Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 259: 109674, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32072945

RESUMEN

Metals that contaminate soil is one of the major problems seriously affecting sustainable agriculture worldwide. Nickel (Ni) toxicity to agricultural crops is a global problem. Mobility of heavy metals present in contaminated soil can be reduced by the amendment of soil passivators, which will ultimately reduce the risk of them entering the food chain. A greenhouse pot experiment was conducted to investigate the effects of rice straw (RS), biochar derived from rice straw (BI) and calcium carbonate (calcite) on Ni mobility and its up take by maize (Zea maize L.) plant. Maize crop was grown in Ni spiked (100 mg kg-1) soil with three application rates of passivators (equivalent to 0, 1and 2% of each RS, BI and calcite) applied separately to the soil. Results revealed that the post-harvest soil properties (pH, DOC and MBC), plant phenology (plant height, root length, total dry weight) and physiological characteristics were significantly enhanced with passivator application. Additionally, incorporating passivator into the soil reduced Ni mobility (DTPA) by 68%, 88.9% and 79.3%, and leachability (TCLP) by 72.4%, 76.7% and 66.7% for RS, BI and calcite, respectively at 2% application rate. The Ni concentration in the maize shoots reduced by 30%, 95.2% and 95% and in the roots by 56%, 66% and 63.8% with RS, BI and calcite at 2% application rate, respectively. These findings suggest that the application of 2% biochar (BI) is very promising in reducing Ni uptake, and can reduce toxicity to plants, decrease mobility and leachability in the soil.


Asunto(s)
Oryza , Contaminantes del Suelo , Carbonato de Calcio , Carbón Orgánico , Suelo , Zea mays
2.
J Environ Manage ; 258: 110020, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31929061

RESUMEN

Metals that contaminate soil are one of the major problems seriously affecting sustainable agriculture worldwide. Cadmium (Cd) toxicity to agricultural crops is a global problem. Mobility of Cd in contaminated soil can be minimized by the amendment of soil passivators which will ultimately reduce its movement from soil to plants. A pot study was performed to evaluate the impact of sepiolite from 1% to 5% on Cd solubility and its accumulation in spinach tissues. Soil pH, Cd fractionation, Cd accumulation in spinach tissue and Cd adsorption mechanism were determined. Results were recorded that soil pH was increased from 0.3 to 1.0 units with the increasing rate of sepiolite from 1% to 5%. Similarly, Cd contents in acid soluble phase was decreased by 42.8% and increased in residual phase by 35.8% at 5% rate, relative to control. Moreover, the significant reduction in Cd uptake by spinach shoots and roots was occurred by 26.2% and 30.6% at 5% rate, respectively. Furthermore, the maximum Cd adsorption capacity 37.35 mg g-1 was recorded at 5% rate relative to control. The analysis of FTIR, XRD and SEM also confirm the ability of sepiolite for Cd polluted soil restoration and thereby, reduces its phytoavailability in polluted soil to alleviate food security challenges.


Asunto(s)
Cadmio , Contaminantes del Suelo , Agricultura , Silicatos de Magnesio , Suelo , Spinacia oleracea , Aguas Residuales
3.
Int J Phytoremediation ; 20(12): 1221-1228, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31274024

RESUMEN

Cadmium (Cd) contamination in red soil has been considered as a severe threat due to its toxic effects on plants and food security. This study aims to evaluate the comparative efficiency of rice husk-derived biochar (RHB) and steel slag (SS) metal stabilizer on decreasing Cd mobility and bioavailability to Chinese cabbage grown on acidic contaminated red soil. Several extraction techniques: a sequential extraction procedure, the European Community Bureau of Reference, toxicity characteristics leaching procedure, ammonium nitrate, and simple bioaccessibility extraction test were used to measure Cd mobility after amelioration of the investigated soil. The results indicated that application of stabilizer significantly increased soil chemical properties including soil pH, cation exchange capacity, nutrients, and organic matter. The soluble portion of Cd in soil was significantly decreased by 17.6-31.2% and 7.8-11.7% for RHB and SS at 1.5% and 3% application rate, respectively. Moreover, Cd bioaccessibility was significantly declined by 37.08% with RHB and 11.3% with SS at 3% rate. Inlcorporation of RHB at 3% can effectively immobilize Cd and thereby, reduce its phytoavailability to cabbage in Cd-contaminated soil to mitigate food security risks.

4.
J Environ Manage ; 228: 429-440, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243078

RESUMEN

Application of biochar to soil can play a significant role in the alteration of nutrients dynamics, soil contaminants as well as microbial functions. Therefore, strategic biochar application to soil may provide agronomic, environmental and economic benefits. Key environmental outcomes may include reduced availability of toxic metals and organic pollutants, reduced soil N losses and longer-term storage of carbon in soil. The use of biochar can certainly address key soil agronomic constraints to crop production including Al toxicity, low soil pH and may improve nutrient use efficiency. Biochar application has also demerits to soil properties and attention should be paid when using a specific biochar for a specific soil property improvement. This review provides a concise assessment and addresses impacts of biochar on soil properties.


Asunto(s)
Carbón Orgánico/química , Suelo/química , Agricultura , Animales , Carbono/química , Contaminación Ambiental , Contaminantes del Suelo/química
5.
Environ Sci Pollut Res Int ; 29(27): 40745-40754, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35083675

RESUMEN

The opposed transformation of arsenic (As) and cadmium (Cd) in paddy soil postures numerous challenges for their simultaneous remediation. An incubation study was conducted on the immobilization of Cd and As by biochar (BC), goethite (G), goethite-combined biochar (BC + G), and goethite-modified biochar (GBC). The results showed that biochar effectively immobilized Cd while significantly increasing As mobility, whereas goethite effectively immobilized As more than Cd. BC + G treatment significantly decreased toxicity characteristics leaching procedure (TCLP) and CaCl2-extractable Cd by 22.70% and 40.15%; meanwhile, TCLP and NaHCO3-As were significantly reduced by 38.25% and 31.87%, respectively, compared with the control. This study found that GBC was the optimum amendment within the immobilization efficiency for CaCl2-Cd (57.03%) and TCLP-As (61.11%). BC + G and GBC applications showed some interactions between biochar and goethite, which played an essential role in immobilizing Cd and As simultaneously. Therefore, GBC showed a great benefit in being a low-cost and efficient environmental amendment for Cd and As remediation in alkaline co-contaminated paddy soil.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Cadmio/análisis , Cloruro de Calcio , Carbón Orgánico , Compuestos de Hierro , Minerales , Suelo , Contaminantes del Suelo/análisis
6.
Environ Sci Pollut Res Int ; 28(41): 57769-57780, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34097222

RESUMEN

Contamination of soils by nickel (Ni) has become a serious environmental problem throughout the world, and this substance wields dangerous effects on the ecosystem and food chain. A pot experiment was conducted to examine the effect of rice straw (RS), rice straw biochar (BI), and calcite (CC) at 1% and 2% application rates in a Ni-contaminated soil. The objective was to potentially stabilize Ni and reduce its bioavailability to spinach (Spinacia Oleracea L.). Spinach plants were grown in a Ni-contaminated Ultisol (commonly known as a red clay soil). Plant growth parameter results indicated that a BI 2% application rate significantly increased the root and shoots dry biomass increased by 1.7- and 6.3-fold, respectively, while essential nutrients were enhanced in the spinach plant compared to those in the untreated soil (CK). Moreover, adding amendments significantly decreased CaCl2 extractable Ni by 62.5% 94.1%, and 87.2%, while the toxicity characteristics leaching procedure (TCLP) fell by 26.7%, 47.8%, and 41.7% when using RS, BI, and CC, respectively, at 2% compared to CK. The Ni concentrations in the spinach roots declined by 51.6%, 73.3%, and 68.9%, and in the shoots reduced by 54.1%, 76.7%, and 70.8% for RS, BI, and CC, at a 2% application rate, respectively. Bio-concentration factor (BCF) and translocation factor (TF) dropped significantly by as much as 72.7% and 20%, respectively, for BI 2% application rate. Results of the present study clearly indicated that biochar potential soil amendments for Ni stabilization, thereby reducing its bioavailability in the Ni-contaminated soil. This process enhanced the safety of food to be consumed and mitigated security risks.


Asunto(s)
Contaminantes del Suelo , Suelo , Ecosistema , Níquel , Valor Nutritivo , Contaminantes del Suelo/análisis , Spinacia oleracea
7.
Environ Sci Pollut Res Int ; 27(1): 647-656, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31808081

RESUMEN

Fertilization is an important agricultural strategy for enhancing the efficiency of phytoremediation in copper (Cu)-contaminated soils. In this study, the effects of nitrogen (N) forms, including ammonium (NH4+-N) and nitrate (NO3--N), on the growth, translocation, and accumulation of Cu in the tissues of Ricinus communis L. were investigated in pot and hydroponic experiments. The results demonstrated that higher biomass and N contents in plants were obtained when N was supplied as NO3--N rather than NH4+-N. Application of N increased the Cu content in the roots of R. communis, with a higher content after NH4+-N (53.10-64.20 mg kg-1) than NO3--N (37.62-53.75 mg kg-1) treatment. On the contrary, the levels of Cu translocation factors were much higher in NO3--fed plants (0.34-0.45) than in NH4+-fed plants (0.28-0.38). The suggested amount of N for fertilizer application is 225 kg hm-2, which resulted in the highest Cu content in R. communis and optimal plant growth. As the main Cu-binding site, root cell walls accumulated less Cu in plants treated with NH4+-N compared with NO3--N. Additionally, NH4+-N induced a higher malondialdehyde content and more severe root damage compared with NO3--N. In the leaf, a larger number of black granules, which could be protein and starch grains involved in the detoxification of Cu in R. communis, were present after NH4+-N than NO3--N treatment. These results illustrate that N forms are especially important for Cu translocation and accumulation and that immobilization and transformation of Cu in roots were improved more by NH4+-N than NO3--N. In conclusion, N fertilizers containing the appropriate forms applied at suitable rates may enhance the biomass and Cu accumulation of R. communis and thereby the remediation efficiency of Cu-contaminated soils.


Asunto(s)
Cobre/metabolismo , Fertilizantes/análisis , Nitrógeno/metabolismo , Ricinus/metabolismo , Contaminantes del Suelo/metabolismo , Compuestos de Amonio/análisis , Biodegradación Ambiental , Biomasa , Ricinus communis/metabolismo , Nitratos/análisis , Raíces de Plantas/metabolismo
8.
Chemosphere ; 244: 125418, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31812043

RESUMEN

Although rice straw (RS), biochar (BI) and calcite (CC) have proved to be effective immobilizing agents in acidic contaminated soil, we lack up-to-date scientific data regarding nickel (Ni) fractionation in soil and removal capacity in water. Therefore, an incubation study was undertaken to investigate the efficacy of RS, BI and CC with three application rates (0, 1 and 2%) of RS, BI and CC on the immobilization of Ni in polluted soil. Various extraction techniques were carried out: sequential extraction procedure, the European Community Bureau of Reference (BCR), extraction with CaCl2, and the toxicity characteristics leaching procedure (TCLP) techniques. Additionally, Ni sorption behavior was determined using the Langmuir and Freundlich isotherms. Results showed that adding all amendments into Ni contaminated acidic soil, enhanced soil pH, reduced the exchangeable fraction of Ni by 48%-55%, 59%-71% and 58%-66.3%, when RS, BI and CC were applied at 1% and 2% rates, respectively. According to the Langmuir adsorption isotherm results, the maximum sorption capacity was recorded using 2747 mg kg-1 in 2% CC amended soil. However, biochar exhibited the maximum Ni sorption capacity (13348 mg kg-1), due to its porous structure, larger surface area, and having more functional groups. Furthermore, the results of FTIR, SEM and zeta potential techniques confirmed that the immobilization and biochar's capacity to remove Ni were more effective when compared to other immobilizing agents.


Asunto(s)
Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Níquel/química , Contaminantes del Suelo/química , Adsorción , Carbonato de Calcio , Fraccionamiento Químico , Contaminación Ambiental , Oryza/química , Suelo/química , Contaminantes del Suelo/análisis , Agua
9.
Sci Total Environ ; 730: 139119, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32402973

RESUMEN

Biochars are widely used in the remediation of soil heavy metals, but there has been no clear understanding to the effects of novel co-pyrolysis biochars derived from biomass and orthophosphate on soil heavy metals. In this study, co-pyrolysis biochars derived from rape straw and orthophosphate (Ca (H2PO4)2·H2O/KH2PO4) were prepared and used to explore their effects on the speciations and ecological risks of Pb, Cd, and Cu in contaminated agricultural soil. The results showed that the addition of these co-pyrolysis biochars significantly decreased TCLP extracted concentrations (decreased by 5.9-81.7%) and ecological risks of heavy metals (Pb, Cd, and Cu) by transforming the metals from available speciation to stable speciation in soils. Co-pyrolysis biochar derived from rape straw and KH2PO4 showed the highest immobilization capacities, and the immobilization capacities of biochars for three metals were in the order of Pb > Cu > Cd. Co-pyrolysis biochars could precipitate and complex with heavy metals directly by the phosphate and -OH on their surface, and also could promote immobilization of heavy metals indirectly by increasing soil pH value and available P content. During incubation, the content of carboxyl groups on biochars increased significantly, which was beneficial to the further complexation of heavy metals. In summary, the application of co-pyrolysis biochar derived from rape straw and orthophosphate (especially for KH2PO4) could effectively reduce ecological risks of Pb, Cd, and Cu in contaminated soil.


Asunto(s)
Contaminantes del Suelo/análisis , Cadmio , Carbón Orgánico , Cobre , Plomo , Metales Pesados , Fosfatos , Pirólisis , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA