Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 110(14): 5404-9, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23493549

RESUMEN

The key role played by fucose in glycoprotein and cellular function has prompted significant research toward identifying recombinant and biochemical strategies for blocking its incorporation into proteins and membrane structures. Technologies surrounding engineered cell lines have evolved for the inhibition of in vitro fucosylation, but they are not applicable for in vivo use and drug development. To address this, we screened a panel of fucose analogues and identified 2-fluorofucose and 5-alkynylfucose derivatives that depleted cells of GDP-fucose, the substrate used by fucosyltransferases to incorporate fucose into protein and cellular glycans. The inhibitors were used in vitro to generate fucose-deficient antibodies with enhanced antibody-dependent cellular cytotoxicity activities. When given orally to mice, 2-fluorofucose inhibited fucosylation of endogenously produced antibodies, tumor xenograft membranes, and neutrophil adhesion glycans. We show that oral 2-fluorofucose treatment afforded complete protection from tumor engraftment in a syngeneic tumor vaccine model, inhibited neutrophil extravasation, and delayed the outgrowth of tumor xenografts in immune-deficient mice. The results point to several potential therapeutic applications for molecules that selectively block the endogenous generation of fucosylated glycan structures.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Vacunas contra el Cáncer/farmacología , Fucosa/farmacología , Fucosiltransferasas/antagonistas & inhibidores , Guanosina Difosfato Fucosa/metabolismo , Polisacáridos/metabolismo , Animales , Células CHO , Línea Celular Tumoral , Cromatografía Liquida , Cricetinae , Cricetulus , Diseño de Fármacos , Femenino , Fucosa/química , Humanos , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Neutrófilos/metabolismo
2.
Anal Chem ; 86(7): 3420-5, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24576206

RESUMEN

Analysis of samples containing intact antibody-drug conjugates (ADC) using mass spectrometry provides a direct measurement of the drug-load distribution. Once dosed, the drug load distribution changes due to a combination of biological and chemical factors. Liquid chromatography-mass spectrometry (LC-MS) methods to measure the in vivo drug load distribution have been established for ADCs containing native disulfide bonds (lysine-linked or cysteine-linked). However, because of an IgG reduction step in conjugation processes, using LC-MS to analyze intact cysteine-linked ADCs requires native conditions, thus limiting sensitivity. While this limitation has been overcome at the analytical scale, to date, these methods have not been translated to a smaller scale that is required for animal or clinical doses/sampling. In this manuscript, we describe the development of ADC specific affinity capture reagents for processing in vivo samples and optimization of native LC-MS methods at a microscale. These methods are then used to detect the changing drug load distribution over time from a set of in vivo samples, representing to our knowledge the first native mass spectra of cysteine-linked ADCs from an in vivo source.


Asunto(s)
Anticuerpos/química , Cromatografía en Gel/métodos , Cisteína/química , Inmunoconjugados/química , Espectrometría de Masas/métodos
3.
Bioconjug Chem ; 24(10): 1650-5, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24050213

RESUMEN

The role that carbohydrates play in antibody function and pharmacokinetics has made them important targets for modification. The terminal fucose of the N-linked glycan structure, which has been shown to be involved in modulation of antibody-directed cellular cytotoxicity, is a particularly interesting location for potential modification through incorporation of alternative sugar structures. A library of fucose analogues was evaluated for their ability to incorporate into antibody carbohydrates in place of the native fucose. A number of efficiently incorporated molecules were identified, demonstrating the ability of fucosyltransferase VIII to utilize a variety of non-natural sugars as substrates. Among these structures was a thiolated analogue, 6-thiofucose, which was incorporated into the antibody carbohydrate with good efficiency. This unnatural thio-sugar could then be used for conjugation using maleimide chemistry to produce antibody-drug conjugates with pronounced cytotoxic activities and improved homogeneity compared to drug attachment through hinge disulfides.


Asunto(s)
Anticuerpos Monoclonales/química , Carbohidratos/química , Fucosa/análogos & derivados , Inmunoconjugados/química , Anticuerpos Monoclonales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Carbohidratos/inmunología , Línea Celular , Disulfuros/química , Fucosa/inmunología , Humanos , Inmunoconjugados/inmunología , Ingeniería Metabólica
4.
Clin Cancer Res ; 28(15): 3329-3341, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35727144

RESUMEN

PURPOSE: This study evaluated the central nervous system (CNS) pharmacokinetics and target engagement of lapatinib, neratinib, and tucatinib in patients with cancer, using a physiologically based pharmacokinetic (PBPK) modeling approach. EXPERIMENTAL DESIGN: Drug-specific parameters for in vitro metabolism, binding to plasma proteins and brain tissues, transcellular passive permeability, and interactions with efflux transporters were determined. Whole-body PBPK models integrated with a 4-compartment permeability-limited brain model was developed and verified for predicting plasma and CNS pharmacokinetics. Target engagement ratio (TER), defined as the ratio of the average steady-state unbound drug brain concentration (Css,ave,br) to in vitro IC50 for HER2 inhibition, was used as a predictor of intracranial efficacy. RESULTS: PBPK models predicted that following 1 cycle of standard dosing, tucatinib and lapatinib achieved similar Css,ave,br (14.5 vs. 16.8 nmol/L), while neratinib Css,ave,br (0.68 nmol/L) was 20-fold lower. Tucatinib and neratinib were equally potent for HER2 inhibition (IC50, 6.9 vs. 5.6 nmol/L), while lapatinib was less potent (IC50, 109 nmol/L). The model-predicted population mean TER in the human normal brain was 2.1 for tucatinib, but < 0.20 for lapatinib and neratinib. CONCLUSIONS: The PBPK modeling suggests that tucatinib induces sufficient HER2 inhibition (TER > 2.0) in not only brain metastases with a disrupted blood-brain barrier (BBB), but also micrometastases where the BBB largely remains intact. These findings, in line with available clinical pharmacokinetics and efficacy data, support the therapeutic value of tucatinib for treatment of brain metastases and warrant further clinical investigation for the prevention of brain metastases in patients with HER2-positive breast cancer.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Sistema Nervioso Central , Femenino , Humanos , Lapatinib/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptor ErbB-2/metabolismo
5.
Cancer Chemother Pharmacol ; 89(6): 737-750, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435471

RESUMEN

PURPOSE: Tucatinib, a small molecule for the treatment of metastatic HER2-positive breast cancer, was extensively metabolized in humans to multiple oxidative metabolites. To fully understand the elimination and biotransformation pathways of tucatinib, we investigated the in vitro and in vivo metabolism of tucatinib, and also conducted a Phase I trial using [14C]tucatinib. METHODS: To identify the responsible enzymes for tucatinib clearance, we investigated the in vitro metabolism of tucatinib including enzyme phenotyping, which facilitated the discovery of several metabolites in human and monkey plasma and excreta, in particular M1 (ONT-993, an aliphatic hydroxylated metabolite). Stereoselective formation of M1 was further investigated in vitro, in vivo, and in silico. RESULTS: In humans, approximately 86% of the total radiolabeled dose was recovered in feces and 4% in urine; in plasma, approximately 76% of radioactivity circulated as parent drug, with 19% attributed to multiple metabolites. The primary isoforms responsible for the elimination of tucatinib were CYP2C8 and CYP3A4/5. CYP2C8 was shown to possess sole catalytic activity for the formation of M1, whereas CYP3A4/5 and aldehyde oxidase catalyzed the formation of the remaining metabolites. Subsequent investigation revealed that M1 was formed in a stereoselective manner. Examination of the enantiomeric ratio of M1 stereoisomers observed in humans relative to cynomolgus monkeys revealed comparable results, suggesting that the enantiomers that comprise M1 were not considered to be unique or disproportionately high in human. CONCLUSION: CYP2C8 and CYP3A4/5 are the primary drug-metabolizing enzymes involved in the in vitro metabolism of tucatinib, which provided the basis to describe human disposition of tucatinib and formation of the observed metabolites.


Asunto(s)
Antineoplásicos , Citocromo P-450 CYP3A , Antineoplásicos/metabolismo , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Oxazoles , Inhibidores de Proteínas Quinasas/metabolismo , Piridinas , Quinazolinas , Estereoisomerismo
6.
Bioanalysis ; 14(9): 505-580, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35578993

RESUMEN

The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.


Asunto(s)
Vesículas Extracelulares , Vacunas , Biomarcadores/análisis , Tratamiento Basado en Trasplante de Células y Tejidos , Vesículas Extracelulares/química , Humanos , Espectrometría de Masas/métodos , Nanomedicina
7.
Blood ; 113(18): 4352-61, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19147785

RESUMEN

Despite major advances in the treatment of non-Hodgkin lymphoma (NHL), including the use of chemotherapeutic agents and the anti-CD20 antibody rituximab, the majority of patients eventually relapse, and salvage treatments with non-cross-resistant compounds are needed to further improve patient survival. Here, we evaluated the antitumor effects of the microtubule destabilizing agent monomethyl auristatin E (MMAE) conjugated to the humanized anti-CD19 antibody hBU12 via a protease-sensitive valine-citrulline (vc) dipeptide linker. hBU12-vcMMAE induced potent tumor cell killing against rituximab-sensitive and -resistant NHL cell lines. CD19 can form heterodimers with CD21, and high levels of CD21 were reported to interfere negatively with the activity of CD19-targeted therapeutics. However, we observed comparable internalization, intracellular trafficking, and drug release in CD21(low) and CD21(high), rituximab-sensitive and -refractory lymphomas treated with hBU12-vcMMAE. Furthermore, high rates of durable regressions in mice implanted with these tumors were observed, suggesting that both rituximab resistance and CD21 expression levels do not impact on the activity of hBU12-vcMMAE. Combined, our data suggest that hBU12-vcMMAE may represent a promising addition to the treatment options for rituximab refractory NHL and other hematologic malignancies, including acute lymphoblastic leukemia.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD19/inmunología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Inmunoconjugados/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Animales , Anticuerpos Monoclonales de Origen Murino , Western Blotting , Línea Celular Tumoral , Supervivencia Celular , Citrulina/química , Citrulina/metabolismo , Dimerización , Dipéptidos/metabolismo , Femenino , Citometría de Flujo , Dosificación de Gen , Humanos , Técnicas para Inmunoenzimas , Linfoma no Hodgkin/inmunología , Linfoma no Hodgkin/metabolismo , Lisosomas , Ratones , Ratones SCID , Oligopéptidos/metabolismo , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/inmunología , Receptores de Complemento 3d/metabolismo , Rituximab , Valina/química , Valina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Clin Pharmacol ; 61(4): 461-471, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32989831

RESUMEN

Tucatinib is a potent tyrosine kinase inhibitor selective for human epidermal growth factor receptor 2 (HER2) approved by the US Food and Drug Administration for the treatment of HER2-positive metastatic breast cancer and in development for other HER2-positive solid tumors. Modest, reversible serum creatinine (SCr) elevations have been observed in tucatinib clinical trials. SCr is conveyed by the renal drug transporters organic cation transporter 2 (OCT2) and multidrug and toxin extrusion protein 1 (MATE1) and 2-K (MATE2-K) and can increase in the presence of inhibitors of these transporters. In vitro, tucatinib inhibited OCT2-, MATE1-, and MATE2-K-mediated transport of metformin, with IC50 values of 14.7, 0.340, and 0.135 µM, respectively. Tucatinib also inhibited OCT2- and MATE1-mediated transport of creatinine, with IC50 values of 0.107 and 0.0855 µM, respectively. A phase 1 study with metformin administered orally in the absence and presence of tucatinib was conducted in 18 healthy subjects. Renal function was assessed by measuring glomerular filtration rate (GFR; based on iohexol plasma clearance) and endogenous markers (SCr, cystatin C-based estimated glomerular filtration rate [eGFR]) with and without tucatinib. Metformin exposure increased (1.4-fold) and renal clearance decreased (29.99-17.64 L/h) with tucatinib, with no effect on metformin maximum concentration. Creatinine clearance transiently decreased 23% with tucatinib. GFR and eGFR, which are unaffected by OCT2 and/or MATE1/2-K transport, were unchanged with tucatinib. These data demonstrate that tucatinib inhibits OCT2- and MATE1/2-K-mediated tubular secretion of creatinine, which may manifest as mild SCr elevations that are not indicative of renal impairment.


Asunto(s)
Antineoplásicos/farmacología , Metformina/farmacocinética , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Transportador 2 de Cátion Orgánico/antagonistas & inhibidores , Oxazoles/farmacología , Piridinas/farmacología , Quinazolinas/farmacología , Adolescente , Adulto , Anciano , Animales , Transporte Biológico/efectos de los fármacos , Creatinina/sangre , Estudios Cruzados , Perros , Femenino , Tasa de Filtración Glomerular , Células HEK293 , Voluntarios Sanos , Humanos , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby , Masculino , Persona de Mediana Edad , Receptor ErbB-2/antagonistas & inhibidores , Adulto Joven
9.
Bioanalysis ; 13(4): 203-238, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33470871

RESUMEN

The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by Mass Spectrometry (hybrid assays, LCMS and HRMS) were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 1) Hybrid Assays, Innovation in Small Molecules, & Regulated Bioanalysis. Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation), Part 2B (Regulatory Input) and Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 5, and 6 (2021), respectively.


Asunto(s)
Bioensayo/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Terapia Genética/métodos , Espectrometría de Masas/métodos , Historia del Siglo XXI , Humanos
10.
J Pharmacol Exp Ther ; 330(3): 932-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19498104

RESUMEN

Antibody-drug conjugates (ADCs) made with auristatin antimitotic agents have shown significant preclinical and clinical oncology activity. SGN-75 is composed of the anti-CD70 antibody h1F6 conjugated to monomethylauristatin F through a noncleavable maleimidocaproyl linkage. To understand the pharmacologic basis of the activity of this ADC, its pharmacokinetics and biodistribution were evaluated in a mouse xenograft model with use of a dual-radiolabeled ADC. The concentrations of antibody, total auristatin (conjugated plus unconjugated), and unconjugated auristatin were measured simultaneously in serum, tumor, and 16 normal tissues. Serum pharmacokinetic parameters for antibody and total auristatin were similar with very little unconjugated auristatin observed, demonstrating a high degree of stability. The kinetic values in normal tissues generally tracked with serum: the first time point (1 h) had the highest antibody and total auristatin concentrations with low unconjugated auristatin concentrations, with the exception of organs expected to be involved in hepatobiliary clearance of the ADC, where total and unconjugated auristatin concentrations peaked at 4 h and then rapidly decreased. In tumors, antibody concentrations were maximal at 1 day, with total auristatin increasing until 2 days. Intratumoral unconjugated auristatin was a substantial fraction of the total auristatin and reached concentrations much higher than in normal tissues. The exposure of the tumor to total and unconjugated auristatin was tens to hundreds times higher than normal tissue exposure. The data establish the pharmacologic basis of activity of the ADC through specific tumor targeting, intratumoral auristatin retention, and ADC stability in the systemic circulation.


Asunto(s)
Aminobenzoatos/farmacología , Antineoplásicos/farmacología , Inmunotoxinas/farmacología , Oligopéptidos/farmacología , Animales , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacocinética , Semivida , Inmunotoxinas/farmacocinética , Marcaje Isotópico , Ratones , Ratones Desnudos , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cancer Ther ; 7(9): 2913-23, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18790772

RESUMEN

An anti-CD70 antibody conjugated to monomethylauristatin F (MMAF) via a valine-citrulline dipeptide containing linker has been shown previously to have potent antitumor activity in renal cell cancer xenograft studies. Here, we generated a panel of humanized anti-CD70 antibody IgG variants and conjugated them to MMAF to study the effect of isotype (IgG1, IgG2, and IgG4) and Fcgamma receptor binding on antibody-drug conjugate properties. All IgG variants bound CD70+ 786-O cells with an apparent affinity of approximately 1 nmol/L, and drug conjugation did not impair antigen binding. The parent anti-CD70 IgG1 bound to human FcgammaRI and FcgammaRIIIA V158 and mouse FcgammaRIV and this binding was not impaired by drug conjugation. In contrast, binding to these Fcgamma receptors was greatly reduced or abolished in the variant, IgG1v1, containing the previously described mutations, E233P:L234V:L235A. All conjugates had potent cytotoxic activity against six different antigen-positive cancer cell lines in vitro with IC50 values of 30 to 540 pmol/L. The IgGv1 conjugate with MMAF displayed improved antitumor activity compared with other conjugates in 786-O and UMRC3 models of renal cell cancer and in the DBTRG05-MG glioblastoma model. All conjugates were tolerated to > or =40 mg/kg in mice. Thus, the IgG1v1 MMAF conjugate has an increased therapeutic index compared with the parent IgG1 conjugate. The improved antitumor activity of the IgG1v1 auristatin conjugates may relate to increased exposure as suggested by pharmacokinetic analysis. The strategy used here for enhancing the therapeutic index of antibody-drug conjugates is independent of the antigen-binding variable domains and potentially applicable to other antibodies.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Ligando CD27/inmunología , Inmunoconjugados/uso terapéutico , Ingeniería de Proteínas , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Citotoxicidad Inmunológica/efectos de los fármacos , Femenino , Humanos , Inmunoconjugados/administración & dosificación , Inmunoconjugados/efectos adversos , Inmunoconjugados/farmacocinética , Inmunoglobulina G/inmunología , Ratones , Ratones Desnudos , Modelos Moleculares , Receptores de IgG/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Cancer Ther ; 7(8): 2486-97, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18723494

RESUMEN

Anti-CD30 diabodies were engineered with two cysteine mutations for site-specific drug conjugation in each chain of these homodimeric antibody fragments. Diabodies were conjugated with approximately 4 equivalents of the anti-tubulin drugs, monomethyl auristatin E or F, via a protease-cleavable dipeptide linker, to create the conjugates, diabody-vcE4 and diabody-vcF4, respectively. Diabody conjugation had only minor (<3-fold) effects on antigen binding. Diabody-vcF4 was potently cytotoxic against the antigen-positive cell lines, Karpas-299 (34 pmol/L IC(50)) and L540cy (22 pmol/L IC(50)), and was 8- and 21-fold more active than diabody-vcE4 against these cell lines, respectively. Clearance of diabody-vcF4 (99-134 mL/d/kg) was 5-fold slower than for the nonconjugated diabody in naive severe combined immunodeficient mice. Diabody-vcF4 had potent and dose-dependent antitumor activity against established Karpas-299 xenografts and gave durable complete responses at well-tolerated doses. Biodistribution experiments with diabody-[(3)H]-vcF4 (0.72-7.2 mg/kg) in tumor-bearing mice showed a dose-dependent increase in total auristatin accumulation in tumors (< or =520 nmol/L) and decrease in relative auristatin accumulation (< or =8.1 %ID/g), with peak localization at 4 to 24 h after dosing. Diabody-vcF4 had approximately 4-fold lower cytotoxic activity than the corresponding IgG1-vcF4 conjugate in vitro. A similar potency difference was observed in vivo despite 25- to 34-fold faster clearance of diabody-vcF4 than IgG1-vcF4. This may reflect that dose-escalated diabody-vcF4 can surpass IgG1-vcF4 in auristatin delivery to tumors, albeit with higher auristatin exposure to some organs including kidney and liver. Diabody-drug conjugates can have potent antitumor activity at well-tolerated doses and warrant further optimization for cancer therapy.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Antígeno Ki-1/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Antineoplásicos/inmunología , Línea Celular Tumoral , Femenino , Inmunoglobulina G/inmunología , Antígeno Ki-1/inmunología , Ratones , Ratones SCID
13.
Bioanalysis ; 10(23): 1897-1917, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30488729

RESUMEN

The 2018 12th Workshop on Recent Issues in Bioanalysis took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS and LBA/cell-based assays approaches. This 2018 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2018 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations for PK, PD and ADA assays by hybrid LBA/LCMS and regulatory agencies' input. Part 1 (LCMS for small molecules, peptides, oligonucleotides and small molecule biomarkers) and Part 3 (LBA/cell-based assays: immunogenicity, biomarkers and PK assays) are published in volume 10 of Bioanalysis, issues 22 and 24 (2018), respectively.


Asunto(s)
Antígenos/análisis , Bioensayo/normas , Biomarcadores/análisis , Legislación Médica/tendencias , Estados Unidos
14.
Mol Cancer Ther ; 5(6): 1474-82, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16818506

RESUMEN

Identifying factors that determine the sensitivity or resistance of cancer cells to cytotoxicity by antibody-drug conjugates is essential in the development of such conjugates for therapy. Here the monoclonal antibody L49 is used to target melanotransferrin, a glycosylphosphatidylinositol-anchored glycoprotein first identified as p97, a cell-surface marker in melanomas. L49 was conjugated via a proteolytically cleavable valine-citrulline linker to the antimitotic drug, monomethylauristatin F (vcMMAF). Effective drug release from L49-vcMMAF likely requires cellular proteases most commonly located in endosomes and lysosomes. Melanoma cell lines with the highest surface p97 expression (80,000-280,000 sites per cell) were sensitive to L49-vcMMAF whereas most other cancer cell lines with lower p97 expression were resistant, as were normal cells with low copy numbers (< or = 20,000 sites per cell). Cell line sensitivity to L49-vcMMAF was found by immunofluorescence microscopy to correlate with intracellular fate of the conjugate. Specifically, L49-vcMMAF colocalized with the lysosomal marker CD107a within sensitive cell lines such as SK-MEL-5 and A2058. In contrast, in resistant cells expressing lower p97 levels (H3677; 72,000 sites per cell), L49-vcMMAF colocalized with caveolin-1, a protein prominent in caveolae, but not with CD107a. Thus, for antibody-drug conjugates targeting p97, antigen level and trafficking to the lysosomes are important factors for achieving robust in vitro cytotoxicity against cancer cells. Immunohistochemical analysis with L49 revealed that 62% of metastatic melanoma tumors had strong staining for p97. Overexpression of p97 in melanoma as compared with normal tissue, in conjunction with the greater sensitivity of tumor cells to L49-vcMMAF, supports further evaluation of antibody-drug conjugates for targeting p97-overexpressing tumors.


Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunoconjugados/uso terapéutico , Melanoma/tratamiento farmacológico , Proteínas de Neoplasias/inmunología , Oligopéptidos/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/uso terapéutico , Biomarcadores de Tumor/metabolismo , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Humanos , Melanoma/inmunología , Antígenos Específicos del Melanoma , Ratones , Neoplasias Cutáneas/inmunología , Células Tumorales Cultivadas
15.
Bioanalysis ; 9(22): 1807-1825, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29148835

RESUMEN

The 2017 11th Workshop on Recent Issues in Bioanalysis (11th WRIB) took place in Los Angeles/Universal City, California from 3 April 2017 to 7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis, Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS and ligand-binding assay (LBA) approaches. This 2017 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2017 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1) covers the recommendations for Small Molecules, Peptides and Small Molecule Biomarkers using LCMS. Part 2 (Biotherapeutics, Biomarkers and Immunogenicity Assays using Hybrid LBA/LCMS and Regulatory Agencies' Inputs) and Part 3 (LBA: Immunogenicity, Biomarkers and PK Assays) are published in volume 9 of Bioanalysis, issues 23 and 24 (2017), respectively.


Asunto(s)
Biomarcadores/análisis , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Péptidos/análisis , Bibliotecas de Moléculas Pequeñas/análisis , Conferencias de Consenso como Asunto , Guías como Asunto , Ligandos , Bibliotecas de Moléculas Pequeñas/química
16.
Protein Eng Des Sel ; 19(7): 299-307, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16644914

RESUMEN

The chimeric anti-CD30 IgG1, cAC10, conjugated to eight equivalents of monomethyl auristatin E (MMAE) was previously shown to have potent antitumor activity against CD30-expressing tumors xenografts in mice. Moreover, the therapeutic index was increased by lowering the stoichiometry from 8 drugs/antibody down to 2 or 4. Limitations of such 'partially-loaded' conjugates are low yield (10-30%) as they are purified from mixtures with variable stoichiometry (0-8 drugs/antibody), and heterogeneity as the 2 or 4 drugs are distributed over eight possible cysteine conjugation sites. Here, the solvent-accessible cysteines that form the interchain disulfide bonds in cAC10 were replaced with serine, to reduce the eight potential conjugation sites down to 4 or 2. These Cys-->Ser antibody variants were conjugated to MMAE in near quantitative yield (89-96%) with defined stoichiometries (2 or 4 drugs/antibody) and sites of drug attachment. The engineered antibody-drug conjugates have comparable antigen-binding affinities and in vitro cytotoxic activities with corresponding purified parental antibody-drug conjugates. Additionally, the engineered and parental antibody-drug conjugates have similar in vivo properties including antitumor activity, pharmacokinetics and maximum tolerated dose. Our strategy for generating antibody-drug conjugates with defined sites and stoichiometries of drug loading is potentially broadly applicable to other antibodies as it involves engineering of constant domains.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antineoplásicos/farmacocinética , Inmunoconjugados/farmacocinética , Oligopéptidos/farmacocinética , Animales , Anticuerpos Monoclonales/química , Antineoplásicos/química , Secuencia de Bases , Sitios de Unión , Cisteína/química , Disulfuros/química , Disulfuros/metabolismo , Inmunoconjugados/inmunología , Antígeno Ki-1/inmunología , Ligandos , Dosis Máxima Tolerada , Ratones , Oligopéptidos/química , Ingeniería de Proteínas , Serina/química , Solventes/química , Trasplante Heterólogo , Células Tumorales Cultivadas
17.
Bioanalysis ; 8(1): 55-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26647801

RESUMEN

BACKGROUND: Antibody-drug conjugates (ADCs) require multiple assays to characterize their PK. These assays can separately evaluate the ADC by quantifying the antibody or the conjugated drug and may give different answers due to assay measurement differences, heterogeneous nature of ADCs and potential biotransformations that occur in vivo. RESULTS: We present a new version of the antibody-conjugated drug assay for valine-citrulline-linked monomethylauristatin E (vcMMAE) ADCs. A stable isotope-labeled internal standard, protein A affinity capture and solid-phase cleavage of MMAE using papain was used prior to LC-MS/MS analysis. CONCLUSION: The assay was used to assess the difference in ex vivo drug-linker stability of native-cysteine versus engineered cysteine ADCs and to determine the number of drugs per antibody of a native-cysteine ADC in vivo.


Asunto(s)
Bioensayo/métodos , Inmunoconjugados/química , Inmunoconjugados/metabolismo , Papaína/metabolismo , Animales , Citrulina/química , Estabilidad de Medicamentos , Femenino , Humanos , Inmunoconjugados/farmacocinética , Oligopéptidos/química , Ratas , Valina/química
18.
Bioanalysis ; 7(23): 3019-34, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26627049

RESUMEN

The 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of over 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. It is once again a 5-day week long event - a full immersion bioanalytical week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches including the focus on biomarkers and immunogenicity. This 2015 White Paper encompasses recommendations that emerged from the extensive discussions held during the workshop, and is aimed at providing the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to advance scientific excellence, improve quality and deliver better regulatory compliance. Due to its length, the 2015 edition of this comprehensive White Paper has been divided into three parts. Part 2 covers the recommendations for hybrid LBA/LCMS and regulatory agencies' inputs. Part 1 (small molecule bioanalysis using LCMS) and Part 3 (large molecule bioanalysis using LBA, biomarkers and immunogenicity) will be published in volume 7 of Bioanalysis, issues 22 and 24, respectively.


Asunto(s)
Biomarcadores/química , Biofarmacia/organización & administración , Biotecnología/organización & administración , Historia del Siglo XXI , Humanos
19.
Hematol Oncol Clin North Am ; 28(1): 13-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24287064

RESUMEN

The concept of using monoclonal antibodies for delivering drugs to cancer cells has been explored for decades, with early work surrounding nonspecific targets and drugs with low potencies. These studies underscored the importance of critical parameters, such as antigen and tumor target selection, linker stability, drug potency, pharmacokinetics, and conjugation methodology, in developing effective antibody drug conjugates with acceptable safety profiles. Brentuximab vedotin represents the culmination of much research and development activities in which many of these parameters were addressed. This article provides an overview of many studies that led to the development of this highly active antibody drug conjugate.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Inmunoconjugados/uso terapéutico , Animales , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Brentuximab Vedotina , Ensayos Clínicos como Asunto , Evaluación Preclínica de Medicamentos , Humanos , Inmunoconjugados/farmacología , Antígeno Ki-1/antagonistas & inhibidores , Resultado del Tratamiento
20.
Bioanalysis ; 6(24): 3355-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25534792

RESUMEN

The 2014 8th Workshop on Recent Issues in Bioanalysis (8th WRIB), a 5-day full immersion in the evolving field of bioanalysis, took place in Universal City, California, USA. Close to 500 professionals from pharmaceutical and biopharmaceutical companies, contract research organizations and regulatory agencies worldwide convened to share, review, discuss and agree on approaches to address current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS, LBA approaches and immunogenicity. From the prolific discussions held during the workshop, specific recommendations are presented in this 2014 White Paper. As with the previous years' editions, this paper acts as a practical tool to help the bioanalytical community continue advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2014 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations for Large molecules bioanalysis using LBA and Immunogenicity. Part 1 (Small molecules bioanalysis using LCMS) and Part 2 (Hybrid LBA/LCMS, Electronic Laboratory Notebook and Regulatory Agencies' Input) were published in the Bioanalysis issues 6(22) and 6(23), respectively.


Asunto(s)
Técnicas de Química Analítica , Inmunidad , Anticuerpos Neutralizantes/inmunología , Biotransformación , Humanos , Preparaciones Farmacéuticas/metabolismo , Farmacocinética , Polietileno/química , Guías de Práctica Clínica como Asunto , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA