Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 604(7907): 697-707, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255491

RESUMEN

There is strong evidence of brain-related abnormalities in COVID-191-13. However, it remains unknown whether the impact of SARS-CoV-2 infection can be detected in milder cases, and whether this can reveal possible mechanisms contributing to brain pathology. Here we investigated brain changes in 785 participants of UK Biobank (aged 51-81 years) who were imaged twice using magnetic resonance imaging, including 401 cases who tested positive for infection with SARS-CoV-2 between their two scans-with 141 days on average separating their diagnosis and the second scan-as well as 384 controls. The availability of pre-infection imaging data reduces the likelihood of pre-existing risk factors being misinterpreted as disease effects. We identified significant longitudinal effects when comparing the two groups, including (1) a greater reduction in grey matter thickness and tissue contrast in the orbitofrontal cortex and parahippocampal gyrus; (2) greater changes in markers of tissue damage in regions that are functionally connected to the primary olfactory cortex; and (3) a greater reduction in global brain size in the SARS-CoV-2 cases. The participants who were infected with SARS-CoV-2 also showed on average a greater cognitive decline between the two time points. Importantly, these imaging and cognitive longitudinal effects were still observed after excluding the 15 patients who had been hospitalised. These mainly limbic brain imaging results may be the in vivo hallmarks of a degenerative spread of the disease through olfactory pathways, of neuroinflammatory events, or of the loss of sensory input due to anosmia. Whether this deleterious effect can be partially reversed, or whether these effects will persist in the long term, remains to be investigated with additional follow-up.


Asunto(s)
Encéfalo , COVID-19 , Anciano , Anciano de 80 o más Años , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Encéfalo/virología , COVID-19/patología , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , SARS-CoV-2 , Olfato , Reino Unido/epidemiología
2.
Nature ; 562(7726): 210-216, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305740

RESUMEN

The genetic architecture of brain structure and function is largely unknown. To investigate this, we carried out genome-wide association studies of 3,144 functional and structural brain imaging phenotypes from UK Biobank (discovery dataset 8,428 subjects). Here we show that many of these phenotypes are heritable. We identify 148 clusters of associations between single nucleotide polymorphisms and imaging phenotypes that replicate at P < 0.05, when we would expect 21 to replicate by chance. Notable significant, interpretable associations include: iron transport and storage genes, related to magnetic susceptibility of subcortical brain tissue; extracellular matrix and epidermal growth factor genes, associated with white matter micro-structure and lesions; genes that regulate mid-line axon development, associated with organization of the pontine crossing tract; and overall 17 genes involved in development, pathway signalling and plasticity. Our results provide insights into the genetic architecture of the brain that are relevant to neurological and psychiatric disorders, brain development and ageing.


Asunto(s)
Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Estudio de Asociación del Genoma Completo , Herencia , Neuroimagen , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Envejecimiento/genética , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Conjuntos de Datos como Asunto , Factor de Crecimiento Epidérmico/genética , Matriz Extracelular , Femenino , Humanos , Hierro/metabolismo , Masculino , Plasticidad Neuronal/genética , Putamen/anatomía & histología , Putamen/metabolismo , Transducción de Señal/genética , Reino Unido , Sustancia Blanca/anatomía & histología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
3.
Hum Brain Mapp ; 44(8): 3210-3221, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939141

RESUMEN

Interoception is the sensation, perception, and integration of signals from within the body. It has been associated with a broad range of physiological and psychological processes. Further, interoceptive variables are related to specific regions and networks in the human brain. However, it is not clear whether or how these networks relate empirically to different domains of physiological and psychological health at the population level. We analysed a data set of 19,020 individuals (10,055 females, 8965 males; mean age: 63 years, age range: 45-81 years), who have participated in the UK Biobank Study, a very large-scale prospective epidemiological health study. Using canonical correlation analysis (CCA), allowing for the examination of associations between two sets of variables, we related the functional connectome of brain regions implicated in interoception to a selection of nonimaging health and lifestyle related phenotypes, exploring their relationship within modes of population co-variation. In one integrated and data driven analysis, we obtained four statistically significant modes. Modes could be categorised into domains of arousal and affect and cardiovascular health, respiratory health, body mass, and subjective health (all p < .0001) and were meaningfully associated with distinct neural circuits. Circuits represent specific neural "fingerprints" of functional domains and set the scope for future studies on the neurobiology of interoceptive involvement in different lifestyle and health-related phenotypes. Therefore, our research contributes to the conceptualisation of interoception and may lead to a better understanding of co-morbid conditions in the light of shared interoceptive structures.


Asunto(s)
Conectoma , Interocepción , Masculino , Femenino , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Prospectivos , Encéfalo/fisiología , Sensación/fisiología , Corazón , Interocepción/fisiología , Concienciación , Frecuencia Cardíaca
4.
Neuroimage ; 224: 117002, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32502668

RESUMEN

Dealing with confounds is an essential step in large cohort studies to address problems such as unexplained variance and spurious correlations. UK Biobank is a powerful resource for studying associations between imaging and non-imaging measures such as lifestyle factors and health outcomes, in part because of the large subject numbers. However, the resulting high statistical power also raises the sensitivity to confound effects, which therefore have to be carefully considered. In this work we describe a set of possible confounds (including non-linear effects and interactions that researchers may wish to consider for their studies using such data). We include descriptions of how we can estimate the confounds, and study the extent to which each of these confounds affects the data, and the spurious correlations that may arise if they are not controlled. Finally, we discuss several issues that future studies should consider when dealing with confounds.


Asunto(s)
Bancos de Muestras Biológicas , Encéfalo , Neuroimagen , Procesamiento Automatizado de Datos , Cabeza , Humanos , Neuroimagen/métodos , Factores de Tiempo , Reino Unido
5.
Stroke ; 51(7): 2111-2121, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32517579

RESUMEN

BACKGROUND AND PURPOSE: Periventricular white matter hyperintensities (WMH; PVWMH) and deep WMH (DWMH) are regional classifications of WMH and reflect proposed differences in cause. In the first study, to date, we undertook genome-wide association analyses of DWMH and PVWMH to show that these phenotypes have different genetic underpinnings. METHODS: Participants were aged 45 years and older, free of stroke and dementia. We conducted genome-wide association analyses of PVWMH and DWMH in 26,654 participants from CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology), ENIGMA (Enhancing Neuro-Imaging Genetics Through Meta-Analysis), and the UKB (UK Biobank). Regional correlations were investigated using the genome-wide association analyses -pairwise method. Cross-trait genetic correlations between PVWMH, DWMH, stroke, and dementia were estimated using LDSC. RESULTS: In the discovery and replication analysis, for PVWMH only, we found associations on chromosomes 2 (NBEAL), 10q23.1 (TSPAN14/FAM231A), and 10q24.33 (SH3PXD2A). In the much larger combined meta-analysis of all cohorts, we identified ten significant regions for PVWMH: chromosomes 2 (3 regions), 6, 7, 10 (2 regions), 13, 16, and 17q23.1. New loci of interest include 7q36.1 (NOS3) and 16q24.2. In both the discovery/replication and combined analysis, we found genome-wide significant associations for the 17q25.1 locus for both DWMH and PVWMH. Using gene-based association analysis, 19 genes across all regions were identified for PVWMH only, including the new genes: CALCRL (2q32.1), KLHL24 (3q27.1), VCAN (5q27.1), and POLR2F (22q13.1). Thirteen genes in the 17q25.1 locus were significant for both phenotypes. More extensive genetic correlations were observed for PVWMH with small vessel ischemic stroke. There were no associations with dementia for either phenotype. CONCLUSIONS: Our study confirms these phenotypes have distinct and also shared genetic architectures. Genetic analyses indicated PVWMH was more associated with ischemic stroke whilst DWMH loci were implicated in vascular, astrocyte, and neuronal function. Our study confirms these phenotypes are distinct neuroimaging classifications and identifies new candidate genes associated with PVWMH only.


Asunto(s)
Encéfalo/patología , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/patología , Predisposición Genética a la Enfermedad/genética , Sustancia Blanca/patología , Anciano , Encéfalo/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen
6.
Brain ; 142(10): 2938-2947, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504236

RESUMEN

Ninety per cent of the human population has been right-handed since the Paleolithic, yet the brain signature and genetic basis of handedness remain poorly characterized. Here, we correlated brain imaging phenotypes from ∼9000 UK Biobank participants with handedness, and with loci found significantly associated with handedness after we performed genome-wide association studies (GWAS) in ∼400 000 of these participants. Our imaging-handedness analysis revealed an increase in functional connectivity between left and right language networks in left-handers. GWAS of handedness uncovered four significant loci (rs199512, rs45608532, rs13017199, and rs3094128), three of which are in-or expression quantitative trait loci of-genes encoding proteins involved in brain development and patterning. These included microtubule-related MAP2 and MAPT, as well as WNT3 and MICB, all implicated in the pathogenesis of diseases such as Parkinson's, Alzheimer's and schizophrenia. In particular, with rs199512, we identified a common genetic influence on handedness, psychiatric phenotypes, Parkinson's disease, and the integrity of white matter tracts connecting the same language-related regions identified in the handedness-imaging analysis. This study has identified in the general population genome-wide significant loci for human handedness in, and expression quantitative trait loci of, genes associated with brain development, microtubules and patterning. We suggest that these genetic variants contribute to neurodevelopmental lateralization of brain organization, which in turn influences both the handedness phenotype and the predisposition to develop certain neurological and psychiatric diseases.


Asunto(s)
Lateralidad Funcional/genética , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Adulto , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Lateralidad Funcional/fisiología , Estudio de Asociación del Genoma Completo , Humanos , Lenguaje , Imagen por Resonancia Magnética/métodos , Masculino , Microtúbulos/genética , Neuroimagen/métodos , Enfermedad de Parkinson/genética , Fenotipo , Sustancia Blanca/diagnóstico por imagen
7.
Neuroimage ; 200: 528-539, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31201988

RESUMEN

It is of increasing interest to study "brain age" - the apparent age of a subject, as inferred from brain imaging data. The difference between brain age and actual age (the "delta") is typically computed, reflecting deviation from the population norm. This therefore may reflect accelerated aging (positive delta) or resilience (negative delta) and has been found to be a useful correlate with factors such as disease and cognitive decline. However, although there has been a range of methods proposed for estimating brain age, there has been little study of the optimal ways of computing the delta. In this technical note we describe problems with the most common current approach, and present potential improvements. We evaluate different estimation methods on simulated and real data. We also find the strongest correlations of corrected brain age delta with 5,792 non-imaging variables (non-brain physical measures, life-factor measures, cognitive test scores, etc.), and also with 2,641 multimodal brain imaging-derived phenotypes, with data from 19,000 participants in UK Biobank.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Bases de Datos Factuales , Estado de Salud , Neuroimagen/estadística & datos numéricos , Pruebas Neuropsicológicas/estadística & datos numéricos , Anciano , Encéfalo/diagnóstico por imagen , Simulación por Computador , Humanos , Imagen por Resonancia Magnética , Modelos Estadísticos , Fenotipo , Reino Unido
8.
Neuroimage ; 184: 801-812, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30267859

RESUMEN

Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automated diffusion MRI QC framework for single subject and group studies. The QC is based on a comprehensive, non-parametric approach for movement and distortion correction: FSL EDDY, which allows us to extract a rich set of QC metrics that are both sensitive and specific to different types of artefacts. Two different tools are presented: QUAD (QUality Assessment for DMRI), for single subject QC and SQUAD (Study-wise QUality Assessment for DMRI), which is designed to enable group QC and facilitate cross-studies harmonisation efforts.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Control de Calidad , Reproducibilidad de los Resultados , Relación Señal-Ruido
9.
Neuroimage ; 185: 434-445, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30359730

RESUMEN

White matter hyperintensities (WMH), also known as white matter lesions, are localised white matter areas that appear hyperintense on MRI scans. WMH commonly occur in the ageing population, and are often associated with several factors such as cognitive disorders, cardiovascular risk factors, cerebrovascular and neurodegenerative diseases. Despite the fact that some links between lesion location and parametric factors such as age have already been established, the relationship between voxel-wise spatial distribution of lesions and these factors is not yet well understood. Hence, it would be of clinical importance to model the distribution of lesions at the population-level and quantitatively analyse the effect of various factors on the lesion distribution model. In this work we compare various methods, including our proposed method, to generate voxel-wise distributions of WMH within a population with respect to various factors. Our proposed Bayesian spline method models the spatio-temporal distribution of WMH with respect to a parametric factor of interest, in this case age, within a population. Our probabilistic model takes as input the lesion segmentation binary maps of subjects belonging to various age groups and provides a population-level parametric lesion probability map as output. We used a spline representation to ensure a degree of smoothness in space and the dimension associated with the parameter, and formulated our model using a Bayesian framework. We tested our algorithm output on simulated data and compared our results with those obtained using various existing methods with different levels of algorithmic and computational complexity. We then compared the better performing methods on a real dataset, consisting of 1000 subjects of the UK Biobank, divided in two groups based on hypertension diagnosis. Finally, we applied our method on a clinical dataset of patients with vascular disease. On simulated dataset, the results from our algorithm showed a mean square error (MSE) value of 7.27×10-5, which was lower than the MSE value reported in the literature, with the advantage of being robust and computationally efficient. In the UK Biobank data, we found that the lesion probabilities are higher for the hypertension group compared to the non-hypertension group and further verified this finding using a statistical t-test. Finally, when applying our method on patients with vascular disease, we observed that the overall probability of lesions is significantly higher in later age groups, which is in line with the current literature.


Asunto(s)
Envejecimiento/patología , Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Modelos Neurológicos , Sustancia Blanca/diagnóstico por imagen , Anciano , Algoritmos , Teorema de Bayes , Encéfalo/patología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Sustancia Blanca/patología
10.
Neuroimage ; 180(Pt B): 646-656, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28669905

RESUMEN

Brain activity is a dynamic combination of the responses to sensory inputs and its own spontaneous processing. Consequently, such brain activity is continuously changing whether or not one is focusing on an externally imposed task. Previously, we have introduced an analysis method that allows us, using Hidden Markov Models (HMM), to model task or rest brain activity as a dynamic sequence of distinct brain networks, overcoming many of the limitations posed by sliding window approaches. Here, we present an advance that enables the HMM to handle very large amounts of data, making possible the inference of very reproducible and interpretable dynamic brain networks in a range of different datasets, including task, rest, MEG and fMRI, with potentially thousands of subjects. We anticipate that the generation of large and publicly available datasets from initiatives such as the Human Connectome Project and UK Biobank, in combination with computational methods that can work at this scale, will bring a breakthrough in our understanding of brain function in both health and disease.


Asunto(s)
Macrodatos , Encéfalo/fisiología , Cadenas de Markov , Red Nerviosa/fisiología , Mapeo Encefálico/métodos , Humanos , Vías Nerviosas/fisiología , Descanso/fisiología
11.
Neuroimage ; 166: 400-424, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29079522

RESUMEN

UK Biobank is a large-scale prospective epidemiological study with all data accessible to researchers worldwide. It is currently in the process of bringing back 100,000 of the original participants for brain, heart and body MRI, carotid ultrasound and low-dose bone/fat x-ray. The brain imaging component covers 6 modalities (T1, T2 FLAIR, susceptibility weighted MRI, Resting fMRI, Task fMRI and Diffusion MRI). Raw and processed data from the first 10,000 imaged subjects has recently been released for general research access. To help convert this data into useful summary information we have developed an automated processing and QC (Quality Control) pipeline that is available for use by other researchers. In this paper we describe the pipeline in detail, following a brief overview of UK Biobank brain imaging and the acquisition protocol. We also describe several quantitative investigations carried out as part of the development of both the imaging protocol and the processing pipeline.


Asunto(s)
Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Conjuntos de Datos como Asunto , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Control de Calidad , Bases de Datos Factuales/normas , Conjuntos de Datos como Asunto/normas , Humanos , Procesamiento de Imagen Asistido por Computador/normas , Aprendizaje Automático/normas , Imagen por Resonancia Magnética/normas , Neuroimagen/normas , Reino Unido
12.
PLoS Comput Biol ; 13(3): e1005209, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28278228

RESUMEN

The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.


Asunto(s)
Encéfalo/anatomía & histología , Interpretación de Imagen Asistida por Computador/métodos , Neuroimagen/métodos , Sistemas de Información Radiológica/organización & administración , Programas Informáticos , Interfaz Usuario-Computador , Algoritmos , Humanos , Imagen por Resonancia Magnética/métodos
13.
Neuroimage ; 159: 57-69, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28712995

RESUMEN

The amplitudes of spontaneous fluctuations in brain activity may be a significant source of within-subject and between-subject variability, and this variability is likely to be carried through into functional connectivity (FC) estimates (whether directly or indirectly). Therefore, improving our understanding of amplitude fluctuations over the course of a resting state scan and variation in amplitude across individuals is of great relevance to the interpretation of FC findings. We investigate resting state amplitudes in two large-scale studies (HCP and UK Biobank), with the aim of determining between-subject and within-subject variability. Between-subject clustering distinguished between two groups of brain networks whose amplitude variation across subjects were highly correlated with each other, revealing a clear distinction between primary sensory and motor regions ('primary sensory/motor cluster') and cognitive networks. Within subjects, all networks in the primary sensory/motor cluster showed a consistent increase in amplitudes from the start to the end of the scan. In addition to the strong increases in primary sensory/motor amplitude, a large number of changes in FC were found when comparing the two scans acquired on the same day (HCP data). Additive signal change analysis confirmed that all of the observed FC changes could be fully explained by changes in amplitude. Between-subject correlations in UK Biobank data showed a negative correlation between primary sensory/motor amplitude and average sleep duration, suggesting a role of arousal. Our findings additionally reveal complex relationships between amplitude and head motion. These results suggest that network amplitude is a source of significant variability both across subjects, and within subjects on a within-session timescale. Future rfMRI studies may benefit from obtaining arousal-related (self report) measures, and may wish to consider the influence of amplitude changes on measures of (dynamic) functional connectivity.


Asunto(s)
Encéfalo/fisiología , Vías Nerviosas/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Descanso
14.
Neuroimage ; 154: 188-205, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27989777

RESUMEN

We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Niño , Humanos
15.
J Neurosci ; 33(38): 15004-10, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24048830

RESUMEN

The human cerebral cortex appears to shrink during adolescence. To delineate the dynamic morphological changes involved in this process, 52 healthy male and female adolescents (11-17 years old) were neuroimaged twice using magnetic resonance imaging, approximately 2 years apart. Using a novel morphometric analysis procedure combining the FreeSurfer and BrainVisa image software suites, we quantified global and lobar change in cortical thickness, outer surface area, the gyrification index, the average Euclidean distance between opposing sides of the white matter surface (gyral white matter thickness), the convex ("exposed") part of the outer cortical surface (hull surface area), sulcal length, depth, and width. We found that the cortical surface flattens during adolescence. Flattening was strongest in the frontal and occipital cortices, in which significant sulcal widening and decreased sulcal depth co-occurred. Globally, sulcal widening was associated with cortical thinning and, for the frontal cortex, with loss of surface area. For the other cortical lobes, thinning was related to gyral white matter expansion. The overall flattening of the macrostructural three-dimensional architecture of the human cortex during adolescence thus involves changes in gray matter and effects of the maturation of white matter.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/crecimiento & desarrollo , Adolescente , Factores de Edad , Niño , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos
16.
Nat Commun ; 15(1): 2576, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538590

RESUMEN

We have previously identified a network of higher-order brain regions particularly vulnerable to the ageing process, schizophrenia and Alzheimer's disease. However, it remains unknown what the genetic influences on this fragile brain network are, and whether it can be altered by the most common modifiable risk factors for dementia. Here, in ~40,000 UK Biobank participants, we first show significant genome-wide associations between this brain network and seven genetic clusters implicated in cardiovascular deaths, schizophrenia, Alzheimer's and Parkinson's disease, and with the two antigens of the XG blood group located in the pseudoautosomal region of the sex chromosomes. We further reveal that the most deleterious modifiable risk factors for this vulnerable brain network are diabetes, nitrogen dioxide - a proxy for traffic-related air pollution - and alcohol intake frequency. The extent of these associations was uncovered by examining these modifiable risk factors in a single model to assess the unique contribution of each on the vulnerable brain network, above and beyond the dominating effects of age and sex. These results provide a comprehensive picture of the role played by genetic and modifiable risk factors on these fragile parts of the brain.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Humanos , Envejecimiento/genética , Enfermedad de Alzheimer/genética , Factores de Riesgo , Dióxido de Nitrógeno
17.
IEEE Trans Med Imaging ; 42(4): 959-970, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36374873

RESUMEN

An important goal of medical imaging is to be able to precisely detect patterns of disease specific to individual scans; however, this is challenged in brain imaging by the degree of heterogeneity of shape and appearance. Traditional methods, based on image registration, historically fail to detect variable features of disease, as they utilise population-based analyses, suited primarily to studying group-average effects. In this paper we therefore take advantage of recent developments in generative deep learning to develop a method for simultaneous classification, or regression, and feature attribution (FA). Specifically, we explore the use of a VAE-GAN (variational autoencoder - general adversarial network) for translation called ICAM, to explicitly disentangle class relevant features, from background confounds, for improved interpretability and regression of neurological phenotypes. We validate our method on the tasks of Mini-Mental State Examination (MMSE) cognitive test score prediction for the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, as well as brain age prediction, for both neurodevelopment and neurodegeneration, using the developing Human Connectome Project (dHCP) and UK Biobank datasets. We show that the generated FA maps can be used to explain outlier predictions and demonstrate that the inclusion of a regression module improves the disentanglement of the latent space. Our code is freely available on GitHub https://github.com/CherBass/ICAM.


Asunto(s)
Conectoma , Neuroimagen , Humanos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Cintigrafía
18.
Nat Commun ; 14(1): 2844, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37202397

RESUMEN

Studies of neurodegenerative disease risk in gout are contradictory. Relationships with neuroimaging markers of brain structure, which may offer insights, are uncertain. Here we investigated associations between gout, brain structure, and neurodegenerative disease incidence. Gout patients had smaller global and regional brain volumes and markers of higher brain iron, using both observational and genetic approaches. Participants with gout also had higher incidence of all-cause dementia, Parkinson's disease, and probable essential tremor. Risks were strongly time dependent, whereby associations with incident dementia were highest in the first 3 years after gout diagnosis. These findings suggest gout is causally related to several measures of brain structure. Lower brain reserve amongst gout patients may explain their higher vulnerability to multiple neurodegenerative diseases. Motor and cognitive impairments may affect gout patients, particularly in early years after diagnosis.


Asunto(s)
Reserva Cognitiva , Demencia , Gota , Enfermedades Neurodegenerativas , Humanos , Gota/complicaciones , Encéfalo/diagnóstico por imagen , Demencia/epidemiología
19.
PLoS One ; 18(3): e0282363, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36947528

RESUMEN

Telomeres form protective caps at the ends of chromosomes, and their attrition is a marker of biological aging. Short telomeres are associated with an increased risk of neurological and psychiatric disorders including dementia. The mechanism underlying this risk is unclear, and may involve brain structure and function. However, the relationship between telomere length and neuroimaging markers is poorly characterized. Here we show that leucocyte telomere length (LTL) is associated with multi-modal MRI phenotypes in 31,661 UK Biobank participants. Longer LTL is associated with: i) larger global and subcortical grey matter volumes including the hippocampus, ii) lower T1-weighted grey-white tissue contrast in sensory cortices, iii) white-matter microstructure measures in corpus callosum and association fibres, iv) lower volume of white matter hyperintensities, and v) lower basal ganglia iron. Longer LTL was protective against certain related clinical manifestations, namely all-cause dementia (HR 0.93, 95% CI: 0.91-0.96), but not stroke or Parkinson's disease. LTL is associated with multiple MRI endophenotypes of neurodegenerative disease, suggesting a pathway by which longer LTL may confer protective against dementia.


Asunto(s)
Demencia , Enfermedades Neurodegenerativas , Humanos , Bancos de Muestras Biológicas , Encéfalo/diagnóstico por imagen , Fenotipo , Telómero/genética , Neuroimagen , Reino Unido , Demencia/diagnóstico por imagen , Demencia/genética , Leucocitos
20.
Front Neuroinform ; 17: 1204186, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492242

RESUMEN

Introduction: Cerebral microbleeds (CMBs) are associated with white matter damage, and various neurodegenerative and cerebrovascular diseases. CMBs occur as small, circular hypointense lesions on T2*-weighted gradient recalled echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense on quantitative susceptibility mapping (QSM) images due to their paramagnetic nature. Accurate automated detection of CMBs would help to determine quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work, we propose a fully automated, deep learning-based, 3-step algorithm, using structural and anatomical properties of CMBs from any single input image modality (e.g., GRE/SWI/QSM) for their accurate detections. Methods: In our method, the first step consists of an initial candidate detection step that detects CMBs with high sensitivity. In the second step, candidate discrimination step is performed using a knowledge distillation framework, with a multi-tasking teacher network that guides the student network to classify CMB and non-CMB instances in an offline manner. Finally, a morphological clean-up step further reduces false positives using anatomical constraints. We used four datasets consisting of different modalities specified above, acquired using various protocols and with a variety of pathological and demographic characteristics. Results: On cross-validation within datasets, our method achieved a cluster-wise true positive rate (TPR) of over 90% with an average of <2 false positives per subject. The knowledge distillation framework improves the cluster-wise TPR of the student model by 15%. Our method is flexible in terms of the input modality and provides comparable cluster-wise TPR and better cluster-wise precision compared to existing state-of-the-art methods. When evaluating across different datasets, our method showed good generalizability with a cluster-wise TPR >80 % with different modalities. The python implementation of the proposed method is openly available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA