Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(14): 7631-7648, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37326020

RESUMEN

Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands-branched chain amino acids and GTP-induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.


Asunto(s)
Proteínas Bacterianas , Enterococcus faecalis , Proteínas Represoras , Staphylococcus aureus , Humanos , Proteínas Bacterianas/metabolismo , ADN/química , Regulación Bacteriana de la Expresión Génica , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Virulencia , Factores de Virulencia , Staphylococcus aureus/química , Enterococcus faecalis/química
2.
Proc Natl Acad Sci U S A ; 119(43): e2210912119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252016

RESUMEN

The alarming rise of multidrug-resistant Gram-positive bacteria has precipitated a healthcare crisis, necessitating the development of new antimicrobial therapies. Here we describe a new class of antibiotics based on a ring-fused 2-pyridone backbone, which are active against vancomycin-resistant enterococci (VRE), a serious threat as classified by the Centers for Disease Control and Prevention, and other multidrug-resistant Gram-positive bacteria. Ring-fused 2-pyridone antibiotics have bacteriostatic activity against actively dividing exponential phase enterococcal cells and bactericidal activity against nondividing stationary phase enterococcal cells. The molecular mechanism of drug-induced killing of stationary phase cells mimics aspects of fratricide observed in enterococcal biofilms, where both are mediated by the Atn autolysin and the GelE protease. In addition, combinations of sublethal concentrations of ring-fused 2-pyridones and standard-of-care antibiotics, such as vancomycin, were found to synergize to kill clinical strains of VRE. Furthermore, a broad range of antibiotic resistant Gram-positive pathogens, including those responsible for the increasing incidence of antibiotic resistant healthcare-associated infections, are susceptible to this new class of 2-pyridone antibiotics. Given the broad antibacterial activities of ring-fused 2-pyridone compounds against Gram-positive (GmP) bacteria we term these compounds GmPcides, which hold promise in combating the rising tide of antibiotic resistant Gram-positive pathogens.


Asunto(s)
Bacterias Grampositivas , Piridonas , Enterococos Resistentes a la Vancomicina , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Bacterias Grampositivas/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa/farmacología , Piridonas/farmacología , Vancomicina/farmacología , Enterococos Resistentes a la Vancomicina/efectos de los fármacos
3.
Eur J Neurosci ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143728

RESUMEN

Numerous challenges hinder the development of neuroprotective treatments for Parkinson's disease, with a regularly identified issue being the lack of clinically relevant animal models. Viral vector overexpression of α-synuclein is widely considered the most relevant model; however, this has been limited by high variability and inconsistency. One potential method of optimisation is pairing it with a secondary insult such as FN075, a synthetic molecule demonstrated to accelerate α-synucleinopathy. Thus, the aim of this study was to investigate if sequential infusion of adeno-associated virus (AAV)-α-synuclein and FN075 into the rat brain can replicate α-synucleinopathy, nigrostriatal pathology and motor dysfunction associated with Parkinson's disease. Rats received a unilateral injection of AAV-α-synuclein (or AAV-green fluorescent protein) into two sites in the substantia nigra, followed 4 weeks later by unilateral injection of FN075 (or vehicle) into the striatum. Animals underwent behavioural testing every 4 weeks until sacrifice at 20 weeks, followed by immunohistochemistry assessment post-mortem. As anticipated, AAV-α-synuclein led to extensive overexpression of human α-synuclein throughout the nigrostriatal pathway, as well as elevated levels of phosphorylated and aggregated forms of the protein. However, the sequential administration of FN075 into the striatum did not exacerbate any of the α-synuclein pathology. Furthermore, despite the extensive α-synuclein pathology, neither administration of AAV-α-synuclein nor FN075, alone or in combination, was sufficient to induce dopaminergic degeneration or motor deficits. In conclusion, this approach did not replicate the key characteristics of Parkinson's disease, and further studies are required to create more representational models for testing of novel compounds and treatments for Parkinson's disease.

4.
J Org Chem ; 89(1): 731-739, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38093677

RESUMEN

A selective [4 + 2] cycloaddition reaction of thiazolo-2-pyridones with arynes has been demonstrated. The developed protocol allows rapid access to highly functionalized, structurally complex thiazolo-fused bridged isoquinolones in high yields, which are susceptible to further late-stage functionalization.

5.
J Org Chem ; 89(16): 11802-11810, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39051977

RESUMEN

We have developed an Ir(PPy)3 photoredox-catalyzed cross-coupling reaction that allows installation of quinoxalinones at the C7 position of thiazolino ring-fused 2-pyridones (TRPs) under mild conditions. The methodology tolerates various substituted quinoxalinones and biologically relevant substituents on the C8 position of the TRP. The TRP scaffold has large potential in the development of lead compounds, and while the coupled products are interesting from a drug-development perspective, the methodology will be useful for developing more potent and drug-like TRP-based candidates.

6.
J Clin Child Adolesc Psychol ; : 1-10, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805627

RESUMEN

OBJECTIVE: Although the significance of the general factor of psychopathology (p) is being increasingly recognized, it remains unclear how to best operationalize and measure p. To test variations in the operationalizations of p and make practical recommendations for its assessment, we compared p-factor scores derived from four models. METHODS: We compared p scores derived from principal axis (Model 1), hierarchical factor (Model 2), and bifactor (Model 3) analyses, plus a Total Problem score (sum of unit-weighted ratings of all problem items; Model 4) for parent- and self-rated youth psychopathology from 24 societies. Separately for each sample, we fitted the models to parent-ratings on the Child Behavior Checklist for Ages 6-18 (CBCL/6-18) and self-ratings on the Youth Self-Report (YSR) for 25,643 11-18-year-olds. Separately for each sample, we computed correlations between p-scores obtained for each pair of models, cross-informant correlations between p-scores for each model, and Q-correlations between mean item x p-score correlations for each pair of models. RESULTS: Results were similar for all models, as indicated by correlations of .973-.994 between p-scores for Models 1-4, plus similar cross-informant correlations between CBCL/6-18 and YSR Model 1-4 p-scores. Item x p correlations had similar rank orders between Models 1-4, as indicated by Q correlations of .957-.993. CONCLUSIONS: The similar results obtained for Models 1-4 argue for using the simplest model - the unit-weighted Total Problem score - to measure p for clinical and research assessment of youth psychopathology. Practical methods for measuring p may advance the field toward transdiagnostic patterns of problems.

7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34785593

RESUMEN

Emerging antibiotic resistance demands identification of novel antibacterial compound classes. A bacterial whole-cell screen based on pneumococcal autolysin-mediated lysis induction was developed to identify potential bacterial cell wall synthesis inhibitors. A hit class comprising a 1-amino substituted tetrahydrocarbazole (THCz) scaffold, containing two essential amine groups, displayed bactericidal activity against a broad range of gram-positive and selected gram-negative pathogens in the low micromolar range. Mode of action studies revealed that THCz inhibit cell envelope synthesis by targeting undecaprenyl pyrophosphate-containing lipid intermediates and thus simultaneously inhibit peptidoglycan, teichoic acid, and polysaccharide capsule biosynthesis. Resistance did not readily develop in vitro, and the ease of synthesizing and modifying these small molecules, as compared to natural lipid II-binding antibiotics, makes THCz promising scaffolds for development of cell wall-targeting antimicrobials.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Pared Celular/química , Pared Celular/efectos de los fármacos , Lípidos/química , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , N-Acetil Muramoil-L-Alanina Amidasa , Peptidoglicano/biosíntesis , Fosfatos de Poliisoprenilo , Streptococcus pneumoniae/efectos de los fármacos , Ácidos Teicoicos/química , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados
8.
Artículo en Inglés | MEDLINE | ID: mdl-33593835

RESUMEN

Chlamydia trachomatis is a strict intracellular bacterium that causes sexually transmitted infections and eye infections that can lead to life-long sequelae. Treatment options are limited to broad-spectrum antibiotics that disturb the commensal flora and contribute to selection of antibiotic-resistant bacteria. Hence, development of novel drugs that specifically target C. trachomatis would be beneficial. 2-pyridone amides are potent and specific inhibitors of Chlamydia infectivity. The first generation compound KSK120, inhibits the developmental cycle of Chlamydia resulting in reduced infectivity of progeny bacteria. Here, we show that the improved, highly potent second-generation 2-pyridone amide KSK213 allowed normal growth and development of C. trachomatis and the effect was only observable upon re-infection of new cells. Progeny elementary bodies (EBs) produced in the presence of KSK213 were unable to activate transcription of essential genes in early development and did not differentiate into the replicative form, the reticulate body (RB). The effect was specific to C. trachomatis since KSK213 was inactive in the closely related animal pathogen C. muridarum and in C. caviae The molecular target of KSK213 may thus be different in C. trachomatis or non-essential in C. muridarum and C. caviae Resistance to KSK213 was mediated by a combination of amino acid substitutions in both DEAD/DEAH RNA helicase and RNAse III, which may indicate inhibition of the transcriptional machinery as the mode of action. 2-pyridone amides provide a novel antibacterial strategy and starting points for development of highly specific drugs for C. trachomatis infections.

9.
Mol Cell ; 57(3): 445-55, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25620560

RESUMEN

Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-ß-sheet-rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aß42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aß42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/farmacología , Escherichia coli/genética , Agregado de Proteínas/efectos de los fármacos , alfa-Sinucleína/metabolismo , Secuencias de Aminoácidos , Péptidos beta-Amiloides/metabolismo , Secuencia de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Técnicas In Vitro , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , alfa-Sinucleína/química
10.
J Child Psychol Psychiatry ; 63(11): 1297-1307, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35167140

RESUMEN

BACKGROUND: Clinicians increasingly serve youths from societal/cultural backgrounds different from their own. This raises questions about how to interpret what such youths report. Rescorla et al. (2019, European Child & Adolescent Psychiatry, 28, 1107) found that much more variance in 72,493 parents' ratings of their offspring's mental health problems was accounted for by individual differences than by societal or cultural differences. Although parents' reports are essential for clinical assessment of their offspring, they reflect parents' perceptions of the offspring. Consequently, clinical assessment also requires self-reports from the offspring themselves. To test effects of individual differences, society, and culture on youths' self-ratings of their problems and strengths, we analyzed Youth Self-Report (YSR) scores for 39,849 11-17 year olds in 38 societies. METHODS: Indigenous researchers obtained YSR self-ratings from population samples of youths in 38 societies representing 10 culture cluster identified in the Global Leadership and Organizational Behavioral Effectiveness study. Hierarchical linear modeling of scores on 17 problem scales and one strengths scale estimated the percent of variance accounted for by individual differences (including measurement error), society, and culture cluster. ANOVAs tested age and gender effects. RESULTS: Averaged across the 17 problem scales, individual differences accounted for 92.5% of variance, societal differences 6.0%, and cultural differences 1.5%. For strengths, individual differences accounted for 83.4% of variance, societal differences 10.1%, and cultural differences 6.5%. Age and gender had very small effects. CONCLUSIONS: Like parents' ratings, youths' self-ratings of problems were affected much more by individual differences than societal/cultural differences. Most variance in self-rated strengths also reflected individual differences, but societal/cultural effects were larger than for problems, suggesting greater influence of social desirability. The clinical significance of individual differences in youths' self-reports should thus not be minimized by societal/cultural differences, which-while important-can be taken into account with appropriate norms, as can gender and age differences.


Asunto(s)
Individualidad , Padres , Niño , Adolescente , Humanos , Padres/psicología , Autoinforme
11.
Proc Natl Acad Sci U S A ; 116(13): 6463-6472, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850516

RESUMEN

Auxin phytohormones control most aspects of plant development through a complex and interconnected signaling network. In the presence of auxin, AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) transcriptional repressors are targeted for degradation by the SKP1-CULLIN1-F-BOX (SCF) ubiquitin-protein ligases containing TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX (TIR1/AFB). CULLIN1-neddylation is required for SCFTIR1/AFB functionality, as exemplified by mutants deficient in the NEDD8-activating enzyme subunit AUXIN-RESISTANT 1 (AXR1). Here, we report a chemical biology screen that identifies small molecules requiring AXR1 to modulate plant development. We selected four molecules of interest, RubNeddin 1 to 4 (RN1 to -4), among which RN3 and RN4 trigger selective auxin responses at transcriptional, biochemical, and morphological levels. This selective activity is explained by their ability to consistently promote the interaction between TIR1 and a specific subset of AUX/IAA proteins, stimulating the degradation of particular AUX/IAA combinations. Finally, we performed a genetic screen using RN4, the RN with the greatest potential for dissecting auxin perception, which revealed that the chromatin remodeling ATPase BRAHMA is implicated in auxin-mediated apical hook development. These results demonstrate the power of selective auxin agonists to dissect auxin perception for plant developmental functions, as well as offering opportunities to discover new molecular players involved in auxin responses.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta/fisiología , Proteolisis , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteína NEDD8/genética , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Receptores de Superficie Celular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Plantones/metabolismo , Transducción de Señal , Transcripción Genética/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 116(21): 10510-10517, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31061116

RESUMEN

Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Isoniazida , Mycobacterium tuberculosis/efectos de los fármacos , Evaluación Preclínica de Medicamentos
13.
J Org Chem ; 86(23): 16582-16592, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767366

RESUMEN

Reaction of thiazoline fused 2-pyridones with alkyl halides in the presence of cesium carbonate opens the thiazoline ring via S-alkylation and generates N-alkenyl functionalized 2-pyridones. In the reaction with propargyl bromide, the thiazoline ring opens and subsequently closes via a [2 + 2] cycloaddition between an in situ generated allene and the α,ß-unsaturated methyl ester. This method enabled the synthesis of a variety of cyclobutane fused thiazolino-2-pyridones, of which a few analogues inhibit amyloid ß1-40 fibril formation. Furthermore, other analogues were able to bind mature α-synuclein and amyloid ß1-40 fibrils. Several thiazoline fused 2-pyridones with biological activity tolerate this transformation, which in addition provides an exocyclic alkene as a potential handle for tuning bioactivity.


Asunto(s)
Ciclobutanos , Alquenos , Péptidos beta-Amiloides , Reacción de Cicloadición , Piridonas
14.
Org Biomol Chem ; 19(23): 5014-5027, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34019615

RESUMEN

Due to its unique structure and the vast array of substituents that can be attached to its core, Meldrum's acid is a molecule with exceptional chemical properties. In water, it has a remarkably low pKa value of about 4.9. Its C5 position is readily involved in electrophilic substitution reactions whereas the C4 and C6 positions are easily attacked by nucleophiles. At elevated temperatures Meldrum's acid undergoes distinctive decomposition pathways, which can be used in cycloaddition and acylation reactions. In this Tutorial Review, the authors intend to introduce the principles of the synthetic chemistry of Meldrum's acid and provide the essential knowledge for the design and preparation of compounds with desired properties. As there are many reviews focusing on a specific detail of Meldrum's acid chemistry, we would like to give a broader picture of this diverse molecule for undergraduate and graduate students as well as experienced lab leaders. For achieving this goal, some recent advances in using Meldrum's acid derivatives in synthetic scenarios are presented with the hope to further stimulate and promote research leading to additional innovative applications of this synthetically highly relevant molecule.

15.
Org Biomol Chem ; 19(44): 9758-9772, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34730163

RESUMEN

We herein present the synthesis of diversely functionalized pyrimidine fused thiazolino-2-pyridones via K2S2O8-mediated oxidative coupling of 6-amino-7-(aminomethyl)-thiazolino-2-pyridones with aldehydes. The developed protocol is mild, has wide substrate scope, and does not require transition metal catalyst or base. Some of the synthesized compounds have an ability to inhibit the formation of Amyloid-ß fibrils associated with Alzheimer's disease, while others bind to mature amyloid-ß and α-synuclein fibrils.


Asunto(s)
Aldehídos
16.
J Org Chem ; 85(21): 14174-14189, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33099999

RESUMEN

A BF3·OEt2 catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several O-alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid ß fibrils in vitro. Analogues substituted with a nitro group bind to mature amyloid fibrils, and the activity moreover depends on the positioning of this functional group.


Asunto(s)
Amiloide , alfa-Sinucleína , Péptidos beta-Amiloides , Piridonas
17.
Proc Natl Acad Sci U S A ; 114(46): 12184-12189, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087319

RESUMEN

During biofilm formation, Escherichia coli and other Enterobacteriaceae produce an extracellular matrix consisting of curli amyloid fibers and cellulose. The precursor of curli fibers is the amyloidogenic protein CsgA. The human systemic amyloid precursor protein transthyretin (TTR) is known to inhibit amyloid-ß (Aß) aggregation in vitro and suppress the Alzheimer's-like phenotypes in a transgenic mouse model of Aß deposition. We hypothesized that TTR might have broad antiamyloid activity because the biophysical properties of amyloids are largely conserved across species and kingdoms. Here, we report that both human WT tetrameric TTR (WT-TTR) and its engineered nontetramer-forming monomer (M-TTR, F87M/L110M) inhibit CsgA amyloid formation in vitro, with M-TTR being the more efficient inhibitor. Preincubation of WT-TTR with small molecules that occupy the T4 binding site eliminated the inhibitory capacity of the tetramer; however, they did not significantly compromise the ability of M-TTR to inhibit CsgA amyloidogenesis. TTR also inhibited amyloid-dependent biofilm formation in two different bacterial species with no apparent bactericidal or bacteriostatic effects. These discoveries suggest that TTR is an effective antibiofilm agent that could potentiate antibiotic efficacy in infections associated with significant biofilm formation.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Biopelículas/efectos de los fármacos , Proteínas de Escherichia coli/química , Escherichia coli/efectos de los fármacos , Prealbúmina/farmacología , Amiloide/antagonistas & inhibidores , Amiloide/metabolismo , Proteínas Amiloidogénicas/antagonistas & inhibidores , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Sitios de Unión , Biopelículas/crecimiento & desarrollo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Prealbúmina/química , Prealbúmina/metabolismo , Agregado de Proteínas/efectos de los fármacos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína
18.
New Phytol ; 223(3): 1420-1432, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31038751

RESUMEN

distribution of auxin within plant tissues is of great importance for developmental plasticity, including root gravitropic growth. Auxin flow is directed by the subcellular polar distribution and dynamic relocalisation of auxin transporters such as the PIN-FORMED (PIN) efflux carriers, which can be influenced by the main natural plant auxin indole-3-acetic acid (IAA). Anthranilic acid (AA) is an important early precursor of IAA and previously published studies with AA analogues have suggested that AA may also regulate PIN localisation. Using Arabidopsis thaliana as a model species, we studied an AA-deficient mutant displaying agravitropic root growth, treated seedlings with AA and AA analogues and transformed lines to over-produce AA while inhibiting its conversion to downstream IAA precursors. We showed that AA rescues root gravitropic growth in the AA-deficient mutant at concentrations that do not rescue IAA levels. Overproduction of AA affects root gravitropism without affecting IAA levels. Treatments with, or deficiency in, AA result in defects in PIN polarity and gravistimulus-induced PIN relocalisation in root cells. Our results revealed a previously unknown role for AA in the regulation of PIN subcellular localisation and dynamics involved in root gravitropism, which is independent of its better known role in IAA biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Polaridad Celular , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , ortoaminobenzoatos/metabolismo , Arabidopsis/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Ácidos Indolacéticos/química , Mutación/genética , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Quinolonas/farmacología , ortoaminobenzoatos/química , ortoaminobenzoatos/farmacología
19.
Brain Behav Immun ; 80: 525-535, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31029796

RESUMEN

Evidence is accumulating to suggest that viral infections and consequent viral-mediated neuroinflammation may contribute to the etiology of idiopathic Parkinson's disease. Moreover, viruses have been shown to influence α-synuclein oligomerization as well as the autophagic clearance of abnormal intra-cellular proteins aggregations, both of which are key neuropathological events in Parkinson's disease pathogenesis. To further investigate the interaction between viral-mediated neuroinflammation and α-synuclein aggregation in the context of Parkinson's disease, this study sought to determine the impact of viral neuroinflammatory priming on α-synuclein aggregate-induced neuroinflammation and neurotoxicity in the rat nigrostriatal pathway. To do so, male Sprague-Dawley rats were intra-nigrally injected with a synthetic mimetic of viral dsRNA (poly I:C) followed two weeks later by a peptidomimetic small molecule which accelerates α-synuclein fibril formation (FN075). The impact of the viral priming on α-synuclein aggregation-induced neuroinflammation, neurodegeneration and motor dysfunction was assessed. We found that prior administration of the viral mimetic poly I:C significantly exacerbated or precipitated the α-synuclein aggregate induced neuropathological and behavioral effects. Specifically, sequential exposure to the two challenges caused a significant increase in nigral microgliosis (p < 0.001) and astrocytosis (p < 0.01); precipitated a significant degeneration of the nigrostriatal cell bodies (p < 0.05); and precipitated a significant impairment in forelimb kinesis (p < 0.01) and sensorimotor integration (p < 0.01). The enhanced sensitivity of the nigrostriatal neurons to pathological α-synuclein aggregation after viral neuroinflammatory priming further suggests that viral infections may contribute to the etiology and pathogenesis of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson/etiología , Poli I-C/efectos adversos , alfa-Sinucleína/metabolismo , Animales , Materiales Biomiméticos , Cuerpo Estriado/metabolismo , Dependovirus/genética , Modelos Animales de Enfermedad , Vectores Genéticos , Gliosis/metabolismo , Masculino , Actividad Motora/efectos de los fármacos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/fisiopatología , Neuroinmunomodulación/fisiología , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Poli I-C/administración & dosificación , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/virología , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/fisiología
20.
J Org Chem ; 84(7): 3887-3903, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30862161

RESUMEN

We here describe the use of three-component reactions to synthesize tricyclic pyridine ring-fused 2-pyridones. The developed protocols have a wide substrate scope and allow for the installation of diverse chemical functionalities on the tricyclic central fragment. Several of these pyridine-fused rigid polyheterocycles are shown to bind to Aß and α-synuclein fibrils, which are associated with neurodegenerative diseases.


Asunto(s)
Amiloide/química , Compuestos Heterocíclicos de Anillo en Puente/síntesis química , Piridinas/síntesis química , Piridonas/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes , Compuestos Heterocíclicos de Anillo en Puente/química , Piridinas/química , Piridonas/química , Relación Estructura-Actividad , Estirenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA