Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Comput Electr Eng ; 105: 108479, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36406625

RESUMEN

Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.

2.
Sensors (Basel) ; 21(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440731

RESUMEN

Ensuring soil strength, as well as preliminary construction cost and duration prediction, is a very crucial and preliminary aspect of any construction project. Similarly, building strong structures is very important in geotechnical engineering to ensure the bearing capability of structures against external forces. Hence, in this first-of-its-kind state-of-the-art review, the capability of various artificial intelligence (AI)-based models toward accurate prediction and estimation of preliminary construction cost, duration, and shear strength is explored. Initially, background regarding the revolutionary AI technology along with its different models suited for geotechnical and construction engineering is presented. Various existing works in the literature on the usage of AI-based models for the abovementioned applications of construction and maintenance are presented along with their advantages, limitations, and future work. Through analysis, various crucial input parameters with great impact on the estimation of preliminary construction cost, duration, and soil shear strength are enumerated and presented. Lastly, various challenges in using AI-based models for accurate predictions in these applications, as well as factors contributing to the cost-overrun issues, are presented. This study can, thus, greatly assist civil engineers in efficiently using the capabilities of AI for solving complex and risk-sensitive tasks, and it can also be used in Internet of things (IoT) environments for automated applications such as smart structural health-monitoring systems.

3.
Sensors (Basel) ; 19(6)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917499

RESUMEN

The Internet of things (IoT) is a heterogeneous network of different types of wireless networks such as wireless sensor networks (WSNs), ZigBee, Wi-Fi, mobile ad hoc networks (MANETs), and RFID. To make IoT a reality for smart environment, more attractive to end users, and economically successful, it must be compatible with WSNs and MANETs. In light of this, the present paper discusses a novel quantitative trust model for an IoT-MANET. The proposed trust model combines both direct and indirect trust opinion in order to calculate the final trust value for a node. A Beta probabilistic distribution is used to combine different trust evidences and direct trust has been calculated. The theory of ARMA/GARCH has been used to combine the recommendation trust evidences and predict the resultant trust value of each node in multi-step ahead. Further, a routing protocol has been designed to ensure the secure and reliable end-to-end delivery of packets by only considering trustworthy nodes in the path. Simulation results show that our proposed trust model outperforms similar existing trust models.

4.
Neural Process Lett ; 55(1): 53-79, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-33551665

RESUMEN

Healthcare Informatics is a phenomenon being talked about from the early 21st century in the era in which we are living. With evolution of new computing technologies huge amount of data in healthcare is produced opening several research areas. Managing the massiveness of this data is required while extracting knowledge for decision making is the main concern of today. For this task researchers are doing explorations in big data analytics, deep learning (advanced form of machine learning known as deep neural nets), predictive analytics and various other algorithms to bring innovation in healthcare. Through all these innovations happening it is not wrong to establish that disease prediction with anticipation of its cure is no longer unrealistic. First, Dengue Fever (DF) and then Covid-19 likewise are new outbreak in infectious lethal diseases and diagnosing at all stages is crucial to decrease mortality rate. In case of Diabetes, clinicians and experts are finding challenging the timely diagnosis and analyzing the chances of developing underlying diseases. In this paper, Louvain Mani-Hierarchical Fold Learning healthcare analytics, a hybrid deep learning technique is proposed for medical diagnostics and is tested and validated using real-time dataset of 104 instances of patients with dengue fever made available by Holy Family Hospital, Pakistan and 810 instances found for infectious diseases including prognosis of; Covid-19, SARS, ARDS, Pneumocystis, Streptococcus, Chlamydophila, Klebsiella, Legionella, Lipoid, etc. on GitHub. Louvain Mani-Hierarchical Fold Learning healthcare analytics showed maximum 0.952 correlations between two clusters with Spearman when applied on 240 instances extracted from comorbidities diagnostic data model derived from 15696 endocrine records of multiple visits of 100 patients identified by a unique ID. Accuracy for induced rules is evaluated by Laplace (Fig. 8) as 0.727, 0.701 and 0.203 for 41, 18 and 24 rules, respectively. Endocrine diagnostic data is made available by Shifa International Hospital, Islamabad, Pakistan. Our results show that in future this algorithm may be tested for diagnostics on healthcare big data.

5.
Sustain Cities Soc ; 80: 103713, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35136715

RESUMEN

Deep learning models demonstrate superior performance in image classification problems. COVID-19 image classification is developed using single deep learning models. In this paper, an efficient hardware architecture based on an ensemble deep learning model is built to identify the COVID-19 using chest X-ray (CXR) records. Five deep learning models namely ResNet, fitness, IRCNN (Inception Recurrent Convolutional Neural Network), effectiveness, and Fitnet are ensembled for fine-tuning and enhancing the performance of the COVID-19 identification; these models are chosen as they individually perform better in other applications. Experimental analysis shows that the accuracy, precision, recall, and F1 for COVID-19 detection are 0.99,0.98,0.98, and 0.98 respectively. An application-specific hardware architecture incorporates the pipeline, parallel processing, reusability of computational resources by carefully exploiting the data flow and resource availability. The processing element (PE) and the CNN architecture are modeled using Verilog, simulated, and synthesized using cadence with Taiwan Semiconductor Manufacturing Co Ltd (TSMC) 90 nm tech file. The simulated results show a 40% reduction in the latency and number of clock cycles. The computations and power consumptions are minimized by designing the PE as a data-aware unit. Thus, the proposed architecture is best suited for Covid-19 prediction and diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA