Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38187536

RESUMEN

AlphaFold2 (AF2) and RosettaFold have greatly expanded the number of structures available for structure-based ligand discovery, even though retrospective studies have cast doubt on their direct usefulness for that goal. Here, we tested unrefined AF2 models prospectively, comparing experimental hit-rates and affinities from large library docking against AF2 models vs the same screens targeting experimental structures of the same receptors. In retrospective docking screens against the σ2 and the 5-HT2A receptors, the AF2 structures struggled to recapitulate ligands that we had previously found docking against the receptors' experimental structures, consistent with published results. Prospective large library docking against the AF2 models, however, yielded similar hit rates for both receptors versus docking against experimentally-derived structures; hundreds of molecules were prioritized and tested against each model and each structure of each receptor. The success of the AF2 models was achieved despite differences in orthosteric pocket residue conformations for both targets versus the experimental structures. Intriguingly, against the 5-HT2A receptor the most potent, subtype-selective agonists were discovered via docking against the AF2 model, not the experimental structure. To understand this from a molecular perspective, a cryoEM structure was determined for one of the more potent and selective ligands to emerge from docking against the AF2 model of the 5-HT2A receptor. Our findings suggest that AF2 models may sample conformations that are relevant for ligand discovery, much extending the domain of applicability of structure-based ligand discovery.

2.
Science ; 384(6702): eadn6354, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753765

RESUMEN

AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition. We prospectively docked large libraries against unrefined AF2 models of the σ2 and serotonin 2A (5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from docking against the experimental structures. Hit rates were high and similar for the experimental and AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite differences between orthosteric residue conformations in the AF2 models and the experimental structures. Determination of the cryo-electron microscopy structure for one of the more potent 5-HT2A ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction. AF2 models may sample conformations that differ from experimental structures but remain low energy and relevant for ligand discovery, extending the domain of structure-based drug design.


Asunto(s)
Aprendizaje Profundo , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Receptor de Serotonina 5-HT2A , Agonistas del Receptor de Serotonina 5-HT2 , Antagonistas del Receptor de Serotonina 5-HT2 , Humanos , Microscopía por Crioelectrón , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Ligandos , Conformación Proteica , Pliegue de Proteína , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/ultraestructura , Receptores sigma/química , Receptores sigma/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Agonistas del Receptor de Serotonina 5-HT2/química , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Antagonistas del Receptor de Serotonina 5-HT2/química , Antagonistas del Receptor de Serotonina 5-HT2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA