Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Can J Microbiol ; 66(8): 457-473, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32155347

RESUMEN

This study aimed to identify possible relationships between corn (Zea mays L.) productivity and its endosphere microbial community. Any insights would be used to develop testable hypotheses at the farm level. Sap was collected from 14 fields in 2014 and 10 fields in 2017, with a yield range of 10.1 to 21.7 tonnes per hectare (t/ha). The microbial sap communities were analyzed using terminal restriction fragment length polymorphism (TRFLP) and identified using an internal pure culture reference database and BLAST. This technique is rapid and inexpensive and is suitable for use at the grower level. Diversity, richness, and normalized abundances of each bacterial population in corn sap samples were evaluated to link the microbiome of a specific field to its yield. A negative trend was observed (r = -0.60), with higher-yielding fields having lower terminal restriction fragment (TRF) richness. A partial least square regression analysis of TRF intensity and binary data from 2014 identified 10 TRFs (bacterial genera) that positively, or negatively, correlated with corn yields, when either absent or present at certain levels or ratios. Using these observations, a model was developed that accommodated criteria for each of the 10 microbes and assigned a score for each field out of 10. Data collected in 2014 showed that sites with higher model scores were highly correlated with larger yields (r = 0.83). This correlation was also seen when the 2017 data set was used (r = 0.87). We were able to conclude that a positive significant effect was seen with the model score and yield (adjusted R2 = 0.67, F[1,22] = 46.7, p < 0.001) when combining 2014 and 2017 data. The results of this study are being expanded to identify the key microbes in the corn sap community that potentially impact corn yield, regardless of corn variety, geographic factors, or edaphic factors.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiota , Zea mays/microbiología , Bacterias/clasificación , Bacterias/genética , Granjas , Polimorfismo de Longitud del Fragmento de Restricción , Microbiología del Suelo , Zea mays/crecimiento & desarrollo
2.
Arch Microbiol ; 201(6): 817-822, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30877322

RESUMEN

Ethylene acts as a major regulator of the nodulation process of leguminous plants. Several rhizobial strains possess the ability to modulate plant ethylene levels through the expression of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase; however, rhizobia present low enzymatic activities. One possible alternative to this problem resides on the use of free-living bacteria, such as Pseudomonas, presenting high levels of ACC deaminase activity that may be used as adjuvants in the nodulation process by decreasing inhibitory ethylene levels. Nevertheless, not much is understood about the specific role of ACC deaminase in the possible role of free-living bacteria as nodulation adjuvants. Therefore, this work aims to study the effect of ACC deaminase in the plant growth-promoting bacterium, Pseudomonas fluorescens YsS6, ability to facilitate alpha- and beta-rhizobia nodulation. The ACC deaminase-producing P. fluorescens YsS6 and its ACC deaminase mutant were used in co-inoculation assays to evaluate their impact in the nodulation process of alpha- (Rhizobium tropici CIAT899) and beta-rhizobia (Cupriavidus taiwanensis STM894) representatives, in Phaseolus vulgaris and Mimosa pudica plants, respectively. The results obtained indicate that the wild-type P. fluorescens YsS6, but not its mutant defective in ACC deaminase production, increase the nodulation abilities of both alpha- and beta-rhizobia, resulting in an increased leguminous plant growth. Moreover, this is the first report of the positive effect of free-living bacteria in the nodulation process of beta-rhizobia. The modulation of inhibitory ethylene levels by free-living ACC deaminase-producing bacteria plays an important role in facilitating the nodulation process of alpha- and beta-rhizobia.


Asunto(s)
Alphaproteobacteria/fisiología , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Carbono/metabolismo , Cupriavidus/fisiología , Mimosa/microbiología , Phaseolus/microbiología , Pseudomonas fluorescens/enzimología , Inoculantes Agrícolas/fisiología , Proteínas Bacterianas/genética , Liasas de Carbono-Carbono/genética , Etilenos/metabolismo , Mimosa/fisiología , Phaseolus/fisiología , Nodulación de la Raíz de la Planta , Pseudomonas fluorescens/genética
3.
J Theor Biol ; 343: 193-8, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24513137

RESUMEN

The vast majority of plants harbor endophytic bacteria that colonize a portion of the plant's interior tissues without harming the plant. Like plant pathogens, endophytes gain entry into their plants hosts through various mechanisms. Bacterial endophytes display a broad range of symbiotic interactions with their host plants. The molecular bases of these plant-endophyte interactions are currently not fully understood. In the present study, a set of genes possibly responsible for endophytic behavior for genus Burkholderia was predicted and then compared and contrasted with a number (nine endophytes from different genera) of endophytes by comparative genome analysis. The nine endophytes included Burkholderia phytofirmans PsJN, Burkholderia spp. strain JK006, Azospirillum lipoferum 4B, Enterobacter cloacae ENHKU01, Klebsiella pneumoniae 342, Pseudomonas putida W619, Enterobacter spp. 638, Azoarcus spp. BH72, and Serratia proteamaculans 568. From the genomes of the analyzed bacterial strains, a set of bacterial genes orthologs was identified that are predicted to be involved in determining the endophytic behavior of Burkholderia spp. The genes and their possible functions were then investigated to establish a potential connection between their presence and the role they play in bacterial endophytic behavior. Nearly all of the genes identified by this bioinformatics procedure encode function previously suggested in other studies to be involved in endophytic behavior.


Asunto(s)
Burkholderia/genética , Biología Computacional/métodos , Endófitos/genética , Genes Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/genética , Biopolímeros/metabolismo , Plantas/microbiología
4.
Microbiologyopen ; 8(10): e895, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31250991

RESUMEN

This study aimed to understand the changes in rhizosphere microbial structure and diversity of an average corn yielding field site soil with the introduced microbial candidates from a high-yielding site. Soils used in this study were from two growers' fields located in Dunnville, Ontario, Canada, where one of the farms has an exceptional high corn yield (G-site soil; ca 20 tons/acre) and the other yields an average crop (H-site soil; 12 tons/acre) (8 years of unpublished A & L data). In growth room experiments using wheat as the indicator crop, calcium alginate beads with microbes composed of Azospirillum lipoferum, Rhizobium leguminosarum, Burkholderia ambifaria, Burkholderia graminis, Burkholderia vietnamiensis, Pseudomonas lurida, Exiguobacterium acetylicum, Kosakonia cowanii, and Paenibacillus polymyxa was introduced into the soil at planting to the average-yielding soil. These bacteria had been isolated from the high-yielding farm soil. Among the nine microbial candidates tested, three (P. polymyxa, E. acetylicum and K. cowanii) significantly impacted the plant health and biometrics in addition to microbial richness and diversity, where the microbial profile became very similar to the high productive G-site soil. One hundred and forty-two bacterial terminal restriction fragments (TRFs) were involved in the community shift and 48 of them showed significant correlation to several interacting soil factors. This study indicates the potential of shifting microbial profiles of average-yielding soils by introducing key candidates from highly productive soils to increase biological soil health.


Asunto(s)
Agricultura/métodos , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Microbiota , Microbiología del Suelo , Triticum/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Bacterias/genética , Metagenómica , Ontario
5.
Plant Physiol Biochem ; 80: 160-7, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24769617

RESUMEN

Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.


Asunto(s)
Bacterias/enzimología , Biotecnología/métodos , Liasas de Carbono-Carbono/metabolismo , Endófitos/genética , Liasas de Carbono-Carbono/genética , Etilenos/metabolismo , Salinidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA