Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111716, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396047

RESUMEN

Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Bifenilos Policlorados/toxicidad , Teratógenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Transcriptoma , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores
2.
Chem Res Toxicol ; 32(4): 698-707, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30896932

RESUMEN

Hydroxylation of polyaromatic compounds through cytochromes P450 (CYPs) is known to result in potentially estrogenic transformation products. Recently, there has been an increasing awareness of the importance of alternative pathways such as aldehyde oxidases (AOX) or N-methyltransferases (NMT) in bioactivation of small molecules, particularly N-heterocycles. Therefore, this study investigated the biotransformation and activity of methylated quinolines, a class of environmentally relevant N-heterocycles that are no native ligands of the estrogen receptor (ER), in the estrogen-responsive cell line ERα CALUX. We found that this widely used cell line overexpresses AOXs and NMTs while having low expression of CYP enzymes. Exposure of ERα CALUX cells to quinolines resulted in estrogenic effects, which could be mitigated using an inhibitor of AOX/NMTs. No such mitigation occurred after coexposure to a CYP1A inhibitor. A number of N-methylated but no hydroxylated transformation products were detected using liquid chromatography-mass spectrometry, which indicated that biotransformations to estrogenic metabolites were likely catalyzed by NMTs. Compared to the natural ER ligand 17ß-estradiol, the products formed during the metabolization of quinolines were weak to moderate agonists of the human ERα. Our findings have potential implications for the risk assessment of these compounds and indicate that care must be taken when using in vitro estrogenicity assays, for example, ERα CALUX, for the characterization of N-heterocycles or environmental samples that may contain them.


Asunto(s)
Metiltransferasas/metabolismo , Quinolinas/metabolismo , Receptores de Estrógenos/metabolismo , Biocatálisis , Línea Celular Tumoral , Humanos , Metiltransferasas/química , Modelos Moleculares , Estructura Molecular , Quinolinas/química , Proteínas Recombinantes/metabolismo
3.
Ecotoxicol Environ Saf ; 183: 109505, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31394372

RESUMEN

Biotests like the fish embryo toxicity test have become increasingly popular in risk assessment and evaluation of chemicals found in the environment. The large range of possible endpoints is a big advantage when researching on the mode of action of a certain substance. Here, we utilized the frequently used model organism zebrafish (Danio rerio) to examine regulative mechanisms in the pathway of the aryl-hydrocarbon receptor (AHR) in early development. We exposed embryos to representatives of two chemical classes known to elicit dioxin-like activity: benzo[a]pyrene for polycyclic aromatic hydrocarbons (PAHs) and 2,3-benzofuran for polar O-substituted heterocycles as a member of heterocyclic compounds in general (N-, S-, O-heterocycles; NSO-hets). We measured gene transcription of the induced P450 cytochromes (cyp1), their formation of protein and biotransformation activity throughout the whole embryonic development until 5 days after fertilization. The results show a very specific time course of transcription depending on the chemical properties (e.g. halogenation, planarity, Kow), the physical decay and the biodegradability of the tested compound. However, although this temporal pattern was not precisely transferable onto the protein level, significant regulation in enzymatic activity over time could be detected. We conclude, that a careful choice of time and end point as well as consideration of the chemical properties of a substance are fairly important when planning, conducting and especially evaluating biotests.


Asunto(s)
Benzo(a)pireno/toxicidad , Benzofuranos/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Contaminantes Químicos del Agua/toxicidad , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Transcripción Genética/efectos de los fármacos , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Blood ; 123(26): 4077-88, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24833351

RESUMEN

Inflammation is a key process in various diseases, characterized by leukocyte recruitment to the inflammatory site. This study investigates the role of a disintegrin and a metalloproteinase (ADAM) 10 and ADAM17 for leukocyte migration in vitro and in a murine model of acute pulmonary inflammation. Inhibition experiments or RNA knockdown indicated that monocytic THP-1 cells and primary human neutrophils require ADAM10 but not ADAM17 for efficient chemokine-induced cell migration. Signaling and adhesion events that are linked to cell migration such as p38 and ρ GTPase-family activation, F-actin polymerization, adhesion to fibronectin, and up-regulation of α5 integrin were also dependent on ADAM10 but not ADAM17. This was confirmed with leukocytes isolated from mice lacking either ADAM10 or ADAM17 in all hematopoietic cells (vav 1 guanine nucleotide exchange factor [Vav]-Adam10(-/-) or Vav-Adam17(-/-) mice). In lipopolysaccharide-induced acute pulmonary inflammation, alveolar recruitment of neutrophils and monocytes was transiently increased in Vav-Adam17(-/-) but steadily reduced in Vav-Adam10(-/-) mice. This deficit in alveolar leukocyte recruitment was also observed in LysM-Adam10(-/-) mice lacking ADAM10 in myeloid cells and correlated with protection against edema formation. Thus, with regard to leukocyte migration, leukocyte-expressed ADAM10 but not ADAM17 displays proinflammatory activities and may therefore serve as a target to limit inflammatory cell recruitment.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Movimiento Celular , Proteínas de la Membrana/metabolismo , Infiltración Neutrófila , Neutrófilos/enzimología , Neumonía/enzimología , Alveolos Pulmonares/enzimología , Edema Pulmonar/enzimología , Proteínas ADAM/genética , Proteína ADAM10 , Proteína ADAM17 , Enfermedad Aguda , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Lipopolisacáridos/toxicidad , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neutrófilos/patología , Neumonía/inducido químicamente , Neumonía/genética , Neumonía/patología , Alveolos Pulmonares/patología , Edema Pulmonar/inducido químicamente , Edema Pulmonar/genética , Edema Pulmonar/patología
5.
Anal Bioanal Chem ; 407(25): 7721-31, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26255296

RESUMEN

In the last few decades, MALDI-TOF MS has become a useful technique not only in proteomics, but also as a fast and specific tool for whole cell analysis through intact cell mass spectrometry (IC-MS). The present study evaluated IC-MS as a novel tool for the detection of distinct patterns that can be observed after exposure to a certain toxin or concentration by utilizing the eukaryotic fish cell line RTL-W1. Two different viability assays were performed to define the range for IC-MS investigations, each of which employing copper sulfate, acridine, and ß-naphthoflavone (BNF) as model compounds for several classes of environmental toxins. The IC-MS of RTL-W1 cells revealed not only specific spectral patterns for the various toxins, but also that the concentration used had an effect on RTL-W1 profiles. After the exposure with copper sulfate and acridine, the spectra of RTL-W1 showed a significant increase of certain peaks in the higher mass range (m/z >7000), which is probably attributed to the apoptosis of RTL-W1. On the contrary, exposure to BNF showed a distinct change of ion abundances only in the lower mass range (m/z <7000). Furthermore, a set of mass peaks could be identified as a specific biomarker for a single toxin treatment, so IC-MS demonstrates a new method for the distinction of toxic effects in fish cells. Due to fast sample preparation and high throughput, IC-MS offers great potential for ecotoxicological studies to investigate cellular effects of different substances and complex environmental samples.


Asunto(s)
Acridinas/toxicidad , Sulfato de Cobre/toxicidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Contaminantes Químicos del Agua/toxicidad , beta-naftoflavona/toxicidad , Animales , Línea Celular , Ecotoxicología/métodos , Peces , Pruebas de Toxicidad/métodos
7.
Aquat Toxicol ; 204: 117-129, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30245344

RESUMEN

In order to contribute to a comprehensive understanding of the regulating mechanisms of the aryl-hydrocarbon-receptor (AHR) in zebrafish embryos, we aimed to elucidate the interaction of proteins taking part in this signaling pathway during early development of the zebrafish (Danio rerio) after chemical exposure. We managed to illustrate initial transcription processes of the implemented proteins after exposure to two environmentally relevant chemicals: polychlorinated biphenyl 126 (PCB126) and ß-Naphthoflavone (BNF). Using qPCR, we quantified mRNA every 4 h until 118 h post fertilization and found the expression of biotransformation enzymes (cyp1 family) and the repressor of the AHR (ahr-r) to be dependent on the duration of chemical exposure and the biodegradability of the compounds. PCB126 induced persistently increased amounts of transcripts as it is not metabolized, whereas activation by BNF was limited to the initial period of exposure. We did not find a clear relation between the amount of transcripts and activity of the induced CYP-proteins, so posttranscriptional mechanisms are likely to regulate biotransformation of BNF. With regard to zebrafish embryos and their application in risk assessment of hazardous chemicals, our examination of the AHR pathway especially supports the relevance of the time point or period of exposure that is used for bioanalytical investigations and consideration of chemical properties determining biodegradability.


Asunto(s)
Desarrollo Embrionario , Receptores de Hidrocarburo de Aril/metabolismo , Pez Cebra/embriología , Animales , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Bifenilos Policlorados/toxicidad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , beta-naftoflavona/toxicidad
8.
Sci Total Environ ; 622-623: 1193-1201, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890587

RESUMEN

Tricolsan (TCS), an antimicrobial agent, is considered as emerging pollutant due to its wide dispersive use in personal care products and high aquatic toxicity. In the present study, phase I metabolism of triclosan was investigated through laboratory electrochemical simulation studies. The products formed in the electrochemical (EC) cell were identified by online and offline coupling with QTRAP and high-resolution FTICR mass spectrometers, respectively. The sequential formation and disappearance of each product, with the continuous increase of voltage from 0 to 3500 mV, was observed to reveal the transformation pathways of TCS. The toxic potential of TCS and the identified products was estimated using Quantitative structure-activity relationship (QSAR) modeling on 16 target proteins. The toxicity change of TCS during simulated metabolism and toxicological effects of reaction mixture were assessed by Fish embryo toxicity (FET) test (Danio rerio) and quantitative real-time polymerase chain reaction (qPCR). Eight metabolites formed during the simulated metabolism of TCS mainly via the mechanisms of hydroxylation, ether-bond cleavage and cyclization. In FET test, the reaction mixture (LC50, 48h=1.28 mg/L) after electrochemical reactions showed high acute toxicity on zebrafish embryos, which was comparable to that of triclosan (LC50, 48h=1.34 mg/L). According to the modeling data, less toxic products formed only via ether-bond cleavage of TCS while the products formed through other mechanisms showed high toxicity. AhR-mediated dioxin-like effects on zebrafish embryos, such as developmental retardation in skeleyton and malformations in cardiovascular system, were also observed after exposure to the TCS reaction mixture in FET test. Activation of the AhR by the reaction mixture in zebrafish embryos was further proved in cyp1a gene expression analysis.


Asunto(s)
Antiinfecciosos Locales/metabolismo , Triclosán/metabolismo , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/fisiología , Animales , Antiinfecciosos Locales/toxicidad , Pruebas de Toxicidad , Triclosán/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo
9.
Aquat Toxicol ; 193: 187-200, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29096092

RESUMEN

The zebrafish as a test organism enables the investigation of effects on a wide range of biological levels from molecular level to the whole-organism level. The use of fish embryos represents an attractive model for studies aimed at understanding toxic mechanisms and the environmental risk assessment of chemicals. In the present study, a zebrafish (Danio rerio) in vivo model was employed in order to assess the effects of two commonly used pesticides, the insecticide diazinon and the herbicide diuron, on zebrafish early life stages. Since it was previously established that diazinon and diuron cause effects at the whole-organism level, this study assessed the suborganismic responses to exposure to these pesticides and the enzymatic responses (biochemical level) and the gene expression changes (molecular level) were analyzed. Different exposure scenarios were employed and the following endpoints measured: acetylcholinesterase (AChE), carboxylesterase (CES), ethoxyresorufin-O-deethylase (EROD), glutathione-S-transferase (GST), catalase (CAT) and glutathione peroxidase (GPx) activities; and gene expressions of the corresponding genes: acetylcholinesterase (ache), carboxylesterase (ces2), cytochrome P450 (cyp1a), glutathione-S-transferase (gstp1), catalase (cat), glutathione peroxidase (gpx1a) and additionally glutathione reductase (gsr). Significant changes at both the biochemical and the molecular level were detected. In addition, different sensitivities of different developmental stages of zebrafish were determined and partial recovery of the enzyme activity 48h after the end of the exposure was observed. The observed disparity between gene expression changes and alterations in enzyme activities points to the necessity of monitoring changes at different levels of biological organization. Different exposure scenarios, together with a comparison of the responses at the biochemical and molecular level, provide valuable data on the effects of diazinon and diuron on low organizational levels in zebrafish embryos and larvae.


Asunto(s)
Diurona/toxicidad , Herbicidas/toxicidad , Insecticidas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Carboxilesterasa/metabolismo , Catalasa/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Diazinón/toxicidad , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Expresión Génica , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Larva/efectos de los fármacos , Larva/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
10.
Environ Sci Pollut Res Int ; 22(21): 16305-18, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24958532

RESUMEN

The European Water Framework Directive aims to achieve a good ecological and chemical status in surface waters until 2015. Sediment toxicology plays a major role in this intention as sediments can act as a secondary source of pollution. In order to fulfill this legal obligation, there is an urgent need to develop whole-sediment exposure protocols, since sediment contact assays represent the most realistic scenario to simulate in situ exposure conditions. Therefore, in the present study, a vertebrate sediment contact assay to determine aryl hydrocarbon receptor (AhR)-mediated activity of particle-bound pollutants was developed. Furthermore, the activity and the expression of the CYP1 family in early life stages of zebrafish after exposure to freeze-dried sediment samples were investigated. In order to validate the developed protocol, effects of ß-naphthoflavone and three selected sediment on zebrafish embryos were investigated. Results documented clearly AhR-mediated toxicity after exposure to ß-naphthoflavone (ß-NF) and to the sediment from the Vering canal. Upregulation of mRNA levels was observed for all investigated sediment samples. The highest levels of all investigated cyp genes (cyp1a, cyp1b1, cyp1c1, and cyp1c2) were recorded after exposure to the sediment sample of the Vering canal. In conclusion, the newly developed sediment contact assay can be recommended for the investigation of dioxin-like activities of single substances and the bioavailable fraction of complex environmental samples. Moreover, the exposure of whole zebrafish embryos to native (freeze-dried) sediment samples represents a highly realistic and ecologically relevant exposure scenario.


Asunto(s)
Dioxinas/toxicidad , Sedimentos Geológicos/química , Receptores de Hidrocarburo de Aril/metabolismo , Pruebas de Toxicidad/métodos , Contaminantes Químicos del Agua/toxicidad , Animales , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Dosificación Letal Mediana , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA