RESUMEN
Dysfunctional RNA processing caused by genetic defects in RNA processing enzymes has a profound impact on the nervous system, resulting in neurodevelopmental conditions. We characterized a recessive neurological disorder in 18 children and young adults from 10 independent families typified by intellectual disability, motor developmental delay and gait disturbance. In some patients peripheral neuropathy, corpus callosum abnormalities and progressive basal ganglia deposits were present. The disorder is associated with rare variants in NUDT2, a mRNA decapping and Ap4A hydrolysing enzyme, including novel missense and in-frame deletion variants. We show that these NUDT2 variants lead to a marked loss of enzymatic activity, strongly implicating loss of NUDT2 function as the cause of the disorder. NUDT2-deficient patient fibroblasts exhibit a markedly altered transcriptome, accompanied by changes in mRNA half-life and stability. Amongst the most up-regulated mRNAs in NUDT2-deficient cells, we identified host response and interferon-responsive genes. Importantly, add-back experiments using an Ap4A hydrolase defective in mRNA decapping highlighted loss of NUDT2 decapping as the activity implicated in altered mRNA homeostasis. Our results confirm that reduction or loss of NUDT2 hydrolase activity is associated with a neurological disease, highlighting the importance of a physiologically balanced mRNA processing machinery for neuronal development and homeostasis.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Adulto Joven , Humanos , ARN Mensajero/genética , Monoéster Fosfórico Hidrolasas/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Hidrolasas NudixRESUMEN
Polydactyly is a very common digit anomaly, having extra digits in hands and/or toes. Non-syndromic polydactyly in both autosomal dominant and autosomal recessive forms are caused by disease-causing variants in several genes, including GLI1, GLI3, ZNF141, FAM92A, IQCE, KIAA0825, MIPOL1, STKLD1, PITX1, and DACH1. Whole exome sequencing (WES) followed by bi-directional Sanger sequencing was performed for the single affected individual (II-1) of the family to reveal the disease causative variant/gene. 3D protein modeling and structural molecular docking was performed to determine the effect of the identified mutation on the overall protein structure. WES revealed a novel biallelic missense variant (c.472G>C; p.Ala158Pro) in exon 6 of the FAM92A gene. The identified variant segregated perfectly with the disease phenotype using Sanger sequencing. Furthermore, Insilco analysis revealed that the variant significantly changes the protein secondary structure, and substantially impact the stability of FAM92A. We report the second FAM92A disease-causing mutation associated with recessive non-syndromic postaxial polydactyly. The data further confirms the contribution of FAM92A in limb development and patterning.
Asunto(s)
Secuenciación del Exoma , Homocigoto , Linaje , Polidactilia , Dedos del Pie , Femenino , Humanos , Masculino , Dedos/anomalías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación/genética , Mutación Missense/genética , Fenotipo , Polidactilia/genética , Dedos del Pie/anomalíasRESUMEN
MOTIVATION: Structural genomic variants account for much of human variability and are involved in several diseases. Structural variants are complex and may affect coding regions of multiple genes, or affect the functions of genomic regions in different ways from single nucleotide variants. Interpreting the phenotypic consequences of structural variants relies on information about gene functions, haploinsufficiency or triplosensitivity and other genomic features. Phenotype-based methods to identifying variants that are involved in genetic diseases combine molecular features with prior knowledge about the phenotypic consequences of altering gene functions. While phenotype-based methods have been applied successfully to single nucleotide variants as well as short insertions and deletions, the complexity of structural variants makes it more challenging to link them to phenotypes. Furthermore, structural variants can affect a large number of coding regions, and phenotype information may not be available for all of them. RESULTS: We developed DeepSVP, a computational method to prioritize structural variants involved in genetic diseases by combining genomic and gene functions information. We incorporate phenotypes linked to genes, functions of gene products, gene expression in individual cell types and anatomical sites of expression, and systematically relate them to their phenotypic consequences through ontologies and machine learning. DeepSVP significantly improves the success rate of finding causative variants in several benchmarks and can identify novel pathogenic structural variants in consanguineous families. AVAILABILITY AND IMPLEMENTATION: https://github.com/bio-ontology-research-group/DeepSVP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Aprendizaje Profundo , Humanos , Genotipo , Fenotipo , Genómica , NucleótidosRESUMEN
PURPOSE: Pathogenic variants in genes encoding ubiquitin E3 ligases are known to cause neurodevelopmental syndromes. Additional neurodevelopmental disorders associated with the other genes encoding E3 ligases are yet to be identified. METHODS: Chromosomal analysis and exome sequencing were used to identify the genetic causes in 10 patients from 7 unrelated families with syndromic neurodevelopmental, seizure, and movement disorders and neurobehavioral phenotypes. RESULTS: In total, 4 patients were found to have 3 different homozygous loss-of-function (LoF) variants, and 3 patients had 4 compound heterozygous missense variants in the candidate E3 ligase gene, HECTD4, that were rare, absent from controls as homozygous, and predicted to be deleterious in silico. In 3 patients from 2 families with Angelman-like syndrome, paralog-directed candidate gene approach detected 2 LoF variants in the other candidate E3 ligase gene, UBE3C, a paralog of the Angelman syndrome E3 ligase gene, UBE3A. The RNA studies in 4 patients with LoF variants in HECTD4 and UBE3C provided evidence for the LoF effect. CONCLUSION: HECTD4 and UBE3C are novel biallelic rare disease genes, expand the association of the other HECT E3 ligase group with neurodevelopmental syndromes, and could explain some of the missing heritability in patients with a suggestive clinical diagnosis of Angelman syndrome.
Asunto(s)
Síndrome de Angelman , Trastornos del Neurodesarrollo , Humanos , Síndrome de Angelman/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Trastornos del Neurodesarrollo/genética , FenotipoRESUMEN
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare autosomal recessive genetic disorder affecting the biosynthesis of dopamine, a precursor of both norepinephrine and epinephrine, and serotonin. Diagnosis is based on the analysis of CSF or plasma metabolites, AADC activity in plasma and genetic testing for variants in the DDC gene. The exact prevalence of AADC deficiency, the number of patients, and the variant and genotype prevalence are not known. Here, we present the DDC variant (n = 143) and genotype (n = 151) prevalence of 348 patients with AADC deficiency, 121 of whom were previously not reported. In addition, we report 26 new DDC variants, classify them according to the ACMG/AMP/ACGS recommendations for pathogenicity and score them based on the predicted structural effect. The splice variant c.714+4A>T, with a founder effect in Taiwan and China, was the most common variant (allele frequency = 32.4%), and c.[714+4A>T];[714+4A>T] was the most common genotype (genotype frequency = 21.3%). Approximately 90% of genotypes had variants classified as pathogenic or likely pathogenic, while 7% had one VUS allele and 3% had two VUS alleles. Only one benign variant was reported. Homozygous and compound heterozygous genotypes were interpreted in terms of AADC protein and categorized as: i) devoid of full-length AADC, ii) bearing one type of AADC homodimeric variant or iii) producing an AADC protein population composed of two homodimeric and one heterodimeric variant. Based on structural features, a score was attributed for all homodimers, and a tentative prediction was advanced for the heterodimer. Almost all AADC protein variants were pathogenic or likely pathogenic.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Descarboxilasas de Aminoácido-L-Aromático , Humanos , Prevalencia , Dopamina/metabolismo , Genotipo , Errores Innatos del Metabolismo de los Aminoácidos/epidemiología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Aminoácidos/genéticaRESUMEN
Pathogenic variants in A Disintegrin And Metalloproteinase (ADAM) 22, the postsynaptic cell membrane receptor for the glycoprotein leucine-rich repeat glioma-inactivated protein 1 (LGI1), have been recently associated with recessive developmental and epileptic encephalopathy. However, so far, only two affected individuals have been described and many features of this disorder are unknown. We refine the phenotype and report 19 additional individuals harbouring compound heterozygous or homozygous inactivating ADAM22 variants, of whom 18 had clinical data available. Additionally, we provide follow-up data from two previously reported cases. All affected individuals exhibited infantile-onset, treatment-resistant epilepsy. Additional clinical features included moderate to profound global developmental delay/intellectual disability (20/20), hypotonia (12/20) and delayed motor development (19/20). Brain MRI findings included cerebral atrophy (13/20), supported by post-mortem histological examination in patient-derived brain tissue, cerebellar vermis atrophy (5/20), and callosal hypoplasia (4/20). Functional studies in transfected cell lines confirmed the deleteriousness of all identified variants and indicated at least three distinct pathological mechanisms: (i) defective cell membrane expression; (ii) impaired LGI1-binding; and/or (iii) impaired interaction with the postsynaptic density protein PSD-95. We reveal novel clinical and molecular hallmarks of ADAM22 deficiency and provide knowledge that might inform clinical management and early diagnostics.
Asunto(s)
Proteínas ADAM , Encefalopatías , Epilepsia Refractaria , Proteínas del Tejido Nervioso , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Atrofia , Encefalopatías/genética , Homólogo 4 de la Proteína Discs Large , Humanos , Péptidos y Proteínas de Señalización Intracelular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismoRESUMEN
BACKGROUND: Primary hyperoxalurias (PHs) constitute rare disorders resulting in abnormal glyoxalate metabolism. PH-associated phenotypes range from progressive nephrocalcinosis and/or recurrent urolithiasis to early kidney failure. METHODS: A retrospective study was conducted for patients with confirmed PH diagnoses from three tertiary centers in Saudi Arabia. Detailed clinical molecular diagnosis was performed for 25 affected individuals. Whole exome sequencing (WES)-based molecular diagnosis was performed for all affected individuals. RESULTS: The male:female ratio was 52% male (n = 13) and 48% female (n = 12), and consanguinity was present in 88%. Nephrolithiasis and/or nephrocalcinosis were present in all patients. Kidney stones were present in 72%, nephrocalcinosis in 60%, hematuria in 32%, proteinuria in 16%, abdominal pain in 36%, developmental delay in 8%, and chronic kidney disease stage 5 (CKD stage 5) was observed in 28% of the patients. The most common PH disorder was type I caused by variants in the AGXT gene, accounting for 56%. The GRHPR gene variants were identified in 4 patients, 16% of the total cases. Seven patients did not reveal any associated variants. Missense variants were the most commonly observed variants (48%), followed by frame-shift duplication variants (28%). CONCLUSIONS: Characterization of the genetic and clinical aspects of PH in this unique population provides direction for improved patient management and further research. A higher resolution version of the Graphical abstract is available as Supplementary information.
Asunto(s)
Hiperoxaluria Primaria , Nefrocalcinosis , Nefrolitiasis , Masculino , Humanos , Femenino , Nefrocalcinosis/epidemiología , Nefrocalcinosis/genética , Nefrocalcinosis/diagnóstico , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/epidemiología , Estudios Retrospectivos , Arabia Saudita/epidemiología , Nefrolitiasis/genéticaRESUMEN
Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare inherited neurometabolic disorder that can lead to severe physical and developmental impairment. This report includes 16 patients from the Middle East and is the largest series of patients with confirmed AADC deficiency from this region reported to date. The patients displayed a range of signs and symptoms at presentation and almost all failed to reach major motor milestones. Missed and delayed diagnoses were common leading to the late introduction of targeted treatments. Eight unique variants were identified in the DDC gene, including six missense and two intronic variants. A previously undescribed variant was identified: an intronic variant between exons 13 and 14 (c.1243-10A>G). The patients were mostly treated with currently recommended medications, including dopamine agonists, vitamin B6, and monoamine oxidase inhibitors. One patient responded well, but treatment outcomes were otherwise mostly limited to mild symptomatic improvements. Five patients had died by the time of data collection, confirming that the condition is associated with premature mortality. There is an urgent need for earlier diagnosis, particularly given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age. Conclusions: Delays in the diagnosis of AADC deficiency are common. There is an urgent need for earlier diagnosis, particularly given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age. What is Known: ⢠Aromatic L-amino acid decarboxylase deficiency is a rare neurometabolic disorder that can lead to severe physical and developmental impairment. ⢠Currently recommended medications provide mostly mild symptomatic improvements. What is New: ⢠The clinical presentation of sixteen patients with confirmed AADC deficiency varied considerably and almost all failed to reach major motor milestones. ⢠There is an urgent need for earlier diagnosis, given the potential for gene therapy as a transformative treatment for AADC deficiency when provided at an early age.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Descarboxilasas de Aminoácido-L-Aromático , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/uso terapéutico , Agonistas de Dopamina/uso terapéutico , MutaciónRESUMEN
PURPOSE: We sought to describe a disorder clinically mimicking cystic fibrosis (CF) and to elucidate its genetic cause. METHODS: Exome/genome sequencing and human phenotype ontology data of nearly 40 000 patients from our Bio/Databank were analysed. RNA sequencing of samples from the nasal mucosa from patients, carriers and controls followed by transcriptome analysis was performed. RESULTS: We identified 13 patients from 9 families with a CF-like phenotype consisting of recurrent lower respiratory infections (13/13), failure to thrive (13/13) and chronic diarrhoea (8/13), with high morbidity and mortality. All patients had biallelic variants in AGR2, (1) two splice-site variants, (2) gene deletion and (3) three missense variants. We confirmed aberrant AGR2 transcripts caused by an intronic variant and complete absence of AGR2 transcripts caused by the large gene deletion, resulting in loss of function (LoF). Furthermore, transcriptome analysis identified significant downregulation of components of the mucociliary machinery (intraciliary transport, cilium organisation), as well as upregulation of immune processes. CONCLUSION: We describe a previously unrecognised autosomal recessive disorder caused by AGR2 variants. AGR2-related disease should be considered as a differential diagnosis in patients presenting a CF-like phenotype. This has implications for the molecular diagnosis and management of these patients. AGR2 LoF is likely the disease mechanism, with consequent impairment of the mucociliary defence machinery. Future studies should aim to establish a better understanding of the disease pathophysiology and to identify potential drug targets.
Asunto(s)
Fibrosis Quística , Mucoproteínas/genética , Proteínas Oncogénicas/genética , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Exoma , Humanos , Mutación , FenotipoRESUMEN
In this cross-sectional study, we assessed the attitudes of the general public in Saudi Arabia regarding both medical and non-medical applications of pre-implantation genetic diagnosis (PGD). The study was conducted in King Abdullah Specialist Children's Hospital (KASCH) in Riyadh with a sample size of 377. Demographic information was collected, and attitudes towards applications of PGD were assessed using a pre-validated self-administered questionnaire. Out of the total sample size, 230 (61%) were males, 258 (68%) were married, 235 (63%) had one child or more, and 255 (68%) were older than 30 years of age representing the majority of participants. Only 87 (23%) of participants reported prior experience with PGD. Personally, knowing someone who had a prior experience with PGD was associated with higher attitude scores (more favorable attitudes towards PGD) (p-value = 0.04). The findings of this study indicate that our sample of Saudi individuals generally had a positive attitude towards the use of PGD.
Asunto(s)
Diagnóstico Preimplantación , Masculino , Embarazo , Niño , Femenino , Humanos , Arabia Saudita , Estudios Transversales , Actitud , Encuestas y Cuestionarios , Conocimientos, Actitudes y Práctica en SaludRESUMEN
PURPOSE: Synaptotagmin-1 (SYT1) is a critical mediator of neurotransmitter release in the central nervous system. Previously reported missense SYT1 variants in the C2B domain are associated with severe intellectual disability, movement disorders, behavioral disturbances, and electroencephalogram abnormalities. In this study, we expand the genotypes and phenotypes and identify discriminating features of this disorder. METHODS: We describe 22 individuals with 15 de novo missense SYT1 variants. The evidence for pathogenicity is discussed, including the American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria, known structure-function relationships, and molecular dynamics simulations. Quantitative behavioral data for 14 cases were compared with other monogenic neurodevelopmental disorders. RESULTS: Four variants were located in the C2A domain with the remainder in the C2B domain. We classified 6 variants as pathogenic, 4 as likely pathogenic, and 5 as variants of uncertain significance. Prevalent clinical phenotypes included delayed developmental milestones, abnormal eye physiology, movement disorders, and sleep disturbances. Discriminating behavioral characteristics were severity of motor and communication impairment, presence of motor stereotypies, and mood instability. CONCLUSION: Neurodevelopmental disorder-associated SYT1 variants extend beyond previously reported regions, and the phenotypic spectrum encompasses a broader range of severities than initially reported. This study guides the diagnosis and molecular understanding of this rare neurodevelopmental disorder and highlights a key role for SYT1 function in emotional regulation, motor control, and emergent cognitive function.
Asunto(s)
Discapacidad Intelectual , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Sinaptotagmina I , Calcio/metabolismo , Genotipo , Humanos , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Sinaptotagmina I/genéticaRESUMEN
Secondary findings (SF) are defined as genetic conditions discovered unintentionally during an evaluation of raw data for another disease. We aimed to identify the rate of secondary genetic findings in the Saudi population in the 59 genes of the American College of Medical Genetics and Genomics (ACMG) list. In our study, the raw data of 1254 individuals, generated from exome sequencing for clinical purposes, were studied. Variants detected in the 59 genes on the ACMG list of secondary findings were investigated. Pathogenicity classifications were assigned to those variants based on the ACMG scoring system. We identified 2409 variants in the 59 gene list, 45 variants were classified as pathogenic/likely pathogenic variants according to the ACMG classification. The LDLR gene had the greatest number of pathogenic/likely pathogenic variants 12%. Cardiovascular genetic diseases had the highest frequency of disorders detected as secondary findings. In this study, the overall rate of positive cases identified with secondary findings in the Saudi population was 8%. The different in our current study and the previous studies in Saudi Arabia can be explained by the differences between the sequencing method, the criteria used for variant classification, the availability of newer evidence at the time of the publication, and the fact that we identified Saudi novel variants never reported in other populations.
Asunto(s)
Variación Genética , Genómica , Exoma/genética , Pruebas Genéticas , Humanos , Arabia Saudita/epidemiología , Secuenciación del ExomaRESUMEN
Human 4-hydroxyphenylpyruvate dioxygenase-like (HPDL) is a putative iron-containing non-heme oxygenase of unknown specificity and biological significance. We report 25 families containing 34 individuals with neurological disease associated with biallelic HPDL variants. Phenotypes ranged from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spasticity and global developmental delays, sometimes complicated by episodes of neurological and respiratory decompensation. Variants included bona fide pathogenic truncating changes, although most were missense substitutions. Functionality of variants could not be determined directly as the enzymatic specificity of HPDL is unknown; however, when HPDL missense substitutions were introduced into 4-hydroxyphenylpyruvate dioxygenase (HPPD, an HPDL orthologue), they impaired the ability of HPPD to convert 4-hydroxyphenylpyruvate into homogentisate. Moreover, three additional sets of experiments provided evidence for a role of HPDL in the nervous system and further supported its link to neurological disease: (i) HPDL was expressed in the nervous system and expression increased during neural differentiation; (ii) knockdown of zebrafish hpdl led to abnormal motor behaviour, replicating aspects of the human disease; and (iii) HPDL localized to mitochondria, consistent with mitochondrial disease that is often associated with neurological manifestations. Our findings suggest that biallelic HPDL variants cause a syndrome varying from juvenile-onset pure hereditary spastic paraplegia to infantile-onset spastic tetraplegia associated with global developmental delays.
Asunto(s)
Oxigenasas/genética , Paraplejía Espástica Hereditaria/genética , Animales , Femenino , Humanos , Masculino , Ratones , Mutación , Linaje , Ratas , Pez CebraRESUMEN
Polydactyly or hexadactyly is characterized by an extra digit/toe with or without a bone. Currently, variants in ten genes have been implicated in the non-syndromic form of polydactyly. DNA from a single affected individual having bilateral postaxial polydactyly was subjected to whole exome sequencing (WES), followed by Sanger sequencing. Homology modeling was performed for the identified variant and advance microscopy imaging approaches were used to reveal the localization of the DACH1 protein at the base of primary cilia. A disease-causing biallelic missense variant (c.563G > A; p.Cys188Tyr; NM_080760.5) was identified in the DACH1 gene segregating perfectly within the family. Structural analysis using homology modeling of the DACH1 protein revealed secondary structure change that might result in loss of function or influence downstream interactions. Moreover, siRNA-mediated depletion of DACH1 showed a key role of DACH1 in ciliogenesis and cilia function. This study provides the first evidence of involvement of the DACH1 gene in digits development in humans and its role in primary cilia. This signifies the importance and yet unexplored role of DACH1.
Asunto(s)
Polidactilia , Proteínas del Ojo/genética , Dedos , Humanos , Linaje , Polidactilia/genética , Dedos del Pie , Factores de Transcripción/genética , Secuenciación del ExomaRESUMEN
Biallelic STX3 variants were previously reported in five individuals with the severe congenital enteropathy, microvillus inclusion disease (MVID). Here, we provide a significant extension of the phenotypic spectrum caused by STX3 variants. We report ten individuals of diverse geographic origin with biallelic STX3 loss-of-function variants, identified through exome sequencing, single-nucleotide polymorphism array-based homozygosity mapping, and international collaboration. The evaluated individuals all presented with MVID. Eight individuals also displayed early-onset severe retinal dystrophy, i.e., syndromic-intestinal and retinal-disease. These individuals harbored STX3 variants that affected both the retinal and intestinal STX3 transcripts, whereas STX3 variants affected only the intestinal transcript in individuals with solitary MVID. That STX3 is essential for retinal photoreceptor survival was confirmed by the creation of a rod photoreceptor-specific STX3 knockout mouse model which revealed a time-dependent reduction in the number of rod photoreceptors, thinning of the outer nuclear layer, and the eventual loss of both rod and cone photoreceptors. Together, our results provide a link between STX3 loss-of-function variants and a human retinal dystrophy. Depending on the genomic site of a human loss-of-function STX3 variant, it can cause MVID, the novel intestinal-retinal syndrome reported here or, hypothetically, an isolated retinal dystrophy.
Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Mucosa Intestinal/metabolismo , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Polimorfismo de Nucleótido Simple , Proteínas Qa-SNARE/genética , Células Fotorreceptoras Retinianas Conos/metabolismo , Distrofias Retinianas/genética , Anciano , Anciano de 80 o más Años , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Autopsia , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Hereditarias del Ojo/patología , Femenino , Regulación de la Expresión Génica , Homocigoto , Humanos , Mucosa Intestinal/patología , Síndromes de Malabsorción/metabolismo , Síndromes de Malabsorción/patología , Ratones , Ratones Noqueados , Microvellosidades/genética , Microvellosidades/metabolismo , Mucolipidosis/metabolismo , Mucolipidosis/patología , Fenotipo , Proteínas Qa-SNARE/deficiencia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patología , Rodopsinas Sensoriales/genética , Rodopsinas Sensoriales/metabolismo , Secuenciación del ExomaRESUMEN
We aimed to detect the causative gene in five unrelated families with recessive inheritance pattern neurological disorders involving the central nervous system, and the potential function of the NEMF gene in the central nervous system. Exome sequencing (ES) was applied to all families and linkage analysis was performed on family 1. A minigene assay was used to validate the splicing effect of the relevant discovered variants. Immunofluorescence (IF) experiment was performed to investigate the role of the causative gene in neuron development. The large consanguineous family confirms the phenotype-causative relationship with homozygous frameshift variant (NM_004713.6:c.2618del) as revealed by ES. Linkage analysis of the family showed a significant single-point LOD of 4.5 locus. Through collaboration in GeneMatcher, four additional unrelated families' likely pathogenic NEMF variants for a spectrum of central neurological disorders, two homozygous splice-site variants (NM_004713.6:c.574+1G>T and NM_004713.6:c.807-2A>C) and a homozygous frameshift variant (NM_004713.6: c.1234_1235insC) were subsequently identified and segregated with all affected individuals. We further revealed that knockdown (KD) of Nemf leads to impairment of axonal outgrowth and synapse development in cultured mouse primary cortical neurons. Our study demonstrates that disease-causing biallelic NEMF variants result in central nervous system impairment and other variable features. NEMF is an important player in mammalian neuron development.
Asunto(s)
Antígenos de Neoplasias/genética , Axones , Enfermedades del Sistema Nervioso Central/genética , Mutación con Pérdida de Función , Proteínas de Transporte Nucleocitoplasmático/genética , Polineuropatías/genética , Adolescente , Adulto , Alelos , Animales , Encéfalo/metabolismo , Células Cultivadas , Consanguinidad , Femenino , Perfilación de la Expresión Génica , Genes Recesivos , Homocigoto , Humanos , Masculino , Ratones Endogámicos C57BL , Linaje , RNA-Seq , Secuenciación del Exoma , Adulto JovenRESUMEN
PURPOSE: Within this study, we aimed to discover novel gene-disease associations in patients with no genetic diagnosis after exome/genome sequencing (ES/GS). METHODS: We followed two approaches: (1) a patient-centered approach, which after routine diagnostic analysis systematically interrogates variants in genes not yet associated to human diseases; and (2) a gene variant centered approach. For the latter, we focused on de novo variants in patients that presented with neurodevelopmental delay (NDD) and/or intellectual disability (ID), which are the most common reasons for genetic testing referrals. Gene-disease association was assessed using our data repository that combines ES/GS data and Human Phenotype Ontology terms from over 33,000 patients. RESULTS: We propose six novel gene-disease associations based on 38 patients with variants in the BLOC1S1, IPO8, MMP15, PLK1, RAP1GDS1, and ZNF699 genes. Furthermore, our results support causality of 31 additional candidate genes that had little published evidence and no registered OMIM phenotype (56 patients). The phenotypes included syndromic/nonsyndromic NDD/ID, oral-facial-digital syndrome, cardiomyopathies, malformation syndrome, short stature, skeletal dysplasia, and ciliary dyskinesia. CONCLUSION: Our results demonstrate the value of data repositories which combine clinical and genetic data for discovering and confirming gene-disease associations. Genetic laboratories should be encouraged to pursue such analyses for the benefit of undiagnosed patients and their families.
Asunto(s)
Exoma , Discapacidad Intelectual , Secuencia de Bases , Exoma/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso , Fenotipo , Secuenciación del ExomaRESUMEN
In 2016 a new syndrome with postnatal short stature and low IGF1 bioavailability caused by biallelic loss-of-function mutations in the gene encoding the metalloproteinase pregnancy-associated plasma protein A2 (PAPP-A2) was described in two families. Here we report two siblings of a third family from Saudi Arabia with postnatal growth retardation and decreased IGF1 availability due to a new homozygous nonsense mutation (p.Glu886* in exon 7) in PAPPA2. The two affected males showed progressively severe short stature starting around 8 years of age, moderate microcephaly, decreased bone mineral density, and high circulating levels of total IGF1, IGFBP3, and the IGF acid-labile subunit (IGFALS), with decreased free IGF1 concentrations. Interestingly, circulating IGF2 and IGFBP5 were not increased. An increase in growth velocity and height was seen in the prepuberal patient in response to rhIGF1. These patients contribute to the confirmation of the clinical picture associated with PAPP-A2 deficiency and that the PAPPA2 gene should be studied in all patients with short stature with this characteristic phenotype. Hence, pediatric endocrinologists should measure circulating PAPP-A2 levels in the study of short stature as very low or undetectable levels of this protein can help to focus the diagnosis and treatment.
Asunto(s)
Enanismo/diagnóstico , Enanismo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Factor I del Crecimiento Similar a la Insulina/metabolismo , Fenotipo , Proteína Plasmática A Asociada al Embarazo/deficiencia , Adolescente , Biomarcadores , Enanismo/sangre , Familia , Femenino , Estudios de Asociación Genética/métodos , Humanos , Mutación con Pérdida de Función , Masculino , Radiografía , Arabia Saudita , HermanosRESUMEN
Monogenic diseases that result in early pregnancy loss or neonatal death are genetically and phenotypically highly variable. This often poses significant challenges in arriving at a molecular diagnosis for reproductive planning. Molecular autopsy by proxy (MABP) refers to the genetic testing of relatives of deceased individuals to deduce the cause of death. Here, we specifically tested couples who lost one or more children/pregnancies with no available DNA. We developed our testing strategy using whole exome sequencing data from 83 consanguineous Saudi couples. We detected the shared carrier state of 50 pathogenic variants/likely pathogenic variants in 43 families and of 28 variants of uncertain significance in 24 families. Negative results were seen in 16 couples after variant reclassification. In 10 families, the risk of more than one genetic disease was documented. Secondary findings were seen in 10 families: either genetic variants with potential clinical consequences for the tested individual or a female carrier for X-linked conditions. This couple-based approach has enabled molecularly informed genetic counseling for 52% (43/83 families). Given the predominance of autosomal recessive causes of pregnancy and child death in consanguineous populations, MABP can be a helpful approach to consanguineous couples who seek counseling but lack molecular data on their deceased offspring.
Asunto(s)
Autopsia , Asesoramiento Genético , Pruebas Genéticas/métodos , Técnicas de Diagnóstico Molecular , Atención Preconceptiva , Autopsia/métodos , Consanguinidad , Femenino , Estudios de Asociación Genética/métodos , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Técnicas de Amplificación de Ácido Nucleico , Fenotipo , Reacción en Cadena de la Polimerasa , Embarazo , Arabia Saudita , Secuenciación del ExomaRESUMEN
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.