Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 287: 117643, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34182400

RESUMEN

The solar ultraviolet radiation (UVR) at national, provincial and county levels in Iran during 2005-2019 were determined based on Ozone Monitoring Instrument (OMI) dataset. The temporal (annual and monthly) trends and spatial distributions of the UVR in terms of erythemally weighted daily dose (EDD), erythemally weighted irradiance at local solar noon time (EDR), and UV index and the major factors influencing the spatiotemporal trends were analyzed. The population-weighted average values of EDD, EDR, and UV index in Iran were respectively 3631 J/m2, 176.3 mW/m2, 7.1 in 2005 and rose by 0.22% per year to 3744 J/m2, 181.7 mW/m2, and 7.3, respectively in 2019, but the annual trend was not statistically significant. The EDD in Iran during the study period exhibited the highest monthly average value in June (6339 J/m2) and the lowest one in December (1263 J/m2). The solar UVA/UVB ratios at the national level during 2005-2019 were considerably lower in summer. The EDD provincial average values in the study period were in the range of 2717 (Gilan) to 4424 J/m2 (Fars). The spatiotemporal variations of the solar UVR parameters were well described by the linear models as a function of cloud optical thickness (COT), ozone column amount, surface albedo, latitude, and altitude (R2 > 0.961, p value < 0.001) and the temporal changes of the solar UVR parameters were mainly caused by the COT. The results indicated that non-burning exposure to solar UVR in summer can be more efficient for vitamin D synthesis due to higher contribution of UVB in the solar UVR. The spatial distributions and temporal trends should be considered to determine the optimal duration, time and condition of exposure to the solar UVR for the public and occupational training and public health measures.


Asunto(s)
Ozono , Energía Solar , Irán , Ozono/análisis , Análisis Espacio-Temporal , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA