RESUMEN
Triple-negative breast cancer (TNBC) does not respond to widely used targeted/endocrine therapies because of the absence of progesterone and estrogen receptors and HER2 amplification. It has been shown that the majority of TNBC cells are highly sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, but the development of TRAIL resistance limits its efficacy. We previously found that protein phosphatase 2A (PP2A) plays an important role in TRAIL resistance. In this study, we evaluated the effects of PP2A inhibition on cell death in TRAIL-resistant TNBC cells. We found that the PP2A inhibitor LB-100 effectively inhibits the growth of a panel of TNBC cell lines including lines that are intrinsically resistant to TRAIL. Using two TRAIL-resistant cell lines generated from TRAIL-sensitive parental cells (MDA231 and SUM159), we found that both TRAIL-sensitive and -resistant cell lines are equally sensitive to LB-100. We also found that LB-100 sensitizes TNBC cells to clinically used chemotherapeutical agents, including paclitaxel and cisplatin. Importantly, we found that LB-100 effectively inhibits the growth of MDA468 tumors in mice in vivo without apparent toxicity. Collectively, these data suggest that pharmacological inhibition of PP2A activity could be a novel therapeutic strategy for treating patients with TNBC in a clinical setting.