Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(6): 334-344, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36749297

RESUMEN

Ralstonia solancearum causes bacterial wilt disease on diverse plant hosts. R. solanacearum cells enter a host from soil or infested water through the roots, then multiply and spread in the water-transporting xylem vessels. Despite the low nutrient content of xylem sap, R. solanacearum grows very well inside the host, using denitrification to respire in this hypoxic environment. R. solanacearum growth in planta also depends on the successful deployment of protein effectors into host cells via a type III secretion system (T3SS). The T3SS is absolutely required for R. solanacearum virulence, but it is metabolically costly and can trigger host defenses. Thus, the pathogen's success depends on optimized regulation of the T3SS. We found that a byproduct of denitrification, the toxic free-radical nitric oxide (NO), positively regulates the R. solanacearum T3SS both in vitro and in planta. Using chemical treatments and R. solanacearum mutants with altered NO levels, we show that the expression of a key T3SS regulator, hrpB, is induced by NO in culture. Analyzing the transcriptome of R. solanacearum responding to varying levels of NO both in culture and in planta revealed that the T3SS and effectors were broadly upregulated with increasing levels of NO. This regulation was specific to the T3SS and was not shared by other stressors. Our results suggest that R. solanacearum may experience an NO-rich environment in the plant host and that this NO contributes to the activation of the T3SS during infection. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología
2.
Appl Environ Microbiol ; 89(2): e0156522, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36688670

RESUMEN

Adhesins (adhesive proteins) help bacteria stick to and colonize diverse surfaces and often contribute to virulence. The genome of the bacterial wilt pathogen Ralstonia solanacearum (Rs) encodes dozens of putative adhesins, some of which are upregulated during plant pathogenesis. Little is known about the role of these proteins in bacterial wilt disease. During tomato colonization, three putative Rs adhesin genes were upregulated in a ΔphcA quorum-sensing mutant that cannot respond to high cell densities: radA (Ralstonia adhesin A), rcpA (Ralstonia collagen-like protein A), and rcpB. Based on this differential gene expression, we hypothesized that adhesins repressed by PhcA contribute to early disease stages when Rs experiences a low cell density. During root colonization, Rs upregulated rcpA and rcpB, but not radA, relative to bacteria in the stem at mid-disease. Root attachment assays and confocal microscopy with ΔrcpA/B and ΔradA revealed that all three adhesins help Rs attach to tomato seedling roots. Biofilm assays on abiotic surfaces found that Rs does not require RadA, RcpA, or RcpB for interbacterial attachment (cohesion), but these proteins are essential for anchoring aggregates to a surface (adhesion). However, Rs did not require the adhesins for later disease stages in planta, including colonization of the root endosphere and stems. Interestingly, all three adhesins were essential for full competitive fitness in planta. Together, these infection stage-specific assays identified three proteins that contribute to adhesion and the critical first host-pathogen interaction in bacterial wilt disease. IMPORTANCE Every microbe must balance its need to attach to surfaces with the biological imperative to move and spread. The high-impact plant-pathogenic bacterium Ralstonia solanacearum can stick to biotic and abiotic substrates, presumably using some of the dozens of putative adhesins encoded in its genome. We confirmed the functions and identified the biological roles of multiple afimbrial adhesins. By assaying the competitive fitness and the success of adhesin mutants in three different plant compartments, we identified the specific disease stages and host tissues where three previously cryptic adhesins contribute to success in plants. Combined with tissue-specific regulatory data, this work indicates that R. solanacearum deploys distinct adhesins that help it succeed at different stages of plant pathogenesis.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Ralstonia solanacearum/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Virulencia , Factores de Virulencia/genética , Biopelículas , Enfermedades de las Plantas/microbiología
3.
Plant Cell Environ ; 46(10): 3040-3058, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36213953

RESUMEN

Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify core Ralstonia-responsive genes and the corresponding biological mechanisms in wilt-resistant and wilt-susceptible tomatoes. While trade-offs between growth and defence are common in plants, wilt-resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence-related processes at the same time they increased root growth. In contrast, in wilt-susceptible plants roots senesced and root surface area declined following Ralstonia inoculation. Wilt-resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt-resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb to Ralstonia, likely because they cannot tolerate the water stress induced by vascular wilt.


Asunto(s)
Enfermedades de las Plantas , Solanum lycopersicum , Deshidratación , Genes de Plantas , Enfermedades de las Plantas/microbiología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología
4.
Mol Plant Microbe Interact ; 34(10): 1212-1215, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34232701

RESUMEN

We share whole genome sequences of six strains from the Ralstonia solanacearum species complex, a diverse group of Betaproteobacteria that cause plant vascular wilt diseases. Using single-molecule real-time technology, we sequenced and assembled full genomes of Rs5 and UW700, two phylotype IA-sequevar 7 (IIA-7) strains from the southeastern United States that are closely related to the R. solanacearum species type strain, K60, but were isolated >50 years later. Four sequenced strains from Africa include a soil isolate from Nigeria (UW386, III-23), a tomato isolate from Senegal (UW763, I-14), and two potato isolates from the Madagascar highlands (RUN2474, III-19 and RUN2279, III-60). This resource will support studies of the genetic diversity, ecology, virulence, and microevolution of this globally distributed group of high-impact plant pathogens.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Solanum tuberosum , Filogenia , Enfermedades de las Plantas , Ralstonia , Ralstonia solanacearum/genética
5.
Mol Plant Microbe Interact ; 34(6): 669-679, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33487004

RESUMEN

The soilborne pathogen Ralstonia solanacearum causes a lethal bacterial wilt disease of tomato and many other crops by infecting host roots, then colonizing the water-transporting xylem vessels. Tomato xylem sap is nutritionally limiting but it does contain some carbon sources, including sucrose, trehalose, and myo-inositol. Transcriptomic analyses revealed that R. solanacearum expresses distinct catabolic pathways at low cell density (LCD) and high cell density (HCD). To investigate the links between bacterial catabolism, infection stage, and virulence, we measured in planta fitness of bacterial mutants lacking specific carbon catabolic pathways expressed at either LCD or HCD. We hypothesized that early in disease, during root infection, the bacterium depends on carbon sources catabolized at LCD, while HCD carbon sources are only required later in disease during stem colonization. A R. solanacearum ΔiolG mutant unable to use the LCD-catabolized nutrient myo-inositol was defective in tomato root colonization, but after it reached the stem this strain colonized and caused symptoms as well as wild type. In contrast, R. solanacearum mutants unable to use the HCD-catabolized nutrients sucrose (ΔscrA), trehalose (ΔtreA), or both (ΔscrA/treA), infected roots as well as wild-type R. solanacearum but were defective in colonization and competitive fitness in midstems and had reduced virulence. Further, xylem sap from tomato plants colonized by ΔscrA, ΔtreA, or ΔscrA/treA R. solanacearum mutants contained twice as much sucrose as sap from plants colonized by wild-type R. solanacearum. Together, these findings suggest that quorum sensing specifically adapts R. solanacearum metabolism for success in the different nutritional environments of plant roots and xylem sap.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Inositol , Enfermedades de las Plantas , Ralstonia solanacearum/genética , Sacarosa , Trehalosa , Virulencia
6.
Plant Dis ; 105(1): 207-208, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33175669

RESUMEN

Ralstonia solanacearum phylotype II sequevar 1 (RsII-1, formerly race 3 biovar 2) causes tomato bacterial wilt, potato brown rot, and Southern wilt of geranium. Strains in RsII-1 cause wilting in potato and tomato at cooler temperatures than tropical lowland R. solanacearum strains. Although periodically introduced, RsII-1 has not established in the United States. This pathogen is of quarantine concern and listed as a Federal Select Agent. We report a rapidly sequenced (<2 days) draft genome of UW848, a RsII-1 isolate introduced to the United States in geranium cuttings in spring 2020. UW848 belongs to the near-clonal cluster of RsII-1 global pandemic strains.


Asunto(s)
Geranium , Ralstonia solanacearum , Solanum lycopersicum , Solanum tuberosum , Geranium/genética , Enfermedades de las Plantas , Ralstonia solanacearum/genética , Estados Unidos
7.
Mol Plant Microbe Interact ; 33(3): 462-473, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31765286

RESUMEN

The xylem-dwelling plant pathogen Ralstonia solanacearum changes the chemical composition of host xylem sap during bacterial wilt disease. The disaccharide trehalose, implicated in stress tolerance across all kingdoms of life, is enriched in sap from R. solanacearum-infected tomato plants. Trehalose in xylem sap could be synthesized by the bacterium, the plant, or both. To investigate the source and role of trehalose metabolism during wilt disease, we evaluated the effects of deleting the three trehalose synthesis pathways in the pathogen: TreYZ, TreS, and OtsAB, as well as its sole trehalase, TreA. A quadruple treY/treS/otsA/treA mutant produced 30-fold less intracellular trehalose than the wild-type strain missing the trehalase enzyme. This trehalose-nonproducing mutant had reduced tolerance to osmotic stress, which the bacterium likely experiences in plant xylem vessels. Following naturalistic soil-soak inoculation of tomato plants, this triple mutant did not cause disease as well as wild-type R. solanacearum. Further, the wild-type strain out-competed the trehalose-nonproducing mutant by over 600-fold when tomato plants were coinoculated with both strains, showing that trehalose biosynthesis helps R. solanacearum overcome environmental stresses during infection. An otsA (trehalose-6-phosphate synthase) single mutant behaved similarly to ΔtreY/treS/otsA in all experimental settings, suggesting that the OtsAB pathway is the dominant trehalose synthesis pathway in R. solanacearum.


Asunto(s)
Presión Osmótica , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/fisiología , Trehalosa/biosíntesis , Eliminación de Gen , Genes Bacterianos , Solanum lycopersicum/microbiología , Ralstonia solanacearum/genética , Estrés Fisiológico , Virulencia , Factores de Virulencia , Xilema/microbiología
8.
Plant Dis ; 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32945739

RESUMEN

Tomato (Solanum lycopersicum), pepper (Capsicum annum), and gboma (Solanum macrocarpon) are major vegetables in Togo, with many people depending on these crops for their livelihood. In December 2018, during the dry season with temperatures between 21°C to 35°C, tomato ('Petomech'), pepper ('Gboyebesse') and gboma (local landrace) showing wilt symptoms without foliar yellowing were collected from two locations, Tchouloum and CECO-AGRO sites in the Sotouboua Prefecture of Togo, ~300 km from the capital city of Lome. Disease incidence ranged between 10% to 50% in multiple fields. Cut stems of most wilting tomato, pepper and gboma plants produced bacterial ooze in water and vascular discoloration was visible in longitudinal stem sections. Ground cut stem tissue tested positive with Rs ImmunoStrips specific to the Ralstonia solanacearum species complex (RSSC) (Agdia Inc., Elkhart, IN, USA). Collected samples were stored at ambient temperature and cultured within 36 hr. Culturing sap from cut stems plated on modified SMSA medium (Engelbrecht 1994) yielded colonies with typical RSSC morphology: slow-growing, irregular, mucoid, and white with red centers. Genomic DNA was extracted from thirteen isolates: two from gboma, five from tomato and six from pepper. The expected 280-bp band was amplified from all 13 genomic DNAs following polymerase chain reaction (PCR) using the 759/760 RSSC-specific primer pair (Opina et al. 1997). PCR with the 630/631 primers, which identify the Race 3 biovar 2 RSSC subgroup, did not yield a product from any Togo isolate (Opina et al. 1997). The phylotype multiplex PCR identified all Togo isolates as belonging to the phylotype I subgroup, also called R. pseudosolanacearum (Prior et al. 2016; Fegan and Prior 2005). Phylotype control DNAs were from strains GMI1000 (phylotype I, Asia), K60 (phylotype II, Americas), CMR15 (phylotype III, Africa), and PSI07 (phylotype IV, Indondesia). Comparative genomic analysis of the partial endoglucanase (egl) gene, amplified with the Endo primer pairs (Poussier et al. 2000), revealed all Togo strains belonged to sequevar 17, a group known to cause bacterial wilt of peanut in China. (Xu et al. 2009). The egl sequences are in NCBI GenBank accessions MT572393 to MT572405. Koch's postulates were completed by inoculating 28-day-old bacterial wilt-susceptible 'Bonny Best' tomato plants by soil soak (Khokhani et al. 2018). Briefly, soil around each unwounded plant was drenched with 50 ml of a 108 CFU/mL suspension of bacteria grown from a single colony. Five plants were inoculated with each of four randomly selected Togo strains. RSSC phylotype I strain GMI1000 served as a positive control and water treated plants as negative controls. Plants were kept in a 28°C growth chamber with a 12 hr photoperiod. All RSSC inoculated plants were fully wilted within a week; symptoms resembled to those observed in the field. Water treated control plants did not wilt. Culturing sap from all inoculated plants on SMSA medium yielded colonies with typical RSSC morphology that tested positive with the Rs ImmunoStrips. This is the first identification of RSSC in Togo. These results will guide development of disease management strategies and regionally appropriate breeding of vegetable lines with resistance to the phylotype I RSSC strains present in Togo.

9.
Environ Microbiol ; 20(4): 1330-1349, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29215193

RESUMEN

Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.


Asunto(s)
Enfermedades de las Plantas/microbiología , Putrescina/metabolismo , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/microbiología , Xilema/metabolismo , Metabolómica , Virulencia , Factores de Virulencia/metabolismo , Xilema/microbiología
10.
PLoS Pathog ; 12(6): e1005686, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27336156

RESUMEN

Plant root border cells have been recently recognized as an important physical defense against soil-borne pathogens. Root border cells produce an extracellular matrix of protein, polysaccharide and DNA that functions like animal neutrophil extracellular traps to immobilize pathogens. Exposing pea root border cells to the root-infecting bacterial wilt pathogen Ralstonia solanacearum triggered release of DNA-containing extracellular traps in a flagellin-dependent manner. These traps rapidly immobilized the pathogen and killed some cells, but most of the entangled bacteria eventually escaped. The R. solanacearum genome encodes two putative extracellular DNases (exDNases) that are expressed during pathogenesis, suggesting that these exDNases contribute to bacterial virulence by enabling the bacterium to degrade and escape root border cell traps. We tested this hypothesis with R. solanacearum deletion mutants lacking one or both of these nucleases, named NucA and NucB. Functional studies with purified proteins revealed that NucA and NucB are non-specific endonucleases and that NucA is membrane-associated and cation-dependent. Single ΔnucA and ΔnucB mutants and the ΔnucA/B double mutant all had reduced virulence on wilt-susceptible tomato plants in a naturalistic soil-soak inoculation assay. The ΔnucA/B mutant was out-competed by the wild-type strain in planta and was less able to stunt root growth or colonize plant stems. Further, the double nuclease mutant could not escape from root border cells in vitro and was defective in attachment to pea roots. Taken together, these results demonstrate that extracellular DNases are novel virulence factors that help R. solanacearum successfully overcome plant defenses to infect plant roots and cause bacterial wilt disease.


Asunto(s)
Desoxirribonucleasas/metabolismo , Trampas Extracelulares/microbiología , Inmunidad de la Planta/inmunología , Ralstonia solanacearum/metabolismo , Factores de Virulencia/metabolismo , Virulencia/fisiología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Desoxirribonucleasas/inmunología , Solanum lycopersicum/inmunología , Solanum lycopersicum/microbiología , Pisum sativum/inmunología , Pisum sativum/microbiología , Enfermedades de las Plantas/inmunología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Factores de Virulencia/inmunología
11.
BMC Genomics ; 17: 90, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26830494

RESUMEN

BACKGROUND: The increased availability of genome sequences has advanced the development of genomic distance methods to describe bacterial diversity. Results of these fast-evolving methods are highly correlated with those of the historically standard DNA-DNA hybridization technique. However, these genomic-based methods can be done more rapidly and less expensively and are less prone to technical and human error. They are thus a technically accessible replacement for species delineation. Here, we use several genomic comparison methods, supported by our own proteomic analyses and metabolic characterization as well as previously published DNA-DNA hybridization analyses, to differentiate members of the Ralstonia solanacearum species complex into three species. This pathogen group consists of diverse and widespread strains that cause bacterial wilt disease on many different plants. RESULTS: We used three different methods to compare the complete genomes of 29 strains from the R. solanacearum species complex. In parallel we profiled the proteomes of 73 strains using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). Proteomic profiles together with genomic sequence comparisons consistently and comprehensively described the diversity of the R. solanacearum species complex. In addition, genome-driven functional phenotypic assays excitingly supported an old hypothesis (Hayward et al. (J Appl Bacteriol 69:269-80, 1990)), that closely related members of the R. solanacearum could be identified through a simple assay of anaerobic nitrate metabolism. This assay allowed us to clearly and easily differentiate phylotype II and IV strains from phylotype I and III strains. Further, genomic dissection of the pathway distinguished between proposed subspecies within the current phylotype IV. The assay revealed large scale differences in energy production within the R. solanacearum species complex, indicating coarse evolutionary distance and further supporting a repartitioning of this group into separate species. CONCLUSIONS: Together, the results of these studies support the proposed division of the R. solanacearum species complex into three species, consistent with recent literature, and demonstrate the utility of proteomic and genomic approaches to delineate bacterial species.


Asunto(s)
Genoma Bacteriano , Genómica , Proteómica , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Variación Genética , Genómica/métodos , Filogenia , Enfermedades de las Plantas/microbiología , Proteómica/métodos , Ralstonia solanacearum/clasificación
12.
Environ Microbiol ; 18(11): 4103-4117, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27387368

RESUMEN

Ralstonia solanacearum is a soil-borne vascular pathogen that colonizes plant xylem vessels, a flowing, low-nutrient habitat where biofilms could be adaptive. Ralstonia solanacearum forms biofilm in vitro, but it was not known if the pathogen benefits from biofilms during infection. Scanning electron microscopy revealed that during tomato infection, R. solanacearum forms biofilm-like masses in xylem vessels. These aggregates contain bacteria embedded in a matrix including chromatin-like fibres commonly observed in other bacterial biofilms. Chemical and enzymatic assays demonstrated that the bacterium releases extracellular DNA in culture and that DNA is an integral component of the biofilm matrix. An R. solanacearum mutant lacking the pathogen's two extracellular nucleases (exDNases) formed non-spreading colonies and abnormally thick biofilms in vitro. The biofilms formed by the exDNase mutant in planta contained more and thicker fibres. This mutant was also reduced in virulence on tomato plants and did not spread in tomato stems as well as the wild-type strain, suggesting that these exDNases facilitate biofilm maturation and bacterial dispersal. To our knowledge, this is the first demonstration that R. solanacearum forms biofilms in plant xylem vessels, and the first documentation that plant pathogens use DNases to modulate their biofilm structure for systemic spread and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas , Desoxirribonucleasas/metabolismo , Espacio Extracelular/enzimología , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/enzimología , Ralstonia solanacearum/patogenicidad , Solanum lycopersicum/microbiología , Proteínas Bacterianas/genética , Desoxirribonucleasas/genética , Espacio Extracelular/genética , Ralstonia solanacearum/genética , Virulencia
13.
Plant Dis ; 100(3): 630-639, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30688589

RESUMEN

Detecting and correctly identifying Ralstonia solanacearum in infected plants is important because the race 3 biovar 2 (R3bv2) subgroup is a high-concern quarantine pathogen, while the related sequevar 7 group is endemic to the southeastern United States. Preventing accidental import of R3bv2 in geranium cuttings demands sensitive detection methods that are suitable for large-volume use both onshore and offshore. However, detection is complicated by frequent asymptomatic latent infections, uneven pathogen distribution within infected plants, pathogen viable-but-not-culturable state, and biosecurity laws that restrict transport of R3bv2 strains for diagnosis. There are many methods to detect R3bv2 strains but their relative utility is unknown, particularly in the realistic context of infected plant hosts. Therefore, we compared the sensitivity, cost, and technical complexity of several assays to detect and distinguish R3bv2 and sequevar 7 strains of R. solanacearum in geranium, tomato, and potato tissue in the laboratory and in naturally infected tomato plants from the field. The sensitivity of polymerase chain reaction (PCR)-based methods in infected geranium tissues was significantly improved by use of Kapa3G Plant, a polymerase with enhanced performance in the presence of plant inhibitors. R3bv2 cells were killed within 60 min of application to Whatman FTA(R) nucleic acid-binding cards, suggesting that samples on FTA cards can be safely transported for diagnosis. Overall, culture enrichment followed by dilution plating was the most sensitive detection method (101 CFU/ml) but it was also most laborious. Conducting PCR from FTA cards was faster, easier, and sensitive enough to detect approximately 104 CFU/ml, levels similar to those found in latently infected geranium plants.

14.
Mol Plant Microbe Interact ; 28(3): 286-97, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25423265

RESUMEN

Plants produce hydroxycinnamic acid (HCA) defense compounds to combat pathogens, such as the bacterium Ralstonia solanacearum. We showed that an HCA degradation pathway is genetically and functionally conserved across diverse R. solanacearum strains. Further, a feruloyl-CoA synthetase (Δfcs) mutant that cannot degrade HCA was less virulent on tomato plants. To understand the role of HCA degradation in bacterial wilt disease, we tested the following hypotheses: HCA degradation helps the pathogen i) grow, as a carbon source; ii) spread, by reducing HCA-derived physical barriers; and iii) survive plant antimicrobial compounds. Although HCA degradation enabled R. solanacearum growth on HCA in vitro, HCA degradation was dispensable for growth in xylem sap and root exudate, suggesting that HCA are not significant carbon sources in planta. Acetyl-bromide quantification of lignin demonstrated that R. solanacearum infections did not affect the gross quantity or distribution of stem lignin. However, the Δfcs mutant was significantly more susceptible to inhibition by two HCA, namely, caffeate and p-coumarate. Finally, plant colonization assays suggested that HCA degradation facilitates early stages of infection and root colonization. Together, these results indicated that ability to degrade HCA contributes to bacterial wilt virulence by facilitating root entry and by protecting the pathogen from HCA toxicity.


Asunto(s)
Coenzima A Ligasas/genética , Ácidos Cumáricos/metabolismo , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/metabolismo , Solanum lycopersicum/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/aislamiento & purificación , Ácidos Cumáricos/farmacología , Regulación Bacteriana de la Expresión Génica , Lignina/metabolismo , Solanum lycopersicum/química , Mutación , Fenotipo , Exudados de Plantas/farmacología , Raíces de Plantas/microbiología , Tallos de la Planta/química , Tallos de la Planta/microbiología , Ralstonia solanacearum/efectos de los fármacos , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidad , Virulencia , Xilema/química , Xilema/microbiología
15.
BMC Genomics ; 16: 270, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25888333

RESUMEN

BACKGROUND: Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains. RESULTS: These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences. CONCLUSIONS: This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.


Asunto(s)
Genes Bacterianos , Genómica , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Ecotipo , Musa/microbiología , Filogenia , Plantas/microbiología , Polimorfismo Genético , Ralstonia solanacearum/patogenicidad , Factores de Virulencia/genética
16.
Appl Environ Microbiol ; 81(10): 3542-51, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25769835

RESUMEN

Bacterial wilt, caused by members of the heterogenous Ralstonia solanacearum species complex, is an economically important vascular disease affecting many crops. Human activity has widely disseminated R. solanacearum strains, increasing their global agricultural impact. However, tropical highland race 3 biovar 2 (R3bv2) strains do not cause disease in tropical lowlands, even though they are virulent at warm temperatures. We tested the hypothesis that differences in temperature adaptation and competitive fitness explain the uneven geographic distribution of R. solanacearum strains. Using three phylogenetically and ecologically distinct strains, we measured competitive fitness at two temperatures following paired-strain inoculations of their shared host, tomato. Lowland tropical strain GMI1000 was only weakly virulent on tomato under temperate conditions (24°C for day and 19°C for night [24/19°C]), but highland tropical R3bv2 strain UW551 and U.S. warm temperate strain K60 were highly virulent at both 24/19°C and 28°C. Strain K60 was significantly more competitive than both GMI1000 and UW551 in tomato rhizospheres and stems at 28°C, and GMI1000 also outcompeted UW551 at 28°C. The results were reversed at cooler temperatures, at which highland strain UW551 generally outcompeted GMI1000 and K60 in planta. The superior competitive index of UW551 at 24/19°C suggests that adaptation to cool temperatures could explain why only R3bv2 strains threaten highland agriculture. Strains K60 and GMI1000 each produced different bacteriocins that inhibited growth of UW551 in culture. Such interstrain inhibition could explain why R3bv2 strains do not cause disease in tropical lowlands.


Asunto(s)
Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología , Solanum lycopersicum/microbiología , Adaptación Fisiológica , Ralstonia solanacearum/clasificación , Ralstonia solanacearum/genética , Ralstonia solanacearum/aislamiento & purificación , Temperatura , Clima Tropical
17.
J Bacteriol ; 196(5): 949-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24363343

RESUMEN

Ralstonia solanacearum, an economically important plant pathogen, must attach, grow, and produce virulence factors to colonize plant xylem vessels and cause disease. Little is known about the bacterial metabolism that drives these processes. Nitrate is present in both tomato xylem fluid and agricultural soils, and the bacterium's gene expression profile suggests that it assimilates nitrate during pathogenesis. A nasA mutant, which lacks the gene encoding the catalytic subunit of R. solanacearum's sole assimilatory nitrate reductase, did not grow on nitrate as a sole nitrogen source. This nasA mutant exhibited reduced virulence and delayed stem colonization after soil soak inoculation of tomato plants. The nasA virulence defect was more severe following a period of soil survival between hosts. Unexpectedly, once bacteria reached xylem tissue, nitrate assimilation was dispensable for growth, virulence, and competitive fitness. However, nasA-dependent nitrate assimilation was required for normal production of extracellular polysaccharide (EPS), a major virulence factor. Quantitative analyses revealed that EPS production was significantly influenced by nitrate assimilation when nitrate was not required for growth. The plant colonization delay of the nasA mutant was externally complemented by coinoculation with wild-type bacteria but not by coinoculation with an EPS-deficient epsB mutant. The nasA mutant and epsB mutant did not attach to tomato roots as well as wild-type strain UW551. However, adding either wild-type cells or cell-free EPS improved the root attachment of these mutants. These data collectively suggest that nitrate assimilation promotes R. solanacearum virulence by enhancing root attachment, the initial stage of infection, possibly by modulating EPS production.


Asunto(s)
Adhesión Bacteriana/fisiología , Nitratos/metabolismo , Raíces de Plantas/microbiología , Tallos de la Planta/microbiología , Ralstonia solanacearum/fisiología , Ralstonia solanacearum/patogenicidad , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Solanum lycopersicum/microbiología , Mutación , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo , Ralstonia solanacearum/enzimología , Ralstonia solanacearum/genética , Microbiología del Suelo , Virulencia
18.
J Chem Ecol ; 40(5): 502-13, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24801606

RESUMEN

Microbes in the rhizosphere have a suite of extracellular compounds, both primary and secondary, that communicate with other organisms in their immediate environment. Here, we describe a two-way volatile interaction between two widespread and economically important soil-borne pathogens of peanut, Aspergillus flavus and Ralstonia solanacearum, a fungus and bacterium, respectively. In response to A. flavus volatiles, R. solanacearum reduced production of the major virulence factor extracellular polysaccharide (EPS). In parallel, A. flavus responded to R. solanacearum volatiles by reducing conidia production, both on plates and on peanut seeds and by increasing aflatoxin production on peanut. Volatile profiling of these organisms using solid-phase micro-extraction gas chromatography mass spectroscopy (SPME-GCMS) provided a first glimpse at the compounds that may drive these interactions.


Asunto(s)
Arachis/microbiología , Aspergillus flavus/fisiología , Interacciones Microbianas , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/fisiología , Aflatoxinas/metabolismo , Polisacáridos Bacterianos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
19.
Mol Plant Pathol ; 25(1): e13395, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37846613

RESUMEN

Plant-pathogenic Ralstonia strains cause bacterial wilt disease by colonizing xylem vessels of many crops, including tomato. Host resistance is the best control for bacterial wilt, but resistance mechanisms of the widely used Hawaii 7996 tomato breeding line (H7996) are unknown. Using growth in ex vivo xylem sap as a proxy for host xylem, we found that Ralstonia strain GMI1000 grows in sap from both healthy plants and Ralstonia-infected susceptible plants. However, sap from Ralstonia-infected H7996 plants inhibited Ralstonia growth, suggesting that in response to Ralstonia infection, resistant plants increase inhibitors in their xylem sap. Consistent with this, reciprocal grafting and defence gene expression experiments indicated that H7996 wilt resistance acts in both above- and belowground plant parts. Concerningly, H7996 resistance is broken by Ralstonia strain UW551 of the pandemic lineage that threatens highland tropical agriculture. Unlike other Ralstonia, UW551 grew well in sap from Ralstonia-infected H7996 plants. Moreover, other Ralstonia strains could grow in sap from H7996 plants previously infected by UW551. Thus, UW551 overcomes H7996 resistance in part by detoxifying inhibitors in xylem sap. Testing a panel of xylem sap compounds identified by metabolomics revealed that no single chemical differentially inhibits Ralstonia strains that cannot infect H7996. However, sap from Ralstonia-infected H7996 contained more phenolic compounds, which are known to be involved in plant antimicrobial defence. Culturing UW551 in this sap reduced total phenolic levels, indicating that the resistance-breaking Ralstonia strain degrades these chemical defences. Together, these results suggest that H7996 tomato wilt resistance depends in part on inducible phenolic compounds in xylem sap.


Asunto(s)
Ralstonia solanacearum , Solanum lycopersicum , Ralstonia solanacearum/genética , Virulencia , Pandemias , Enfermedades de las Plantas/microbiología , Xilema/microbiología
20.
Chembiochem ; 14(16): 2169-78, 2013 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-24106142

RESUMEN

Ralfuranones are aryl-substituted furanone secondary metabolites of the Gram-negative plant pathogen Ralstonia solanacearum. New sulfur-containing ralfuranone derivatives were identified, including the methyl thioether-containing ralfuranone D. Isotopic labeling in vivo, as well as headspace analyses of volatiles from R. solanacearum liquid cultures, established a mechanism for the transfer of an intact methylthio group from L-methionine or α-keto-γ-methylthiobutyric acid. The methylthio acceptor molecule ralfuranone I, a previously postulated biosynthetic intermediate in ralfuranone biosynthesis, was isolated and characterized by NMR. The highly reactive Michael acceptor system of this intermediate readily reacts with various thiols, including glutathione.


Asunto(s)
Furanos/química , Ralstonia solanacearum/química , Sulfuros/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Furanos/aislamiento & purificación , Furanos/metabolismo , Técnicas de Silenciamiento del Gen , Marcaje Isotópico , Plásmidos/metabolismo , Ralstonia solanacearum/metabolismo , Azufre/química , Azufre/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA