glycans, but also indicate a high functional diversity of this major fungal immunogen.


Asunto(s)
Lepidópteros/genética , Fagocitosis/genética , Polisacáridos/genética , Animales , Cryptococcus neoformans/genética , Lepidópteros/microbiología , Receptores de Lipopolisacáridos/genética , Macrófagos/microbiología , Ratones Noqueados , Polisacáridos/biosíntesis , Polisacáridos/química , Receptor Toll-Like 2/genética , Trichosporon/genética
16.
Adv Exp Med Biol ; 1049: 395-438, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427115

RESUMEN

Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/terapia , Animales , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Péptidos/genética , Péptidos/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-28559266

RESUMEN

Fungal Candida species are commensals present in the mammalian skin and mucous membranes. Candida spp. are capable of breaching the epithelial barrier of immunocompromised patients with neutrophil and cell-mediated immune dysfunctions and can also disseminate to multiple organs through the bloodstream. Here we examined the action of innate defense regulator 1018 (IDR-1018), a 12-amino-acid-residue peptide derived from bovine bactenecin (Bac2A): IDR-1018 showed weak antifungal and antibiofilm activity against a Candida albicans laboratory strain (ATCC 10231) and a clinical isolate (CI) (MICs of 32 and 64 µg · ml-1, respectively), while 8-fold lower concentrations led to dissolution of the fungal cells from preformed biofilms. IDR-1018 at 128 µg · ml-1 was not hemolytic when tested against murine red blood cells and also has not shown a cytotoxic effect on murine monocyte RAW 264.7 and primary murine macrophage cells at the tested concentrations. IDR-1018 modulated the cytokine profile during challenge of murine bone marrow-derived macrophages with heat-killed C. albicans (HKCA) antigens by increasing monocyte chemoattractant protein 1 (MCP-1) and interleukin-10 (IL-10) levels, while suppressing tumor necrosis factor alpha (TNF-α), IL-1ß, IL-6, and IL-12 levels. Mice treated with IDR-1018 at 10 mg · kg-1 of body weight had an increased survival rate in the candidemia model compared with phosphate-buffered saline (PBS)-treated mice, together with a diminished kidney fungal burden. Thus, IDR-1018 was able to protect against murine experimental candidemia and has the potential as an adjunctive therapy.


Asunto(s)
Antifúngicos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candidemia/tratamiento farmacológico , Candidemia/prevención & control , Factores Inmunológicos/uso terapéutico , Animales , Candida albicans/inmunología , Candida albicans/aislamiento & purificación , Línea Celular , Quimiocina CCL2/inmunología , Modelos Animales de Enfermedad , Interleucina-10/inmunología , Subunidad p35 de la Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Pruebas de Sensibilidad Microbiana , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
18.
PLoS Pathog ; 10(5): e1004037, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24789368

RESUMEN

Polysaccharide capsules are important virulence factors for many microbial pathogens including the opportunistic fungus Cryptococcus neoformans. In the present study, we demonstrate an unusual role for a secreted lactonohydrolase of C. neoformans, LHC1 in capsular higher order structure. Analysis of extracted capsular polysaccharide from wild-type and lhc1Δ strains by dynamic and static light scattering suggested a role for the LHC1 locus in altering the capsular polysaccharide, both reducing dimensions and altering its branching, density and solvation. These changes in the capsular structure resulted in LHC1-dependent alterations of antibody binding patterns, reductions in human and mouse complement binding and phagocytosis by the macrophage-like cell line J774, as well as increased virulence in mice. These findings identify a unique molecular mechanism for tertiary structural changes in a microbial capsule, facilitating immune evasion and virulence of a fungal pathogen.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Cryptococcus neoformans/inmunología , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/inmunología , Cápsulas Fúngicas/metabolismo , Hidrolasas/fisiología , Animales , Células Cultivadas , Criptococosis/inmunología , Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Cápsulas Fúngicas/ultraestructura , Humanos , Hidrolasas/química , Hidrolasas/metabolismo , Ratones , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Proteómica , Virulencia/genética
19.
Rev Biol Trop ; 64(3): 1041-56, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29461769

RESUMEN

The Neotropical bee Centris (Hemisiella) dichrootricha is a solitary bee that nests in pre-existing cavities that occur in the rain forest. This study describes the nesting biology of C. dichrootricha and its preference for nesting in Cerrado and gallery forest habitats. The study was conducted from January 2012 and December 2013, in Mirador State Park in the municipality of Formosa da Serra Negra, Maranhão State, Brazil. For this, wooden trap-nests of 6, 8, 10, 12, 14 and 16 mm in diameter were used; a total of 300 trap-nests were placed in the gallery forest and Cerrado areas, respectively. Traps were monitored monthly and all completed nests were collected and replaced with empty ones. The nests were then taken to the laboratory to analyze bee development and emergence, nests characteristics and parasites presence. The species used 29 of the trap-nests, which had diameters of 8, 10, 12 and 14 mm. A total of 87 C. dichrootricha specimens emerged. The nests were parasitized by two bee species, Mesocheira bicolor (Apinae) and Coelioxys sp. (Megachilinae), and one fly species, Antrax sp. (Diptera). The highest nesting incidence of 72.4 % was observed in the gallery forest, whereas only 27.6 % in the Cerrado; this difference in habitat use was significant (χ² = 5.56; p < 0.05; DF = 1). For the nests that were built in the gallery forest, 80.9% of the soil originated from the Cerrado. The females were significantly larger than the males (F1, 76 = 595.19; p < 0.001). There were 11 pollen types that belonged to six families. Pollen of the family Malpighiaceae was most frequently used, with four species represented (Byrsonima crassifolia, B. rotunda, B. spicata and Heteropterys sp.). C. dichrootricha showed a preference for nesting in cavities of various diameters in gallery forest sites. The present study provides a novel description of the nesting habits and biology of C. dichrootricha in habitats of Central/Southern Maranhão. C. dichrootricha primarily used resources from the Cerrado, including soil to build their nests, pollen and floral oils; we concluded that gallery forest and Cerrado areas are intrinsically related to the maintenance of local populations of this species.


Asunto(s)
Abejas/fisiología , Bosques , Comportamiento de Nidificación/fisiología , Distribución Animal , Animales , Brasil , Femenino , Masculino , Polen/clasificación , Estaciones del Año , Distribución por Sexo , Factores Sexuales , Especificidad de la Especie , Factores de Tiempo
20.
BMC Genomics ; 15: 943, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25351875

RESUMEN

BACKGROUND: The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS: The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS: Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.


Asunto(s)
Enfermedades de los Gatos/microbiología , Proteínas Fúngicas/genética , Sporothrix/genética , Esporotricosis/transmisión , Factores de Virulencia/genética , Adaptación Biológica , Animales , Enfermedades de los Gatos/transmisión , Gatos , Evolución Molecular , Especiación Genética , Genoma Mitocondrial , Humanos , Filogenia , Sporothrix/clasificación , Sporothrix/patogenicidad , Esporotricosis/microbiología , Esporotricosis/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA